1
|
Kariuki R, Bryant SJ, Shepherd TP, Meftahi N, Bryant G, Conn CE, Christofferson AJ, Elbourne A. Single-particle adsorption of ultra-small gold nanoparticles at the biomembrane phase boundary. Colloids Surf B Biointerfaces 2025; 253:114734. [PMID: 40318394 DOI: 10.1016/j.colsurfb.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Nanomaterials are revolutionizing biomedical research by enabling the development of novel therapies, with applications ranging from drug delivery and diagnostics to the modulation of specific biological processes. Current research focuses on tasks such as enhancing cellular uptake of materials while preserving their functionality. However, the mechanisms governing interactions between nanomaterials and biological systems-particularly cellular membranes-remain challenging to elucidate due to the complex, dynamic nature of the lipid bilayer environment. This complexity arises from factors such as coexisting lipid domains (conserved regions of lipids) or lipid rafts, as well as cellular behaviors that induce state changes. The heterogeneous membrane landscape may offer unique adsorption properties and other functional effects, making it crucial to understand these interactions for greater biological control in nanotherapeutics. In this work, we systematically expose a phase-separated phospholipid-supported lipid bilayer (SLB)-specifically, a fluid-gel DOPC:DPPC bilayer-to low concentrations of citrate-capped 5 nm gold nanoparticles (AuNPs) to observe the adsorption process of individual AuNPs at the molecular scale. Using atomic force microscopy (AFM), we experimentally detect the adsorption of some AuNPs at the phase boundary. Complementary molecular dynamics (MD) simulations further elucidate the mechanism of single AuNP adsorption at lipid phase boundaries. Our findings indicate that the AuNP preferentially incorporates into the fluid-phase DOPC lipids while maintaining partial association with the gel-phase DPPC lipids due to diffusion effects. During adsorption, the AuNP disrupts lipid organization by increasing lateral lipid mixing across the phase boundary. This disruption to lipid molecular ordering is further evident upon AuNP incorporation into the bilayer. The ability to modulate the spatial organization and structure of lipid molecules has significant implications for therapeutics that leverage lipid diffusion pathways for alternative drug delivery mechanisms or to induce specific lipid behaviors.
Collapse
Affiliation(s)
- Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Tilly P Shepherd
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Nastaran Meftahi
- Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia; ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
2
|
Paloncýová M, Valério M, Dos Santos RN, Kührová P, Šrejber M, Čechová P, Dobchev DA, Balsubramani A, Banáš P, Agarwal V, Souza PCT, Otyepka M. Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery. Mol Pharm 2025; 22:1110-1141. [PMID: 39879096 PMCID: PMC11881150 DOI: 10.1021/acs.molpharmaceut.4c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Mariana Valério
- Laboratoire
de Biologie et Modélisation de la Cellule, CNRS, UMR 5239,
Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre Blaise
Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
| | | | - Petra Kührová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Martin Šrejber
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Petra Čechová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | | | - Akshay Balsubramani
- mRNA Center
of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
| | - Pavel Banáš
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Vikram Agarwal
- mRNA Center
of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
| | - Paulo C. T. Souza
- Laboratoire
de Biologie et Modélisation de la Cellule, CNRS, UMR 5239,
Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre Blaise
Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
| | - Michal Otyepka
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations,
VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
3
|
Brandner A, Smith IPS, Marrink SJ, Souza PCT, Khalid S. Systematic Approach to Parametrization of Disaccharides for the Martini 3 Coarse-Grained Force Field. J Chem Inf Model 2025; 65:1537-1548. [PMID: 39818849 PMCID: PMC11815824 DOI: 10.1021/acs.jcim.4c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Sugars are ubiquitous in biology; they occur in all kingdoms of life. Despite their prevalence, they have often been somewhat neglected in studies of structure-dynamics-function relationships of macromolecules to which they are attached, with the exception of nucleic acids. This is largely due to the inherent difficulties of not only studying the conformational dynamics of sugars using experimental methods but indeed also resolving their static structures. Molecular dynamics (MD) simulations offer a route to the prediction of conformational ensembles and the time-dependent behavior of sugars and glycosylated macromolecules. However, at the all-atom level of detail, MD simulations are often too computationally demanding to allow a systematic investigation of molecular interactions in systems of interest. To overcome this, large scale simulations of complex biological systems have profited from advances in coarse-grained (CG) simulations. Perhaps the most widely used CG force field for biomolecular simulations is Martini. Here, we present a parameter set for glucose- and mannose-based disaccharides for Martini 3. The generation of the CG parameters from atomistic trajectories is automated as fully as possible, and where not possible, we provide details of the protocol used for manual intervention.
Collapse
Affiliation(s)
| | - Iain P. S. Smith
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C. T. Souza
- Laboratoire
de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon
1, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre
Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
| | - Syma Khalid
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
4
|
Nguyen D, Bhattacharyya S, Richman H, Yu Y, Li Y. Targeting the Weak Spot: Preferential Disruption of Bacterial Poles by Janus Nanoparticles. NANO LETTERS 2024; 24:15886-15895. [PMID: 39584791 DOI: 10.1021/acs.nanolett.4c04946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The interaction between nanoparticles (NPs) and bacterial cell envelopes is crucial for designing effective antibacterial materials against multi-drug-resistant pathogens. However, the current understanding assumes a uniform bacterial cell wall. This study challenges that assumption by investigating how bacterial cell wall curvature impacts antibacterial NP action. Focusing on Janus NPs, which feature segregated hydrophobic and polycationic ligands and previously demonstrated high efficacy against diverse bacteria, we found that these NPs preferentially target and disrupt bacterial poles. Experimental and computational approaches reveal that curvature at E. coli poles induces conformational changes in lipopolysaccharide (LPS) polymers on the outer membrane, exposing underlying lipids for NP-mediated disruption. We establish that curvature-induced targeting by Janus NPs depends on the outer membrane composition and is most pronounced at physiologically relevant LPS densities. This work demonstrates that high-curvature regions of bacterial cell walls are "weak spots" for Janus NPs, thereby aiding the development of more effective targeted therapies.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Swagata Bhattacharyya
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Hunter Richman
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Patidar A, Goel G. MARTINI Coarse-Grained Force Field for Thermoplastic Starch Nanocomposites. J Phys Chem B 2024; 128:11468-11480. [PMID: 39527046 DOI: 10.1021/acs.jpcb.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thermoplastic starch (TPS) is an excellent film-forming material, and the addition of fillers, such as tetramethylammonium-montmorillonite (TMA-MMT) clay, has significantly expanded its use in packaging applications. We first used an all-atom (AA) simulation to predict several macroscopic (Young's modulus, glass transition temperature, density) and microscopic (conformation along 1-4 and 1-6 glycosidic linkages, composite morphology) properties of TPS melt and TPS-TMA-MMT composite. The interplay of polymer-surface (weakly repulsive), plasticizer-surface (attractive), and polymer-plasticizer (weakly attractive) interactions leads to conformational and dynamics properties distinct from those in systems with either attractive or repulsive polymer-surface interactions. A subset of AA properties was used to parametrize the MARTINI-2 coarse-grained (CG) force field (FF) for the melt and composite systems. The missing bonded parameters of amylose and amylopectin and the bead types for 1-4 and 1-6 linked α-D glucose were determined using two-body excess entropy, density, and bond and angle distributions in the AA TPS melt. This new MARTINI-2 CG model was also compared with the MARTINI-3 model for the TPS melt. However, the requirement of a polarizable water model necessitates the use of MARTINI-2 FF for the composite system. This liquid-liquid partitioning-based FF shows freezing and compaction of polymer chains near the clay surface, further accentuated by lowering of dispersive interactions between pairs of high-covalent-coordination ring units of TPS polymers and the montmorillonite sheet. A rescaling of the effective dispersive component of TPS-MMT cross interactions was used to optimize the MARTINI-2 FF for the composite system with structural (chain size distribution), thermodynamic (chain conformational entropy and density), and dynamic (self-diffusion coefficient) properties obtained from long AA simulations forming the constraints for optimization. The obtained CG FF parameters provided excellent estimates for several other properties of the melt and composite systems not used in parameter estimation, thus establishing the robustness of the developed model.
