1
|
Panesso MP, Cancela M, Corá RK, Paes JA, Paludo GP, Ferreira HB. Ribonucleotide reductase as a therapeutic target for drug repurposing as anthelmintics. Exp Parasitol 2023; 255:108641. [PMID: 37949425 DOI: 10.1016/j.exppara.2023.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Visceral cestodiases, like echinococcoses and cysticercoses, are zoonoses of worldwide distribution and are responsible for public health problems in many countries, especially in underdeveloped regions. Current treatments have low efficiency and there are few drugs currently in use for chemotherapy, making the development of new anthelmintics an urgent matter. The nucleotide salvage pathways are the only ones available for nucleotide synthesis in cestodes and other parasitic helminths, and, here, we used in silico approaches to assess the potential of the enzymes in these pathways as targets for drug repurposing as anthelminthics. First, a genomic survey allowed to identify a repertoire of 28 enzymes of the purine and pyrimidine salvage pathways from the cestode Echinococcus granulosus sensu stricto. Regarding purines, the parasite relies on salvaging free bases rather than salvaging nucleosides. Pyrimidines, on the other hand, can be salvaged from both bases and nucleosides. Druggability of the parasite enzymes was assessed, as well as the availability of commercial inhibitors for them. Druggable enzymes were then ranked according to their potential for drug repurposing and the 17 most promising enzymes were selected for evolutionary analyses. The constructed phylogenetic trees allowed to assess the degree of conservation among ortholog enzymes from parasitic helminths and their mammalian hosts. Positive selection is absent in all assessed flatworm enzymes. A potential target enzyme for drug repurposing, ribonucleotide reductase (RNR), was selected for further assessment. RNR 3D-modelling showed structural similarities between the E. granulosus and the human orthologs suggesting that inhibitors of the human RNR should be effective against the E. granulosus enzyme. In line with that, E. granulosus protoscolices treated in vitro with the inhibitor hydroxyurea had their viability and DNA synthesis reduced. These results are consistent with nucleotide synthesis inhibition and confirm the potential of a nucleotide salvage inhibitors for repurposing as an anthelmintic.
Collapse
Affiliation(s)
- Marcelo Pasa Panesso
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Martin Cancela
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Renato Kulakowski Corá
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Gabriela Prado Paludo
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Guo Y, Cupp‐Sutton KA, Zhao Z, Anjum S, Wu S. Multidimensional Separations in Top-Down Proteomics. ANALYTICAL SCIENCE ADVANCES 2023; 4:181-203. [PMID: 38188188 PMCID: PMC10769458 DOI: 10.1002/ansa.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 01/09/2024]
Abstract
Top-down proteomics (TDP) identifies, quantifies, and characterizes proteins at the intact proteoform level in complex biological samples to understand proteoform function and cellular mechanisms. However, analyzing complex biological samples using TDP is still challenging due to high sample complexity and wide dynamic range. High-resolution separation methods are often applied prior to mass spectrometry (MS) analysis to decrease sample complexity and increase proteomics throughput. These separation methods, however, may not be efficient enough to characterize low abundance intact proteins in complex samples. As such, multidimensional separation techniques (combination of two or more separation methods with high orthogonality) have been developed and applied that demonstrate improved separation resolution and more comprehensive identification in TDP. A suite of multidimensional separation methods that couple various types of liquid chromatography (LC), capillary electrophoresis (CE), and/or gel electrophoresis-based separation approaches have been developed and applied in TDP to analyze complex biological samples. Here, we reviewed multidimensional separation strategies employed for TDP, summarized current applications, and discussed the gaps that may be addressed in the future.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | | | - Zhitao Zhao
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Samin Anjum
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Si Wu
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| |
Collapse
|
3
|
Nickerson JL, Baghalabadi V, Rajendran SRCK, Jakubec PJ, Said H, McMillen TS, Dang Z, Doucette AA. Recent advances in top-down proteome sample processing ahead of MS analysis. MASS SPECTROMETRY REVIEWS 2023; 42:457-495. [PMID: 34047392 DOI: 10.1002/mas.21706] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Top-down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top-down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front-end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top-down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top-down proteomics. We comprehensively discuss the evolution of front-end workflows that today facilitate optimal characterization of proteoform-driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.
