1
|
You X, Li H, Li Q, Zhang Q, Cao Y, Fu W, Wang B. Astragaloside IV-PESV facilitates pyroptosis by enhancing palmitoylation of GSDMD protein mediated by ZDHHC1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04122-x. [PMID: 40237800 DOI: 10.1007/s00210-025-04122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Prostate cancer (PCa) is an epithelial malignancy affecting the prostate gland. Astragaloside IV combined with polypeptide extract from scorpion venom (PESV) has been reported to inhibit the growth of PCa. This study aimed to investigate the mechanisms by which this combination mitigates the progression of PCa. Bioinformatic analysis was utilized to investigate the correlation between zinc finger DHHC-type containing 1 (ZDHHC1) expression and PCa progression. The extent of pyroptosis in PCa cells was assessed by measuring cell viability, IL-1β and IL-18 secretion, LDH release, and HMGB1 content. PCa mouse models were constructed by subcutaneous injection of DU145 or PC-3 cells into nude mice, with subsequent monitoring of tumor weight and volume. ZDHHC1 expression was significantly lower in PCa patient tissues, which correlated with a poor prognosis. ZDHHC1 overexpression inhibited PC-3 and DU145 cell viability and increased IL-1β, IL-18, LDH, and HMGB1 levels in cell supernatants. Notably, the pyroptosis inhibitor LDC7559 partially reversed these effects. Co-IP assay demonstrated an interaction between ZDHHC1 and GSDMD. ZDHHC1 overexpression significantly enhanced GSDMD palmitoylation-mediated membrane translocation and pyroptosis; however, this effect was partially reversed by the palmitoylation inhibitor 2-BP. The combination of Astragaloside IV and PESV promoted GSDMD membrane translocation and pyroptosis in PCa cells, with ZDHHC1 knockdown partially reversing the effects of Astragaloside IV-PESV. Furthermore, treatment with Astragaloside IV-PESV significantly inhibited tumor tissue growth in tumor-bearing nude mouse models. Astragaloside IV-PESV enhances palmitoylation-mediated membrane translocation of GSDMD-N by upregulating ZDHHC1 expression, thereby facilitating pyroptosis in PCa cells and attenuating PCa progression.
Collapse
Affiliation(s)
- Xujun You
- Department of Andrology, Dongcheng District, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5 th, Beijing, 100700, China
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Honghan Li
- The Seventh Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Shenzhen, 518133, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Qing Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Yiguo Cao
- Department of Urology Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Wei Fu
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China.
| | - Bin Wang
- Department of Andrology, Dongcheng District, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5 th, Beijing, 100700, China.
| |
Collapse
|
2
|
Qian Y, Zhao Y, Zhang F. Protein palmitoylation: biological functions, disease, and therapeutic targets. MedComm (Beijing) 2025; 6:e70096. [PMID: 39991624 PMCID: PMC11843170 DOI: 10.1002/mco2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Protein palmitoylation, a reversible post-translational lipid modification, is catalyzed by the ZDHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases, regulating protein localization, accumulation, secretion, and function. Neurological disorders encompass a spectrum of diseases that affect both the central and peripheral nervous system. Recently, accumulating studies have revealed that pathological protein associated with neurological diseases, such as β-amyloid, α-synuclein, and Huntingtin, could undergo palmitoylation, highlighting the crucial roles of protein palmitoylation in the onset and development of neurological diseases. However, few preclinical studies and clinical trials focus on the interventional strategies that target protein palmitoylation. Here, we comprehensively reviewed the emerging evidence on the role of protein palmitoylation in various neurological diseases and summarized the classification, processes, and functions of protein palmitoylation, highlighting its impact on protein stability, membrane localization, protein-protein interaction, as well as signal transduction. Furthermore, we also discussed the potential interventional strategies targeting ZDHHC proteins and elucidated their underlying pathogenic mechanisms in neurological diseases. Overall, an in-depth understanding of the functions and significances of protein palmitoylation provide new avenues for investigating the mechanisms and therapeutic approaches for neurological disorders.
Collapse
Affiliation(s)
- Yan‐Ran Qian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
3
|
Townsend CA, Petropavlovskiy AA, Kogut JA, Church AM, Sanders SS. Protocol to identify S-acylated proteins in hippocampal neurons using ω-alkynyl fatty acid analogs and click chemistry. STAR Protoc 2024; 5:103068. [PMID: 38762884 PMCID: PMC11133971 DOI: 10.1016/j.xpro.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
S-acylation, commonly palmitoylation, is the addition of fatty acids to cysteines to regulate protein localization and function. S-acylation detection has been hampered by limited sensitivity and selectivity in low-protein, costly samples like cultured neurons. Here, we present a protocol for sensitive and selective bioorthogonal labeling and click-chemistry-based detection of S-acylated proteins in primary hippocampal neurons. We describe steps for metabolically labeling neurons with alkynyl fatty acid, click chemistry, NeutrAvidin-based capture, and elution with hydroxylamine.
Collapse
Affiliation(s)
- Charlotte A Townsend
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
| | - Andrey A Petropavlovskiy
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Jordan A Kogut
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Alysha M Church
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Shaun S Sanders
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
4
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 PMCID: PMC12010433 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Leung TCN, Lu SN, Chu CN, Lee J, Liu X, Ngai SM. Temporal Quantitative Proteomic and Phosphoproteomic Profiling of SH-SY5Y and IMR-32 Neuroblastoma Cells during All- Trans-Retinoic Acid-Induced Neuronal Differentiation. Int J Mol Sci 2024; 25:1047. [PMID: 38256121 PMCID: PMC10816102 DOI: 10.3390/ijms25021047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans-retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes and phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. Relative quantification of proteins and phosphopeptides with subsequent gene ontology analysis revealed that several biological processes, including cytoskeleton organization, cell division, chaperone function and protein folding, and one-carbon metabolism, were associated with ATRA-induced differentiation in both cell lines. Furthermore, kinase-substrate enrichment analysis predicted altered activities of several kinases during differentiation. Among these, CDK5 exhibited increased activity, while CDK2 displayed reduced activity. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Collapse
Affiliation(s)
- Thomas C. N. Leung
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Scott Ninghai Lu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Cheuk Ning Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Joy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Xingyu Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|