Collapse
Affiliation(s)
- Ankit Patidar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Weerakoon D, Marzinek JK, Pedebos C, Bond PJ, Khalid S. Polymyxin B1 in the Escherichia coli inner membrane: A complex story of protein and lipopolysaccharide-mediated insertion. J Biol Chem 2024; 300:107754. [PMID: 39260694 PMCID: PMC11497408 DOI: 10.1016/j.jbc.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The rise in multi-drug resistant Gram-negative bacterial infections has led to an increased need for "last-resort" antibiotics such as polymyxins. However, the emergence of polymyxin-resistant strains threatens to bring about a post-antibiotic era. Thus, there is a need to develop new polymyxin-based antibiotics, but a lack of knowledge of the mechanism of action of polymyxins hinders such efforts. It has recently been suggested that polymyxins induce cell lysis of the Gram-negative bacterial inner membrane (IM) by targeting trace amounts of lipopolysaccharide (LPS) localized there. We use multiscale molecular dynamics (MD), including long-timescale coarse-grained (CG) and all-atom (AA) simulations, to investigate the interactions of polymyxin B1 (PMB1) with bacterial IM models containing phospholipids (PLs), small quantities of LPS, and IM proteins. LPS was observed to (transiently) phase separate from PLs at multiple LPS concentrations, and associate with proteins in the IM. PMB1 spontaneously inserted into the IM and localized at the LPS-PL interface, where it cross-linked lipid headgroups via hydrogen bonds, sampling a wide range of interfacial environments. In the presence of membrane proteins, a small number of PMB1 molecules formed interactions with them, in a manner that was modulated by local LPS molecules. Electroporation-driven translocation of PMB1 via water-filled pores was favored at the protein-PL interface, supporting the 'destabilizing' role proteins may have within the IM. Overall, this in-depth characterization of PMB1 modes of interaction reveals how small amounts of mislocalized LPS may play a role in pre-lytic targeting and provides insights that may facilitate rational improvement of polymyxin-based antibiotics.
Collapse
Affiliation(s)
- Dhanushka Weerakoon
- School of Chemistry, University of Southampton, Southampton, UK; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, Porto Alegre, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saudé de Porto Alegre - UFCSPA, Brazil
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Porto Alegre, UK.
| |
Collapse
|
7
|
Yuan S, Zhang N, Yuan S, Wang Z. Insights into the silica scaling behaviors in membrane distillation and anti-scaling mechanism of functional polymers. WATER RESEARCH 2024; 261:122006. [PMID: 38944970 DOI: 10.1016/j.watres.2024.122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Silica scaling imposes a significant limitation on the efficacy of membrane distillation (MD) in the treatment of hypersaline wastewater. The complex dynamic behaviors of silica at the membrane-water-air interface and the poor understanding of molecular-level anti-scaling mechanism hampers the development of effective antiscalants for mitigating silica scaling in MD. Despite using functional polymers to prevent silica polymerization, the inhibition mechanisms are unclear. Here, the kinetic process of silica scaling during MD and the potential anti-scaling mechanism of poly-ethylenimine (PEI) were investigated at the molecular level via molecular dynamics simulations. The investigation reveals that silica scales were more likely to adhere to the water-PTFE interface with a free energy potential well of -40.0 kJ mol-1 than that of the water-air interface with a -11.4 kJ mol-1 potential well. Silica scales falling at the water-air interface also migrated on the water-air interface until captured by the PTFE membrane. In this work, a representative functional amino-rich polymer PEI was constructed as silica inhibitors and its scale inhibition mechanism was elucidated. Notably, the inclusion of PEI increased the free-energy barriers for the silica polymerization reaction from 72.0 kJ mol-1 to 86.1 kJ mol-1, compared to scenarios without the antiscalants. Moreover, quantitative structure-activity relationships (QSAR) model of ΔGwater-silica was developed to predict the anti-scaling efficiencies of typical antiscalants based on machine learning method. These findings provide valuable insights into enhancing the efficiency of silica scaling mitigation strategies.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
8
|
Brandner AF, Prakaash D, Blanco González A, Waterhouse F, Khalid S. Faster but Not Sweeter: A Model of Escherichia coli Re-level Lipopolysaccharide for Martini 3 and a Martini 2 Version with Accelerated Kinetics. J Chem Theory Comput 2024; 20:6890-6903. [PMID: 39008538 PMCID: PMC11325540 DOI: 10.1021/acs.jctc.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lipopolysaccharide (LPS) is a complex glycolipid molecule that is the main lipidic component of the outer leaflet of the outer membrane of Gram-negative bacteria. It has very limited lateral motion compared to phospholipids, which are more ubiquitous in biological membranes, including in the inner leaflet of the outer membrane of Gram-negative bacteria. The slow-moving nature of LPS can present a hurdle for molecular dynamics simulations, given that the (pragmatically) accessible timescales to simulations are currently limited to microseconds, during which LPS displays some conformational dynamics but hardly any lateral diffusion. Thus, it is not feasible to observe phenomena such as insertion of molecules, including antibiotics/antimicrobials, directly into the outer membrane from the extracellular side nor to observe LPS dissociating from proteins via molecular dynamics using currently available models at the atomistic and more coarse-grained levels of granularity. Here, we present a model of deep rough LPS compatible with the Martini 2 coarse-grained force field with scaled down nonbonded interactions to enable faster diffusion. We show that the faster-diffusing LPS model is able to reproduce the salient biophysical properties of the standard models, but due to its faster lateral motion, molecules are able to penetrate deeper into membranes containing the faster model. We show that the fast ReLPS model is able to reproduce experimentally determined patterns of interaction with outer membrane proteins while also allowing for LPS to associate and dissociate with proteins within microsecond timescales. We also complete the Martini 3 LPS toolkit for Escherichia coli by presenting a (standard) model of deep rough LPS for this force field.
Collapse
Affiliation(s)
- Astrid F Brandner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Alexandre Blanco González
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela 15782, Spain
| | - Fergus Waterhouse
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| |
Collapse
|
9
|
Shahriari M, Jafari M, Doustdar F, Mehrnejad F. Comparative study of the interactions between C60 fullerene and SARS-CoV-2, HIV, eukaryotic, and bacterial model membranes: Insights into antimicrobial strategies with C60-peptide hybrids. Int J Biol Macromol 2024; 271:132399. [PMID: 38754684 DOI: 10.1016/j.ijbiomac.2024.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The neutrophil-derived peptide, indolicidin, and the sphere-shaped carbon nanoparticle, C60, are contemporary components capable of acting as bactericides and virucides, among others. Herein, the coarse-grained molecular dynamics simulation method was used to simulate the interactions of gram-negative bacteria, eukaryotes, human immunodeficiency virus (HIV), and SARS-COV-2 membrane models with indolicidin, C60s, and C60-indolicidin hybrids. Our results demonstrated that the carbon nanoparticle penetrated all membrane models, except the bacterial membrane, which remained impenetrable to both the peptide and C60. Additionally, the membrane thickness did not change significantly. The peptide floated above the membranes, with only the side chains of the tryptophan (Trp)-rich site slightly permeating the membranes. After achieving stable contact between the membrane models and nanoparticles, the infiltrated C60s interacted with the unsaturated tail of phospholipids. The density results showed that C60s stayed close to indolicidin and continued to interact with it even after penetration. Indolicidin, especially its Trp-rich site, exhibited more contact with the head and tail of neutral phospholipids compared to other phospholipids. Moreover, both particles interacted with different kinds of glycosphingolipids located in the eukaryote membrane. This investigation has the potential to advance our knowledge of novel approaches to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Masoud Shahriari
- Department of Nanobiotechnology and Biomimetics, School of Life Science Engineering, College of Interdisciplinary of Science and Technology, University of Tehran, 14395-1561 Tehran, Iran
| | - Majid Jafari
- Department of Nanobiotechnology and Biomimetics, School of Life Science Engineering, College of Interdisciplinary of Science and Technology, University of Tehran, 14395-1561 Tehran, Iran; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
| | - Farahnoosh Doustdar
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Faramarz Mehrnejad
- Department of Nanobiotechnology and Biomimetics, School of Life Science Engineering, College of Interdisciplinary of Science and Technology, University of Tehran, 14395-1561 Tehran, Iran.