Collapse
Affiliation(s)
| | - Venus Baghalabadi
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Subin R C K Rajendran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, Nova Scotia, Canada
| | - Philip J Jakubec
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hammam Said
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Teresa S McMillen
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ziheng Dang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Zhang S, Jin B, Liang W, Guo A, Luo X, Pu L, Chen X, Cai X, Wang S. Identification and expression analysis of a new small ubiquitin-like modifier from Taenia pisiformis. Exp Parasitol 2022; 242:108403. [DOI: 10.1016/j.exppara.2022.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
|
5
|
Maglioco A, Agüero FA, Valacco MP, Valdez AJ, Paulino M, Fuchs AG. Characterization of the B-Cell Epitopes of Echinococcus granulosus Histones H4 and H2A Recognized by Sera From Patients With Liver Cysts. Front Cell Infect Microbiol 2022; 12:901994. [PMID: 35770070 PMCID: PMC9234146 DOI: 10.3389/fcimb.2022.901994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic disease worldwide distributed, caused by the cestode Echinococcus granulosus sensu lato (E. granulosus), with an incidence rate of 50/100,000 person/year and a high prevalence in humans of 5-10%. Serology has variable sensitivity and specificity and low predictive values. Antigens used are from the hydatid fluid and recombinant antigens have not demonstrated superiority over hydatid fluid. A cell line called EGPE was obtained from E. granulosus sensu lato G1 strain from bovine liver. Serum from CE patients recognizes protein extracts from EGPE cells with higher sensitivity than protein extracts from hydatid fluid. In the present study, EGPE cell protein extracts and supernatants from cell colonies were eluted from a protein G affinity column performed with sera from 11 CE patients. LC-MS/MS proteomic analysis of the eluted proteins identified four E. granulosus histones: one histone H4 in the cell extract and supernatant, one histone H2A only in the cell extract, and two histones H2A only in the supernatant. This differential distribution of histones could reflect different parasite viability stages regarding their role in gene transcription and silencing and could interact with host cells. Bioinformatics tools characterized the linear and conformational epitopes involved in antibody recognition. The three-dimensional structure of each histone was obtained by molecular modeling and validated by molecular dynamics simulation and PCR confirmed the presence of the epitopes in the parasite genome. The three histones H2A were very different and had a less conserved sequence than the histone H4. Comparison of the histones of E. granulosus with those of other organisms showed exclusive regions for E. granulosus. Since histones play a role in the host-parasite relationship they could be good candidates to improve the predictive value of serology in CE.
Collapse
Affiliation(s)
- Andrea Maglioco
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Facundo A. Agüero
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Pía Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masas (CEQUIBIEM), Instituto de Química Biológica Ciencias Exactas y Naturales- Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alejandra Juárez Valdez
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
| | - Margot Paulino
- Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Bioinformatica DETEMA- Udelar, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Margot Paulino, ; Alicia G. Fuchs,
| | - Alicia G. Fuchs
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Instituto Nacional de Parasitología “Dr Mario Fatala- Chaben”, (Administración Nacional de Laboratorios e Institutos de Salud )ANLIS‐Malbrán, Buenos Aires, Argentina
- *Correspondence: Margot Paulino, ; Alicia G. Fuchs,
| |
Collapse
|
6
|
|
7
|
García-Méndez N, Manterola C, Totomoch-Serra A, Riffo-Campos AL, Brito-Carreón CA. PROTEOMIC PROFILE OF ECHINOCOCCUS GRANULOSUS: A SYSTEMATIC REVIEW. J Parasitol 2022; 108:64-69. [PMID: 35119469 DOI: 10.1645/20-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cystic echinococcosis is a zoonotic disease caused by the larval stage of Echinococcus granulosus. This affliction is an endemic worldwide condition that represents a neglected parasitic disease with important socioeconomic repercussions. Proteomic characterization of larval and adult stages of E. granulosus, as well as the association between expression profiles and host interactions, is relevant for a better understanding of parasite biology, and eventually for drug design and vaccine development. This study aimed to develop a synthesis of the evidence available related to proteomics of E. granulosus. A systematic review was carried out to collect data concerning the proteomics of E. granulosus, without language or host restriction, published between 1980 and 2019. A systematic search was carried out in the Trip Database, BIREME-BVS, SciELO, Web of Science, PubMed, EMBASE, SCOPUS, EBSCO host, and LILACS, using MeSH terms, free words, and Boolean connectors, and adapting strategies to each source of information. Additionally, a manual cross-reference search was performed. Variables studied were the year of publication, geographic origin of the study, number of samples, hosts, parasitic organs, proteomic techniques, and parasite proteins verified. Nine-hundred and thirty-six related articles were identified: 17 fulfilled selection criteria, including slightly more than 188 samples. Most articles were published between 2014 and 2019 (64.7%) and were from Brazil and China (35.3% each). In reference to confirmed hosts in the primary articles, cattle (41.2%) and humans (23.5%) were the most frequently reported. Concerning proteomic techniques applied in the primary articles, LC-MS/MS was the most used (41.1%), and 890 proteins were reported by the primary articles. As the results of our search suggest, the information related to E. granulosus proteomics is scarce, heterogeneous, and scattered throughout several articles that include a diversity of tissues, samples, intermediate hosts, and proteomic techniques. Consequently, the level of evidence generated by our search is type 4.