| |
Collapse
|
10
|
Sharma P, Vaiwala R, Gopinath AK, Chockalingam R, Ayappa KG. Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7791-7811. [PMID: 38451026 DOI: 10.1021/acs.langmuir.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Amar Krishna Gopinath
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rajalakshmi Chockalingam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| |
Collapse
|
11
|
Manrique PD, Leus IV, López CA, Mehla J, Malloci G, Gervasoni S, Vargiu AV, Kinthada RK, Herndon L, Hengartner NW, Walker JK, Rybenkov VV, Ruggerone P, Zgurskaya HI, Gnanakaran S. Predicting permeation of compounds across the outer membrane of P. aeruginosa using molecular descriptors. Commun Chem 2024; 7:84. [PMID: 38609430 PMCID: PMC11015012 DOI: 10.1038/s42004-024-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.
Collapse
Affiliation(s)
- Pedro D Manrique
- Physics Department, George Washington University, Washington, 20052, DC, USA.
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - César A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Silvia Gervasoni
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Rama K Kinthada
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Liam Herndon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
| |
Collapse
|
12
|
Yuan S, Yang X, Zhang N, Zhang J, Yuan S, Wang Z. Molecular insights into the adsorption and penetration of oil droplets on hydrophobic membrane in membrane distillation. WATER RESEARCH 2024; 253:121329. [PMID: 38387269 DOI: 10.1016/j.watres.2024.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling induced by oily substances significantly constrains membrane distillation performance in treating hypersaline oily wastewater. Overcoming this challenge necessitates a heightened fundamental understanding of the oil fouling phenomenon. Herein, the adsorption and penetration mechanism of oil droplets on hydrophobic membranes in membrane distillation process was investigated at the molecular level. Our results demonstrated that the adsorption and penetration of oil droplets were divided into four stages, including the free stage, contact stage, spreading stage, and equilibrium stage. Due to the extensive non-polar surface distribution of the polytetrafluoroethylene (PTFE) membrane (comprising 95.41 %), the interaction between oil molecules and PTFE was primarily governed by van der Waals interaction. Continuous oil droplet membrane fouling model revealed that the new oil droplet molecules preferred to penetrate into membrane pores where oil droplets already existed. The penetration of resin (a component of medium-quality oil droplets) onto PTFE membrane pores required the "pre-paving" of light crude oil. Finally, the ΔE quantitative structure-activity relationships (QSAR) models were developed to evaluate the penetration mechanism of pollutant molecules on the PTFE membrane. This research provides new insights for improving sustainable membrane distillation technologies in treating saline oily wastewater.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
13
|
Yuan S, Wang Z, Yuan S. Insights into the pH-dependent interactions of sulfadiazine antibiotic with soil particle models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170537. [PMID: 38301792 DOI: 10.1016/j.scitotenv.2024.170537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Sulfonamide antibiotics (SAs) are widely used as a broad-spectrum antibiotic, leading to global concerns due to their potential soil accumulation and subsequent effects on ecosystems. SAs often exhibit remarkable environmental persistence, necessitating further investigation to uncover the ultimate destiny of these molecules. In this work, molecular dynamics simulations combined with complementary quantum chemistry calculations were employed to investigate the influence of pH on the behavior of sulfadiazine (SDZ, a typical SAs) in soil particle models (silica, one of the main components of soil). Meanwhile, the quantification of SDZ molecules aggregation potential onto silica was further extended. SDZ molecules tend to form a monolayer on the soil surface under acidic conditions while forming aggregated adsorption on the surface under neutral conditions. Due to the hydrophilicity of the silica, multiple hydration layers would form on its surface, hindering the further adsorption of SDZ molecules on its surface. The calculated soil-water partition coefficient (Psoil/water) of SDZ+ and SDZ were 9.01 and 7.02, respectively. The adsorption evaluation and mechanisms are useful in controlling the migration and transformation of SAs in the soil environment. These findings provide valuable insights into the interactions between SDZ and soil components, shedding light on its fate and transport in the environment.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China
| |
Collapse
|
14
|
Vaiwala R, Ayappa KG. Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of Escherichia coli. J Chem Theory Comput 2024; 20:1704-1716. [PMID: 37676287 DOI: 10.1021/acs.jctc.3c00471] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The outer lipopolysaccharide (LPS) membrane of Gram-negative bacteria forms the main barrier for transport of antimicrobial molecules into the bacterial cell. In this study we develop coarse-grained models for the outer membrane of Escherichia coli in the Martini-3 framework. The coarse-grained model force field was parametrized and validated using all-atom simulations of symmetric membranes of lipid A and rough LPS as well as a complete asymmetric membrane of LPS with the O-antigen. The bonded parameters were obtained using an iterative refinement procedure with target bonded distributions obtained from all-atom simulations. The membrane thickness, area of the LPS, and density distributions for the different regions as well as the water and ion densities in Martini-3 simulations show excellent agreement with the all-atom data. Additionally the solvent accessible surface area for individual molecules in water was found to be in good agreement. The binding of calcium ions with phosphate and carboxylate moieties of LPS is accurately captured in the Martini-3 model, indicative of the integrity of the highly negatively charged LPS molecules in the outer membranes of Gram-negative bacteria. The melting transition of the coarse-grained lipid A membrane model was found to occur between 300 and 310 K, and the model captured variations in area per LPS, order parameter, and membrane thickness across the melting transition. Our study reveals that the proposed Martini-3 models for LPS are able to capture the physicochemical balance of the complex sugar architecture of the outer membrane of Escherichia coli. The coarse-grained models developed in this study would be useful for determining membrane protein interactions and permeation of potential antimicrobials through bacterial membranes at mesoscopic spatial and temporal scales.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Janssens A, Nguyen VS, Cecil AJ, Van der Verren SE, Timmerman E, Deghelt M, Pak AJ, Collet JF, Impens F, Remaut H. SlyB encapsulates outer membrane proteins in stress-induced lipid nanodomains. Nature 2024; 626:617-625. [PMID: 38081298 DOI: 10.1038/s41586-023-06925-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane β-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic β-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate β-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.
Collapse
Affiliation(s)
- Arne Janssens
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Van Son Nguyen
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adam J Cecil
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Sander E Van der Verren
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Evy Timmerman
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Michaël Deghelt
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexander J Pak
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, USA
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Francis Impens
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
16
|
Awang T, Chairatana P, Pongprayoon P. Molecular dynamics simulations of human α-defensin 5 (HD5) crossing gram-negative bacterial membrane. PLoS One 2023; 18:e0294041. [PMID: 37988380 PMCID: PMC10662769 DOI: 10.1371/journal.pone.0294041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Human α-defensin 5 (HD5) is a cationic antimicrobial peptide exhibiting a wide range of antimicrobial activities. It plays an important role in mucosal immunity of the small intestine. HD5 exerts its bactericidal activities through multiple mechanisms, one of which involves HD5 inducing the formation of pores in the bacterial membrane, subsequently allowing the peptide to enter the bacterial cytoplasm. Nevertheless, the precise molecular intricacies underlying its bactericidal mechanisms remain inadequately understood. In this work, the Potential of Mean Force (PMF) was computed to delve into the energetic properties governing the movement of HD5 across the lipopolysaccharide (LPS) membrane, which is a representative model of the gram-negative bacterial membrane. Our findings indicate that the most favorable free energy is attained when HD5 binds to the surface of the LPS membrane. This favorable interaction is primarily driven by the strong interactions between arginine residues in HD5 and the charged head groups of LPS, serving as the predominant forces facilitating the adhesion of HD5 to the membrane. Our analysis reveals that a dimeric form of HD5 alone is sufficient to create a water-filled channel in the membrane; however, achieving the complete lysis of the gram-negative bacterial membrane requires higher-order oligomerization of HD5. Our results suggest that HD5 employs the toroidal pore formation mechanism to disrupt the integrity of the LPS membrane. Furthermore, we identified that the primary energy barrier obstructing HD5 from traversing the membrane is localized within the hydrophobic core of the membrane, which is also observed for other defensins. Additionally, our study demonstrates that a mixture of HD5-LPS leads to a thinning of the membrane. Taken together, this work provides a deeper insight into the molecular intricacies governing the behavior of HD5 as it translocates through the gram-negative bacterial membrane.
Collapse
Affiliation(s)
- Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
17
|
Nguyen D, Wu J, Corrigan P, Li Y. Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration. NANOSCALE 2023; 15:16112-16130. [PMID: 37753922 DOI: 10.1039/d3nr00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Janus nanoparticles (NPs) with charged/hydrophobic compartments have garnered attention for their potential antimicrobial activity. These NPs have been shown to disrupt lipid bilayers in experimental studies, yet the underlying mechanisms of this disruption at the particle-membrane interface remain unclear. To address this knowledge gap, the present study conducts a computational investigation to systematically examine the disruption of lipid bilayers induced by amphiphilic Janus NPs. The focus of this study is on the combined effects of the hydrophobicity of the Janus NP, referred to as the Janus balance, defined as the ratio of hydrophilic to hydrophobic surface coverage, and the concentration of charged phospholipids on the interactions between Janus NPs and lipid bilayers. Computational simulations were conducted using a coarse-grained molecular dynamics (MD) approach. The results of these MD simulations reveal that while the area change of the bilayer increases monotonically with the Janus balance, the effect of charged lipid concentration in the membrane is not easy to be predicted. Specifically, it was found that the concentration of negatively charged lipids is directly proportional to the intensity of membrane disruption. Conversely, positively charged lipids have a negligible effect on membrane defects. This study provides molecular insights into the significant role of Janus balance in the disruption of lipid bilayers by Janus NPs and supports the selectivity of Janus NPs for negatively charged lipid membranes. Furthermore, the anisotropic properties of Janus NPs were found to play a crucial role in their ability to disrupt the membrane via the combination of hydrophobic and electrostatic interactions. This finding is validated by testing the current Janus NP design on a bacterial membrane-mimicking model. This computational study may serve as a foundation for further studies aimed at optimizing the properties of Janus NPs for specific antimicrobial applications.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - James Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Patrick Corrigan
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
18
|
Li X, Fu L, Zhang S, Wang Y, Gao L. How Alligator Immune Peptides Kill Gram-Negative Bacteria: A Lipid-Scrambling, Squeezing, and Extracting Mechanism Revealed by Theoretical Simulations. Int J Mol Sci 2023; 24:10962. [PMID: 37446138 DOI: 10.3390/ijms241310962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Alligator sinensis cathelicidins (As-CATHs) are antimicrobial peptides extracted from alligators that enable alligators to cope with diseases caused by bacterial infections. This study assessed the damaging effects of sequence-truncated and residue-substituted variants of As-CATH4, AS4-1, AS4-5, and AS4-9 (with decreasing charges but increasing hydrophobicity) on the membranes of Gram-negative bacteria at the molecular level by using coarse-grained molecular dynamics simulations. The simulations predicted that all the variants disrupt the structures of the inner membrane of Gram-negative bacteria, with AS4-9 having the highest antibacterial activity that is able to squeeze the membrane and extract lipids from the membrane. However, none of them can disrupt the structure of asymmetric outer membrane of Gram-negative bacteria, which is composed of lipopolysaccharides in the outer leaflet and phospholipids in the inner leaflet. Nonetheless, the adsorption of AS4-9 induces lipid scrambling in the membrane by lowering the free energy of a phospholipid flipping from the inner leaflet up to the outer leaflet. Upon binding onto the lipid-scrambled outer membrane, AS4-9s are predicted to squeeze and extract phospholipids from the membrane, AS4-5s have a weak pull-out effect, and AS4-1s mainly stay free in water without any lipid-extracting function. These findings provide inspiration for the development of potent therapeutic agents targeting bacteria.
Collapse
Affiliation(s)
- Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
De Nicola A, Montis C, Donati G, Molinaro A, Silipo A, Balestri A, Berti D, Di Lorenzo F, Zhu YL, Milano G. Bacterial lipids drive compartmentalization on the nanoscale. NANOSCALE 2023; 15:8988-8995. [PMID: 37144495 PMCID: PMC10210972 DOI: 10.1039/d3nr00559c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.
Collapse
Affiliation(s)
- Antonio De Nicola
- Scuola Superiore Meridionale, Via Largo San Marcellino 10, 80132 Napoli, Italy
- Graduate School of Organic Materials Science, Yamagata, University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Costanza Montis
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Greta Donati
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Arianna Balestri
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Debora Berti
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - You-Liang Zhu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Giuseppe Milano
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering, Piazzale V. Tecchio, 80, 80125 Napoli, Italy.
| |
Collapse
|
20
|
Pezeshkian W, Grünewald F, Narykov O, Lu S, Arkhipova V, Solodovnikov A, Wassenaar TA, Marrink SJ, Korkin D. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure 2023; 31:492-503.e7. [PMID: 36870335 DOI: 10.1016/j.str.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands
| | - Oleksandr Narykov
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Institute for Life Science and Technology, Hanze University of Applied Sciences, 9747AS Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands.
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
21
|
Grünewald F, Punt MH, Jefferys EE, Vainikka PA, König M, Virtanen V, Meyer TA, Pezeshkian W, Gormley AJ, Karonen M, Sansom MSP, Souza PCT, Marrink SJ. Martini 3 Coarse-Grained Force Field for Carbohydrates. J Chem Theory Comput 2022; 18:7555-7569. [PMID: 36342474 DOI: 10.1021/acs.jctc.2c00757] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach.