Collapse
Affiliation(s)
- Nayely García-Méndez
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Carlos Manterola
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, 4811230, Temuco, Chile
| | - Armando Totomoch-Serra
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile.,Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, 36824, México City, México
| | - Angela L Riffo-Campos
- Ph.D. Program in Medical Sciences, Universidad de La Frontera, 4811230, Temuco, Chile
| | - César A Brito-Carreón
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, 36824, México City, México
| |
Collapse
|
8
|
Pham TK, Buczek WA, Mead RJ, Shaw PJ, Collins MO. Proteomic Approaches to Study Cysteine Oxidation: Applications in Neurodegenerative Diseases. Front Mol Neurosci 2021; 14:678837. [PMID: 34177463 PMCID: PMC8219902 DOI: 10.3389/fnmol.2021.678837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Oxidative stress appears to be a key feature of many neurodegenerative diseases either as a cause or consequence of disease. A range of molecules are subject to oxidation, but in particular, proteins are an important target and measure of oxidative stress. Proteins are subject to a range of oxidative modifications at reactive cysteine residues, and depending on the level of oxidative stress, these modifications may be reversible or irreversible. A range of experimental approaches has been developed to characterize cysteine oxidation of proteins. In particular, mass spectrometry-based proteomic methods have emerged as a powerful means to identify and quantify cysteine oxidation sites on a proteome scale; however, their application to study neurodegenerative diseases is limited to date. Here we provide a guide to these approaches and highlight the under-exploited utility of these methods to measure oxidative stress in neurodegenerative diseases for biomarker discovery, target engagement and to understand disease mechanisms.
Collapse
Affiliation(s)
- Trong Khoa Pham
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Weronika A. Buczek
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Mark O. Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
|
10
|
Miles S, Portela M, Cyrklaff M, Ancarola ME, Frischknecht F, Durán R, Dematteis S, Mourglia-Ettlin G. Combining proteomics and bioinformatics to explore novel tegumental antigens as vaccine candidates against Echinococcus granulosus infection. J Cell Biochem 2019; 120:15320-15336. [PMID: 31038784 DOI: 10.1002/jcb.28799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Abstract
Echinococcus granulosus is the parasite responsible for cystic echinococcosis (CE), an important worldwide-distributed zoonosis. New effective vaccines against CE could potentially have great economic and health benefits. Here, we describe an innovative vaccine design scheme starting from an antigenic fraction enriched in tegumental antigens from the protoscolex stage (termed PSEx) already known to induce protection against CE. We first used mass spectrometry to characterize the protein composition of PSEx followed by Gene Ontology analysis to study the potential Biological Processes, Molecular Functions, and Cellular Localizations of the identified proteins. Following, antigenicity predictions and determination of conservancy degree against other organisms were determined. Thus, nine novel proteins were identified as potential vaccine candidates. Furthermore, linear B cell epitopes free of posttranslational modifications were predicted in the whole PSEx proteome through colocalization of in silico predicted epitopes within peptide fragments identified by matrix-assisted laser desorption/ionization-TOF/TOF. Resulting peptides were termed "clean linear B cell epitopes," and through BLASTp scanning against all nonhelminth proteins, those with 100% identity against any other protein were discarded. Then, the secondary structure was predicted for peptides and their corresponding proteins. Peptides with highly similar secondary structure respect to their parental protein were selected, and those potentially toxic and/or allergenic were discarded. Finally, the selected clean linear B cell epitopes were mapped within their corresponding 3D-modeled protein to analyze their possible antibody accessibilities, resulting in 14 putative peptide vaccine candidates. We propose nine novel proteins and 14 peptides to be further tested as vaccine candidates against CE.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Montevideo, Uruguay
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Montevideo, Uruguay
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Hurtado Silva M, Berry IJ, Strange N, Djordjevic SP, Padula MP. Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes 2019; 7:proteomes7020011. [PMID: 30934878 PMCID: PMC6631386 DOI: 10.3390/proteomes7020011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
Methods for analyzing the terminal sequences of proteins have been refined over the previous decade; however, few studies have evaluated the quality of the data that have been produced from those methodologies. While performing global N-terminal labelling on bacteria, we observed that the labelling was not complete and investigated whether this was a common occurrence. We assessed the completeness of labelling in a selection of existing, publicly available N-terminomics datasets and empirically determined that amine-based labelling chemistry does not achieve complete labelling and potentially has issues with labelling amine groups at sequence-specific residues. This finding led us to conduct a thorough review of the historical literature that showed that this is not an unexpected finding, with numerous publications reporting incomplete labelling. These findings have implications for the quantitation of N-terminal peptides and the biological interpretations of these data.