Collapse
Affiliation(s)
- Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Mats H Punt
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Elizabeth E Jefferys
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petteri A Vainikka
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Melanie König
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Valtteri Virtanen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Travis A Meyer
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands.,The Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon 69367, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
22
|
Fu L, Li X, Zhang S, Dong Y, Fang W, Gao L. Polymyxins induce lipid scrambling and disrupt the homeostasis of Gram-negative bacteria membrane. Biophys J 2022; 121:3486-3498. [PMID: 35964158 PMCID: PMC9515121 DOI: 10.1016/j.bpj.2022.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Polymyxins are increasingly used as the last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, efforts to address the resistance in superbugs are compromised by a poor understanding of the bactericidal modes because high-resolution detection of the cell structure is still lacking. By performing molecular dynamics simulations at a coarse-grained level, here we show that polymyxin B (PmB) disrupts Gram-negative bacterial membranes by altering lipid homeostasis and asymmetry. We found that the binding of PmBs onto the asymmetric outer membrane (OM) loosens the packing of lipopolysaccharides (LPS) and induces unbalanced bending torque between the inner and outer leaflets, which in turn triggers phospholipids to flip from the inner leaflet to the outer leaflet to compensate for the stress deformation. Meanwhile, some LPSs may be detained on the inner membrane (IM). Then, the lipid-scrambled OM undergoes phase separation. Defects are created at the boundaries between LPS-rich domains and phospholipid-rich domains, which consequently facilitate the uptake of PmB across the OM. Finally, PmBs target LPSs detained on the IM and similarly perturb the IM. This lipid Scramble, membrane phase Separation, and peptide Translocation model depicts a novel mechanism by which polymyxins kill bacteria and sheds light on developing a new generation of polymyxins or antibiotic adjuvants with improved killing activities and higher therapeutic indices.
Collapse
Affiliation(s)
- Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yi Dong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| |
Collapse
|
23
|
Chumponanomakun P, Niramitranon J, Chairatana P, Pongprayoon P. Molecular insights into the adsorption mechanism of E21R and T7E21R human defensin 5 on a bacterial membrane. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2086253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Phoom Chumponanomakun
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jitti Niramitranon
- Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
24
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
25
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
26
|
Weerakoon D, Petrov K, Pedebos C, Khalid S. Polymyxin B1 within the E. coli cell envelope: insights from molecular dynamics simulations. Biophys Rev 2021; 13:1061-1070. [PMID: 35047090 PMCID: PMC8724489 DOI: 10.1007/s12551-021-00869-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Polymyxins are used as last-resort antibiotics, where other treatments have been ineffectual due to antibiotic resistance. However, resistance to polymyxins has also been now reported, therefore it is instructive to characterise at the molecular level, the mechanisms of action of polymyxins. Here we review insights into these mechanisms from molecular dynamics simulations and discuss the utility of simulations as a complementary technique to experimental methodologies.
Collapse
Affiliation(s)
| | - Kamen Petrov
- Hertford College, University of Oxford, Oxford, OX1 3BW UK
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| |
Collapse
|
27
|
Evaluation of the Binding Mechanism of Human Defensin 5 in a Bacterial Membrane: A Simulation Study. Int J Mol Sci 2021; 22:ijms222212401. [PMID: 34830284 PMCID: PMC8619297 DOI: 10.3390/ijms222212401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Human α-defensin 5 (HD5) is a host-defense peptide exhibiting broad-spectrum antimicrobial activity. The lipopolysaccharide (LPS) layer on the Gram-negative bacterial membrane acts as a barrier to HD5 insertion. Therefore, the pore formation and binding mechanism remain unclear. Here, the binding mechanisms at five positions along the bacterial membrane axis were investigated using Molecular Dynamics. (MD) simulations. We found that HD5 initially placed at positions 1 to 3 moved up to the surface, while HD5 positioned at 4 and 5 remained within the membrane interacting with the middle and inner leaflet of the membrane, respectively. The arginines were key components for tighter binding with 3-deoxy-d-manno-octulosonic acid (KDO), phosphates of the outer and inner leaflets. KDO appeared to retard the HD5 penetration.
Collapse
|
28
|
Awang T, Pongprayoon P. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies. J Mol Model 2021; 27:291. [PMID: 34546425 DOI: 10.1007/s00894-021-04915-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Human α-defensin 5 (HD5) is one of cationic antimicrobial peptides which plays a crucial role in an innate immune system in human body. HD5 shows the killing activity against a broad spectrum of pathogenic bacteria by making a pore in a bacterial membrane and penetrating into a cytosol. Nonetheless, its pore-forming mechanisms remain unclear. Thus, in this work, the constant-velocity steered molecular dynamics (SMD) simulation was used to simulate the permeation of a dimeric HD5 into a gram-negative lipopolysaccharide (LPS) membrane model. Arginine-rich HD5 is found to strongly interact with a LPS surface. Upon arrival, arginines on HD5 interact with lipid A head groups (a top part of LPS) and then drag these charged moieties down into a hydrophobic core resulting in the formation of water-filled pore. Although all arginines are found to interact with a membrane, Arg13 and Arg32 appear to play a dominant role in the HD5 adsorption on a gram-negative membrane. Furthermore, one chain of a dimeric HD5 is required for HD5 adhesion. The interactions of arginine-lipid A head groups play a major role in adhering a cationic HD5 on a membrane surface and retarding a HD5 passage in the meantime.
Collapse
Affiliation(s)
- Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
29
|
Marzuoli I, Cruz CHB, Lorenz CD, Fraternali F. Nanocapsule designs for antimicrobial resistance. NANOSCALE 2021; 13:10342-10355. [PMID: 34137751 DOI: 10.1039/d0nr08146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pressing need of new antimicrobial products is growing stronger, particularly because of widespread antimicrobial resistance, endangering our ability to treat common infections. The recent coronavirus pandemic has dramatically highlighted the necessity of effective antibacterial and antiviral protection. This work explores at the molecular level the mechanism of action of antibacterial nanocapsules assembled in virus-like particles, their stability and their interaction with mammal and antimicrobial model membranes. We use Molecular Dynamics with force-fields of different granularity and protein design strategies to study the stability, self-assembly and membrane poration properties of these nanocapsules.
Collapse
Affiliation(s)
- Irene Marzuoli
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | - Carlos H B Cruz
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | | | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| |
Collapse
|
30
|
Xing Y, Harper WF. The effects of engineered nanoparticles on nitrification during biological wastewater treatment. Biotechnol Bioeng 2021; 118:2401-2410. [PMID: 33682924 DOI: 10.1002/bit.27746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/08/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
Technological advancements in the past few decades have made it possible to manufacture nanomaterials at a large scale, and engineered nanoparticles (ENPs) are increasingly found in consumer products, such as cosmetics, sports products, and LED displays. A large amount of these ENPs end up in wastewater and potentially impact the performance of wastewater treatment plants (WWTPs). One important function of the WWTP is nitrification, which is carried out by the actions of two groups of bacteria, ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB). Since most ENPs are found to have or are designed to have antimicrobial activities, it is a legitimate concern that ENPs entering WWTPs may have negative impacts on nitrification. In this paper, the effects of ENPs on nitrification are discussed, focusing mainly on autotrophic nitrification by AOBs and NOBs. This review also covers ENP effects on anaerobic ammonium oxidation (anammox). Generally, nitrifiers in pure and mixed cultures can be inhibited by a variety of ENPs, but stress response mechanisms may attenuate toxicity. Long-term studies demonstrated that a wide range of NPs could cause severe deterioration of AOBs and/or NOBs when the influent concentration exceeded an inhibition threshold. Proposed mechanisms include the generation of reactive oxygen species, dissolved metals, physical disruption of cell membranes, bacterial engulfment, and intracellular accumulation of ENPs. Future research needs are also discussed.
Collapse
Affiliation(s)
- Yun Xing
- Department of Systems Engineering and Management, Air Force Institute of Technology, Environmental Engineering and Science Program, Wright-Patterson AFB, Ohio, USA
| | - Willie F Harper
- Department of Systems Engineering and Management, Air Force Institute of Technology, Environmental Engineering and Science Program, Wright-Patterson AFB, Ohio, USA
| |
Collapse
|
31
|
Shearer J, Marzinek JK, Bond PJ, Khalid S. Molecular dynamics simulations of bacterial outer membrane lipid extraction: Adequate sampling? J Chem Phys 2021; 153:044122. [PMID: 32752683 DOI: 10.1063/5.0017734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is almost exclusively composed of lipopolysaccharide in its outer leaflet, whereas the inner leaflet contains a mixture of phospholipids. Lipopolysaccharide diffuses at least an order of magnitude slower than phospholipids, which can cause issues for molecular dynamics simulations in terms of adequate sampling. Here, we test a number of simulation protocols for their ability to achieve convergence with reasonable computational effort using the MARTINI coarse-grained force-field. This is tested in the context both of potential of mean force (PMF) calculations for lipid extraction from membranes and of lateral mixing within the membrane phase. We find that decoupling the cations that cross-link the lipopolysaccharide headgroups from the extracted lipid during PMF calculations is the best approach to achieve convergence comparable to that for phospholipid extraction. We also show that lateral lipopolysaccharide mixing/sorting is very slow and not readily addressable even with Hamiltonian replica exchange. We discuss why more sorting may be unrealistic for the short (microseconds) timescales we simulate and provide an outlook for future studies of lipopolysaccharide-containing membranes.
Collapse
Affiliation(s)
- Jonathan Shearer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
32
|
Wadhwa R, Yadav NS, Katiyar SP, Yaguchi T, Lee C, Ahn H, Yun CO, Kaul SC, Sundar D. Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Sci Rep 2021; 11:2352. [PMID: 33504873 PMCID: PMC7840742 DOI: 10.1038/s41598-021-81729-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
Poor bioavailability due to the inability to cross the cell membrane is one of the major reasons for the failure of a drug in clinical trials. We have used molecular dynamics simulations to predict the membrane permeability of natural drugs-withanolides (withaferin-A and withanone) that have similar structures but remarkably differ in their cytotoxicity. We found that whereas withaferin-A, could proficiently transverse through the model membrane, withanone showed weak permeability. The free energy profiles for the interaction of withanolides with the model bilayer membrane revealed that whereas the polar head group of the membrane caused high resistance for the passage of withanone, the interior of the membrane behaves similarly for both withanolides. The solvation analysis further revealed that the high solvation of terminal O5 oxygen of withaferin-A was the major driving force for its high permeability; it interacted with the phosphate group of the membrane that led to its smooth passage across the bilayer. The computational predictions were tested by raising and recruiting unique antibodies that react to withaferin-A and withanone. The time-lapsed analyses of control and treated cells demonstrated higher permeation of withaferin-A as compared to withanone. The concurrence between the computation and experimental results thus re-emphasised the use of computational methods for predicting permeability and hence bioavailability of natural drug compounds in the drug development process.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan
| | - Neetu Singh Yadav
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Shashank P Katiyar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Tomoko Yaguchi
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan
| | - Chohee Lee
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.,Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyomin Ahn
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.,Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,GeneMedicine Co., Ltd, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,GeneMedicine Co., Ltd, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Institute of Nano Science and Technology (INST), 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India.
| |
Collapse
|
33
|
Tian L, Wu G. Microsecond molecular dynamics simulation of the adsorption and penetration of oil droplets on cellular membrane. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122683. [PMID: 32447203 DOI: 10.1016/j.jhazmat.2020.122683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/15/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The hazardous effects of petroleum contaminants in the soil and water environment are highly associated with their interactions with cellular membranes, but our understanding on the molecular-level mechanisms for the adsorption and penetration of heavy oil mixture on cellular membrane is very limited. In this study, microsecond molecular dynamics simulations were performed to gain insights into the morphological evolution and penetration dynamics of the multi-component and single-component oil droplets on the dipalmitoylphosphatidylcholine lipid membrane. Results highlighted the inhibition effect of the resins on the penetration of alkanes and aromatics, because they would form net structure making it difficult to release the latter two components from the oil droplet to the membrane. It also demonstrated the obviously different patterns of penetration between alkanes and aromatics. The overall steps for the toluene penetration included detachment from oil droplet, dispersion in water, adsorption on membrane surface, structure adjustment and penetration into membrane. By contrast, the step of dispersion in water was not necessary for the alkanes' penetration. Instead, it relied on the adsorption of the whole oil droplet on the membrane surface which resulted in the formation of pores on the membrane surface by local structure deformation in the lipid head group regions.
Collapse
Affiliation(s)
- Linqing Tian
- Division of Ocean Science and Technology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guozhong Wu
- Division of Ocean Science and Technology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Nisoh N, Jarerattanachat V, Karttunen M, Wong-Ekkabut J. Formation of aggregates, icosahedral structures and percolation clusters of fullerenes in lipids bilayers: The key role of lipid saturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183328. [PMID: 32343957 DOI: 10.1016/j.bbamem.2020.183328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Carbon nanoparticles (CNPs) are attractive materials for a great number of applications but there are serious concerns regarding their influence on health and environment. Here, our focus is on the behavior of fullerenes in lipid bilayers with varying lipid saturations, chain lengths and fullerene concentrations using coarse-grained molecular dynamics (CG-MD) simulations. Our findings show that the lipid saturation level is a key factor in determining how fullerenes behave and where the fullerenes are located inside a lipid bilayer. In saturated and monounsaturated bilayers fullerenes aggregated and formed clusters with some of them showing icosahedral structures. In polyunsaturated lipid bilayers, no such structures were observed: In polyunsaturated lipid bilayers at high fullerene concentrations, connected percolation-like networks of fullerenes spanning the whole lateral area emerged at the bilayer center. In other systems only separate isolated aggregates were observed. The effects of fullerenes on lipid bilayers depend strongly on fullerene aggregation. When fullerenes aggregate, their interactions with the lipid tails change.
Collapse
Affiliation(s)
- Nililla Nisoh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Viwan Jarerattanachat
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathumthani 12120, Thailand
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; The Centre for Advanced Materials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
35
|
Sharma P, Parthasarathi S, Patil N, Waskar M, Raut JS, Puranik M, Ayappa KG, Basu JK. Assessing Barriers for Antimicrobial Penetration in Complex Asymmetric Bacterial Membranes: A Case Study with Thymol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8800-8814. [PMID: 32609530 DOI: 10.1021/acs.langmuir.0c01124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The bacterial cell envelope is a complex multilayered structure evolved to protect bacteria in hostile environments. An understanding of the molecular basis for the interaction and transport of antibacterial therapeutics with the bacterial cell envelope will enable the development of drug molecules to combat bacterial infections and suppress the emergence of drug-resistant strains. Here we report the successful creation of an in vitro supported lipid bilayer (SLB) platform of the outer membrane (OM) of E. coli, an archetypical Gram-negative bacterium, containing the full smooth lipopolysaccharide (S-LPS) architecture of the membrane. Using this platform, we performed fluorescence correlation spectroscopy (FCS) in combination with molecular dynamics (MD) simulations to measure lipid diffusivities and provide molecular insights into the transport of natural antimicrobial agent thymol. Lipid diffusivities measured on symmetric supported lipid bilayers made up of inner membrane lipids show a distinct increase in the presence of thymol as also corroborated by MD simulations. However, lipid diffusivities in the asymmetric OM consisting of only S-LPS are invariant upon exposure to thymol. Increasing the phospholipid content in the LPS-containing outer leaflet improved the penetration toward thymol as reflected in slightly higher relative diffusivity changes in the inner leaflet when compared with the outer leaflet. Free-energy computations reveal the presence of a barrier (∼6 kT) only in the core-saccharide region of the OM for the translocation of thymol while the external O-antigen part is easily traversed. In contrast, thymol spontaneously inserts into the inner membrane. In addition to providing leaflet-resolved penetration barriers in bacterial membranes, we also assess the ability of small molecules to penetrate various membrane components. With rising bacterial resistance, our study opens up the possibility of screening potential antimicrobial drug candidates using these realistic model platforms for Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Nivedita Patil
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Morris Waskar
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Janhavi S Raut
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Mrinalini Puranik
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | | | | |
Collapse
|
36
|
Vaiwala R, Sharma P, Puranik M, Ayappa KG. Developing a Coarse-Grained Model for Bacterial Cell Walls: Evaluating Mechanical Properties and Free Energy Barriers. J Chem Theory Comput 2020; 16:5369-5384. [DOI: 10.1021/acs.jctc.0c00539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mrinalini Puranik
- Unilever Research & Development, 64 Main Road, Whitefield, Bangalore 560066, India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
Sowlati-Hashjin S, Carbone P, Karttunen M. Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study. J Phys Chem B 2020; 124:4487-4497. [DOI: 10.1021/acs.jpcb.0c02609] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Paola Carbone
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
38
|
Abstract
Gram-negative bacteria are protected by a multicompartmental molecular architecture known as the cell envelope that contains two membranes and a thin cell wall. As the cell envelope controls influx and efflux of molecular species, in recent years both experimental and computational studies of such architectures have seen a resurgence due to the implications for antibiotic development. In this article we review recent progress in molecular simulations of bacterial membranes. We show that enormous progress has been made in terms of the lipidic and protein compositions of bacterial systems. The simulations have moved away from the traditional setup of one protein surrounded by a large patch of the same lipid type toward a more bio-logically representative viewpoint. Simulations with multiple cell envelope components are also emerging. We review some of the key method developments that have facilitated recent progress, discuss some current limitations, and offer a perspective on future directions.