Collapse
Affiliation(s)
- Mariella Hurtado Silva
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Iain J Berry
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
- The ithree Institute, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Natalie Strange
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Steven P Djordjevic
- The ithree Institute, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Matthew P Padula
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| |
Collapse
|
12
|
Mourglia-Ettlin G, Miles S, Velasco-De-Andrés M, Armiger-Borràs N, Cucher M, Dematteis S, Lozano F. The ectodomains of the lymphocyte scavenger receptors CD5 and CD6 interact with tegumental antigens from Echinococcus granulosus sensu lato and protect mice against secondary cystic echinococcosis. PLoS Negl Trop Dis 2018; 12:e0006891. [PMID: 30500820 PMCID: PMC6267981 DOI: 10.1371/journal.pntd.0006891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Scavenger Receptors (SRs) from the host’s innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. Methodology/Principal findings We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. Conclusions/Significance Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis. Scavenger Receptors (SRs) are constituents of host’s innate immune system able to sense and remove altered-self and/or pathogen components. Data on their interaction with helminth parasites is scarce. In this work, we describe that CD5 and CD6 -two lymphoid SRs previously reported to interact with conserved structures from bacteria, fungi and viruses- recognize tegumental components in the cestode parasite Echinococcus granulosus sensu lato (s.l.). Moreover, both receptors differentially modulate the cytokine release by host cells exposed to E. granulosus s.l. tegumental components. Importantly, the infusion of soluble forms of CD5 or CD6 improve infection outcomes in a murine model of secondary cystic echinococcosis. In summary, our results expand the pathogen binding properties of CD5 and CD6 and suggest their therapeutic potential against helminth infections.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- Echinococcosis/genetics
- Echinococcosis/metabolism
- Echinococcosis/parasitology
- Echinococcus granulosus/genetics
- Echinococcus granulosus/metabolism
- Female
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Binding
- Proteomics
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/parasitology
Collapse
Affiliation(s)
- Gustavo Mourglia-Ettlin
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
- * E-mail: (GM-E); (FL)
| | - Sebastián Miles
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - María Velasco-De-Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (GM-E); (FL)
| |
Collapse
|
13
|
Calvete JJ. Snake venomics – from low-resolution toxin-pattern recognition to toxin-resolved venom proteomes with absolute quantification. Expert Rev Proteomics 2018; 15:555-568. [DOI: 10.1080/14789450.2018.1500904] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| |
Collapse
|
14
|
Navarrete-Perea J, Isasa M, Paulo JA, Corral-Corral R, Flores-Bautista J, Hernández-Téllez B, Bobes RJ, Fragoso G, Sciutto E, Soberón X, Gygi SP, Laclette JP. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs. PLoS Negl Trop Dis 2017; 11:e0005962. [PMID: 28945737 PMCID: PMC5634658 DOI: 10.1371/journal.pntd.0005962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/10/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst’s proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the ‘optimal’ tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants. Human and porcine cysticercosis caused by Taenia solium is a parasite disease still endemic in developing countries. The cysts can be located in different host tissues, including different organs of the central nervous system and the skeletal muscles. The molecular mechanisms associated with the tissue localization of the cysts are not well understood. Here, we described the proteome changes of the cysts obtained from different host tissues from infected pigs using quantitative multiplex proteomics. We explored the diversity of host proteins identified in the cyst’s protein extracts and we also explored the immune-localization of several host-related proteins within the cysts, and propose their possible function. We identified several proteins and antigens enriched for a given tissue localization. Several synthetic peptides designed from these tissue-enriched antigens were tested trough ELISA. Using a combination of peptide mixtures and machine learning technologies we were able to distinguish non cysticercotic and cysticercotic pig’s sera. The tissue-enriched proteins/antigens could be useful for the development of improved immuno-diagnostic tests capable of discriminate the tissue-localization of the cysts.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marta Isasa
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joao A Paulo
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ricardo Corral-Corral
- Dept. of Biochemistry and Structural Biology, Institute of Cell Physiology, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jeanette Flores-Bautista
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Hernández-Téllez
- Dept. of Tissue and Cell Biology, School of Medicine, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Raúl J Bobes
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edda Sciutto
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Ciudad de México, México.,Dept. of Biocatalysis and Cellular Engineering, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Steven P Gygi
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan P Laclette
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
15
|
Proteomic investigation of human cystic echinococcosis in the liver. Mol Biochem Parasitol 2017; 211:9-14. [DOI: 10.1016/j.molbiopara.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
|
16
|
Top-Down Proteomics and Farm Animal and Aquatic Sciences. Proteomes 2016; 4:proteomes4040038. [PMID: 28248248 PMCID: PMC5260971 DOI: 10.3390/proteomes4040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023] Open
Abstract
Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.
Collapse
|