Collapse
Affiliation(s)
- Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton S017 1BJ, United Kingdom
| |
Collapse
|
39
|
Jefferies D, Khalid S. Atomistic and coarse-grained simulations of membrane proteins: A practical guide. Methods 2020; 185:15-27. [PMID: 32084518 DOI: 10.1016/j.ymeth.2020.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are amphipathic macromolecules whose exposed hydrophobic surfaces promote interactions with lipid membranes. Membrane proteins are remarkably diverse in terms of chemical composition and correspondingly, their biological functions and general biophysical behavior. Conventional experimental techniques provide an approach to study specific properties of membrane proteins e.g. their surface features, the nature and abundance of stabilizing intramolecular forces, preferred bilayer orientation, and the characteristics of their annular lipid shells. Molecular modeling software-and in particular, the suite of molecular dynamics algorithms-enables a more comprehensive exploration of dynamic membrane protein behavior. Molecular dynamics methods enable users to produce stepwise trajectories of proteins on arbitrary spatiotemporal scales that enable the easy identification of dynamic interactions that are beyond the scope of conventional analytical techniques. This article explains the molecular dynamics theoretical framework and popular step-by-step approaches for simulating membrane proteins in planar, and to a lesser extent, nonplanar lipid geometries. We detail popular procedures and computational tools that produce well-packed configurations of lipids and proteins and additionally, the efficient molecular dynamics simulation algorithms that reproduce their dynamic interactions.
Collapse
Affiliation(s)
- Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
40
|
Jefferies D, Khalid S. To infect or not to infect: molecular determinants of bacterial outer membrane vesicle internalization by host membranes. J Mol Biol 2020; 432:1251-1264. [DOI: 10.1016/j.jmb.2020.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
|
41
|
Fu L, Wan M, Zhang S, Gao L, Fang W. Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophys J 2019; 118:138-150. [PMID: 31812355 DOI: 10.1016/j.bpj.2019.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria have increased the prevalence of a variety of serious diseases in modern times. Polymyxins are used as the last-line therapeutic options for the treatment of infections. However, the mechanism of action of polymyxins remains in dispute. In this work, we used a coarse-grained molecular dynamics simulation to investigate the mechanism of the cationic antimicrobial peptide polymyxin B (PmB) interacting with both the inner and outer membrane models of bacteria. Our results show that the binding of PmB disturbs the outer membrane by displacing the counterions, decreasing the orientation order of the lipopolysaccharide tail, and creating more lipopolysaccharide packing defects. Upon binding onto the inner membrane, in contrast to the traditional killing mechanism that antimicrobial peptides usually use to induce holes in the membrane, PmBs do not permeabilize the inner membrane but stiffen it by filling up the lipid packing defect, increasing the lipid tail order and the membrane bending rigidity as well as restricting the lipid diffusion. PmBs also mediate intermembrane contact and adhesion. These joint effects suggest that PmBs deprive the biological activity of Gram-negative bacteria by sterilizing the cell.
Collapse
Affiliation(s)
- Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
42
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
43
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
44
|
Jefferies D, Shearer J, Khalid S. Role of O-Antigen in Response to Mechanical Stress of the E. coli Outer Membrane: Insights from Coarse-Grained MD Simulations. J Phys Chem B 2019; 123:3567-3575. [DOI: 10.1021/acs.jpcb.8b12168] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Jonathan Shearer
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
45
|
Shearer J, Jefferies D, Khalid S. Outer Membrane Proteins OmpA, FhuA, OmpF, EstA, BtuB, and OmpX Have Unique Lipopolysaccharide Fingerprints. J Chem Theory Comput 2019; 15:2608-2619. [PMID: 30848905 DOI: 10.1021/acs.jctc.8b01059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The outer membrane of Gram-negative bacteria has a highly complex asymmetrical architecture, containing a mixture of phospholipids in the inner leaflet and almost exclusively lipopolysaccharide (LPS) molecules in the outer leaflet. In E. coli, the outer membrane contains a wide range of proteins with a β barrel architecture, that vary in size from the smallest having eight strands to larger barrels composed of 22 strands. Here we report coarse-grained molecular dynamics simulations of six proteins from the E. coli outer membrane OmpA, OmpX, BtuB, FhuA, OmpF, and EstA in a range of membrane environments, which are representative of the in vivo conditions for different strains of E. coli. We show that each protein has a unique pattern of interaction with the surrounding membrane, which is influenced by the composition of the protein, the level of LPS in the outer leaflet, and the differing mobilities of the lipids in the two leaflets of the membrane. Overall we present analyses from over 200 μs of simulation for each protein.
Collapse
Affiliation(s)
- Jonathan Shearer
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| | - Damien Jefferies
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| | - Syma Khalid
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| |
Collapse
|
46
|
Bartsch A, Llabrés S, Pein F, Kattner C, Schön M, Diehn M, Tanabe M, Munk A, Zachariae U, Steinem C. High-resolution experimental and computational electrophysiology reveals weak β-lactam binding events in the porin PorB. Sci Rep 2019; 9:1264. [PMID: 30718567 PMCID: PMC6362148 DOI: 10.1038/s41598-018-37066-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
The permeation of most antibiotics through the outer membrane of Gram-negative bacteria occurs through porin channels. To design drugs with increased activity against Gram-negative bacteria in the face of the antibiotic resistance crisis, the strict constraints on the physicochemical properties of the permeants imposed by these channels must be better understood. Here we show that a combination of high-resolution electrophysiology, new noise-filtering analysis protocols and atomistic biomolecular simulations reveals weak binding events between the β-lactam antibiotic ampicillin and the porin PorB from the pathogenic bacterium Neisseria meningitidis. In particular, an asymmetry often seen in the electrophysiological characteristics of ligand-bound channels is utilised to characterise the binding site and molecular interactions in detail, based on the principles of electro-osmotic flow through the channel. Our results provide a rationale for the determinants that govern the binding and permeation of zwitterionic antibiotics in porin channels.
Collapse
Affiliation(s)
- Annika Bartsch
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Nethergate, Dundee, DD1 5EH, UK
| | - Florian Pein
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077, Göttingen, Germany
| | - Christof Kattner
- ZIK HALOmem, Membrane Protein Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Straße 3, 06120, Halle (Saale), Germany
- Juno Therapeutics GmbH, Göttingen, Germany
| | - Markus Schön
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Manuel Diehn
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077, Göttingen, Germany
| | - Mikio Tanabe
- Institute of Materials Structure Science, Structural Biology Research Center, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Axel Munk
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Nethergate, Dundee, DD1 5EH, UK.
- Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4NH, UK.
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| |
Collapse
|
47
|
Binding from Both Sides: TolR and Full-Length OmpA Bind and Maintain the Local Structure of the E. coli Cell Wall. Structure 2019; 27:713-724.e2. [PMID: 30713026 DOI: 10.1016/j.str.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022]
Abstract
We present a molecular modeling and simulation study of the E. coli cell envelope, with a particular focus on the role of TolR, a native protein of the E. coli inner membrane, in interactions with the cell wall. TolR has been proposed to bind to peptidoglycan, but the only structure of this protein thus far is in a conformation in which the putative peptidoglycan binding domain is not accessible. We show that a model of the extended conformation of the protein in which this domain is exposed binds peptidoglycan largely through electrostatic interactions. Non-covalent interactions of TolR and OmpA with the cell wall, from the inner membrane and outer membrane sides, respectively, maintain the position of the cell wall even in the absence of Braun's lipoprotein. The charged residues that mediate the cell-wall interactions of TolR in our simulations are conserved across a number of species of gram-negative bacteria.
Collapse
|
48
|
Nalakarn P, Boonnoy P, Nisoh N, Karttunen M, Wong-Ekkabut J. Dependence of fullerene aggregation on lipid saturation due to a balance between entropy and enthalpy. Sci Rep 2019; 9:1037. [PMID: 30705323 PMCID: PMC6355782 DOI: 10.1038/s41598-018-37659-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
It is well-known that fullerenes aggregate inside lipid membranes and that increasing the concentration may lead to (lethal) membrane rupture. It is not known, however, how aggregation and rupture depend on the lipid type, what physical mechanisms control this behavior and what experimental signatures detect such changes in membranes. In this paper, we attempt to answer these questions with molecular simulations, and we show that aggregation and membrane damage depend critically on the degree of saturation of the lipid acyl chains: unsaturated bonds, or "kinks", impose a subtle but crucial compartmentalization of the bilayer into core and surface regions leading to three distinct fullerene density maxima. In contrast, when the membrane has only fully saturated lipids, fullerenes prefer to be located close to the surface under the head groups until the concentration becomes too large and the fullerenes begin clustering. No clustering is observed in membranes with unsaturated lipids. The presence of "kinks" reverses the free energy balance; although the overall free energy profiles are similar, entropy is the dominant component in unsaturated bilayers whereas enthalpy controls the fully saturated ones. Fully saturated systems show two unique signatures: 1) membrane thickness behaves non-monotonously while the area per lipid increases monotonously. We propose this as a potential reason for the observations of low fullerene concentrations being effective against bacteria. 2) The fullerene-fullerene radial distribution function (RDF) shows splitting of the second peak indicating the emergence short-range order and the importance of the second-nearest neighbor interactions. Similar second peak splitting has been reported in metal glasses.
Collapse
Affiliation(s)
- Pornkamon Nalakarn
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand
| | - Phansiri Boonnoy
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Nililla Nisoh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand
| | - Mikko Karttunen
- Department of Chemistry and Department of Applied Mathematics, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand.
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
49
|
Khalid S, Piggot TJ, Samsudin F. Atomistic and Coarse Grain Simulations of the Cell Envelope of Gram-Negative Bacteria: What Have We Learned? Acc Chem Res 2019; 52:180-188. [PMID: 30562009 DOI: 10.1021/acs.accounts.8b00377] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial membranes, and those of Gram-negative bacteria in particular, are some of the most biochemically diverse membranes known. They incorporate a wide range of lipid types and proteins of varying sizes, architectures, and functions. While simpler biological membranes have been the focus of myriad simulation studies over the years that have yielded invaluable details to complement, and often to direct, ongoing experimental studies, simulations of complex bacterial membranes have been slower to emerge. However, the past few years have seen tremendous activity in this area, leading to advances such as the development of atomistic and coarse-grain models of the lipopolysaccharide (LPS) component of the outer membrane that are compatible with widely used simulation codes. In this Account, we review our contributions to the field of molecular simulations of the bacterial cell envelope, including the development of models of both membranes and the cell wall of Gram-negative bacteria, with a predominant focus on E. coli. At the atomistic level, simulations of chemically accurate models of both membranes have revealed the tightly cross-linked nature of the LPS headgroups and have shown that penetration of solutes through these regions is not as straightforward as the route through phospholipids. The energetic differences between the two routes have been calculated. Simulations of native outer membrane proteins in LPS-containing membranes have shown that the conformational dynamics of the proteins is not only slower in LPS but also different compared to in simpler models of phospholipid bilayers. These chemically more complex and consequently biologically more relevant models are leading to details of conformational dynamics that were previously inaccessible from simulations. Coarse-grain models have enabled simulations of multiprotein systems on time scales of microseconds, leading to insights not only into the rates of protein and lipid diffusion but also into the trends in their respective directions of flow. We find that the motions of LPS molecules are highly correlated with each other but also with outer membrane proteins embedded within the membrane. We have shown that the two leaflets of the outer membrane exhibit communication, whereby regions of low disorder in one leaflet correspond to regions of high disorder in the other. The cell wall remains a comparatively neglected component, although models of the E. coli peptidoglycan are now emerging, particularly at the atomistic level. Our simulations of Braun's lipoprotein have shown that bending and tilting of this protein afford a degree of variability in the gap between the cell wall and the OM. The noncovalent interactions with the cell wall of proteins such as OmpA can further influence the width of this gap by extension or contraction of their linker domains. Overall we have shown that the dynamics of proteins, lipids, and other molecular species within the outer membrane cannot be approximated using simpler phospholipid bilayers, if one is addressing questions regarding the in vivo behavior of Gram-negative bacteria. These membranes have their own unique chemical characteristics that cannot be decoupled from their biological functions.
Collapse
Affiliation(s)
- Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Thomas J Piggot
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
- Chemical Biological and Radiological Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
50
|
Smeddle GM, Bruce Macdonald HE, Essex JW, Khalid S. Prediction of the Closed Conformation and Insights into the Mechanism of the Membrane Enzyme LpxR. Biophys J 2018; 115:1445-1456. [PMID: 30287112 PMCID: PMC6260217 DOI: 10.1016/j.bpj.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Covalent modification of outer membrane lipids of Gram-negative bacteria can impact the ability of the bacterium to develop resistance to antibiotics as well as modulating the immune response of the host. The enzyme LpxR from Salmonella typhimurium is known to deacylate lipopolysaccharide molecules of the outer membrane; however, the mechanism of action is unknown. Here, we employ molecular dynamics and Monte Carlo simulations to study the conformational dynamics and substrate binding of LpxR in representative outer membrane models as well as detergent micelles. We examine the roles of conserved residues and provide an understanding of how LpxR binds its substrate. Our simulations predict that the catalytic H122 must be Nε-protonated for a single water molecule to occupy the space between it and the scissile bond, with a free binding energy of -8.5 kcal mol-1. Furthermore, simulations of the protein within a micelle enable us to predict the structure of the putative "closed" protein. Our results highlight the need for including dynamics, a representative environment, and the consideration of multiple tautomeric and rotameric states of key residues in mechanistic studies; static structures alone do not tell the full story.
Collapse
Affiliation(s)
- Graham M Smeddle
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | | | - Jonathan W Essex
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|