1
|
Aubert A, Liu A, Kao M, Goeres J, Richardson KC, Nierves L, Jung K, Nabai L, Zhao H, Orend G, Krawetz R, Lange PF, Younger A, Chan J, Granville DJ. Granzyme B cleaves tenascin-C to release its C-terminal domain in rheumatoid arthritis. JCI Insight 2024; 9:e181935. [PMID: 39475853 PMCID: PMC11623945 DOI: 10.1172/jci.insight.181935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disorder characterized by exacerbated joint inflammation. Despite the well-documented accumulation of the serine protease granzyme B (GzmB) in RA patient biospecimens, little is understood pertaining to its role in pathobiology. In the present study, tenascin-C (TNC) - a large, pro-inflammatory extracellular matrix glycoprotein - was identified as a substrate for GzmB in RA. GzmB cleaves TNC to generate 3 fragments in vitro: a 130 kDa fragment that remains anchored to the matrix and 2 solubilized fragments of 70 and 30 kDa. Mass spectrometry results suggested that the 30 kDa fragment contained the pro-inflammatory TNC C-terminal fibrinogen-like domain. In the synovial fluids of patients with RA, soluble levels of GzmB and TNC were significantly elevated compared with healthy controls. Further, immunoblotting revealed soluble 70 and 30 kDa TNC fragments in the synovial fluids of patients with RA, matching TNC fragment sizes generated by GzmB cleavage in vitro. Granzyme K (GzmK), another serine protease of the granzyme family, also cleaves TNC in vitro; however, the molecular weights of GzmK-generated TNC fragments did not correspond to TNC fragment sizes detected in patients. Our data support that GzmB, but not GzmK, contributes to RA through the cleavage of TNC.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Liu
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Kao
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenna Goeres
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katlyn C. Richardson
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorenz Nierves
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program and the BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d’Hématologie et d’Immunologie, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Philipp F. Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program and the BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alastair Younger
- Department of Orthopaedics, Foot & Ankle Research, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Jonathan Chan
- Department of Medicine, Division of Rheumatology, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh SA, Farjadfar A. Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment. Int J Biol Macromol 2024; 278:134576. [PMID: 39127273 DOI: 10.1016/j.ijbiomac.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In 1958, the presence of citrulline in the structure of the proteins was discovered for the first time. Several years later they found that Arginine converted to citrulline during a post-translational modification process by PAD enzyme. Each PAD is expressed in a certain tissue developing a series of diseases such as inflammation and cancers. Among these, PAD2 and PAD4 play a role in the development of rheumatoid arthritis (RA) by producing citrullinated autoantigens and increasing the production of inflammatory cytokines. PAD4 is also associated with the formation of NET structures and thrombosis. In the crystallographic structure, PAD has several calcium binding sites, and the active site of the enzyme consists of different amino acids. Various PAD inhibitors have been developed divided into pan-PAD and selective PAD inhibitors. F-amidine, Cl-amidine, and BB-Cl-amidine are some of pan-PAD inhibitors. AFM-30a and JBI589 are selective for PAD2 and PAD4, respectively. There is a need to evaluate the effectiveness of existing inhibitors more accurately in the coming years, as well as design and production of novel inhibitors targeting highly specific isoforms.
Collapse
Affiliation(s)
- Pegah Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
3
|
Raposo B, Klareskog L, Robinson WH, Malmström V, Grönwall C. The peculiar features, diversity and impact of citrulline-reactive autoantibodies. Nat Rev Rheumatol 2024; 20:399-416. [PMID: 38858604 DOI: 10.1038/s41584-024-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Since entering the stage 25 years ago as a highly specific serological biomarker for rheumatoid arthritis, anti-citrullinated protein antibodies (ACPAs) have been a topic of extensive research. This hallmark B cell response arises years before disease onset, displays interpatient autoantigen variability, and is associated with poor clinical outcomes. Technological and scientific advances have revealed broad clonal diversity and intriguing features including high levels of somatic hypermutation, variable-domain N-linked glycosylation, hapten-like peptide interactions, and clone-specific multireactivity to citrullinated, carbamylated and acetylated epitopes. ACPAs have been found in different isotypes and subclasses, in both circulation and tissue, and are secreted by both plasmablasts and long-lived plasma cells. Notably, although some disease-promoting features have been reported, results now demonstrate that certain monoclonal ACPAs therapeutically block arthritis and inflammation in mouse models. A wealth of functional studies using patient-derived polyclonal and monoclonal antibodies have provided evidence for pathogenic and protective effects of ACPAs in the context of arthritis. To understand the roles of ACPAs, one needs to consider their immunological properties by incorporating different facets such as rheumatoid arthritis B cell biology, environmental triggers and chronic antigen exposure. The emerging picture points to a complex role of citrulline-reactive autoantibodies, in which the diversity and dynamics of antibody clones could determine clinical progression and manifestations.
Collapse
Affiliation(s)
- Bruno Raposo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Aubert A, Jung K, Hiroyasu S, Pardo J, Granville DJ. Granzyme serine proteases in inflammation and rheumatic diseases. Nat Rev Rheumatol 2024; 20:361-376. [PMID: 38689140 DOI: 10.1038/s41584-024-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA); Department of Microbiology, Radiology, Paediatrics and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
6
|
Zhang G, Xu J, Du D, Liu Y, Dai L, Zhao Y. Diagnostic values, association with disease activity and possible risk factors of anti-PAD4 in rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford) 2024; 63:914-924. [PMID: 37824204 DOI: 10.1093/rheumatology/kead545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Anti-peptidyl arginine deaminase 4 (anti-PAD4) antibody has been a subject of investigation in RA in the last two decades. This meta-analysis investigated the diagnostic values, association with disease activity and possible risk factors of anti-PAD4 antibody in rheumatoid arthritis. METHOD We searched studies from five databases up to 1 December 2022. Bivariate mixed-effect models were used to pool the diagnostic accuracy indexes, and the summary receiver operating characteristics (SROC) curve was plotted. The quality of diagnostic studies was assessed using QUADAS-2. Non-diagnostic meta-analyses were conducted using the random-effects model. Sensitivity analysis, meta-regression, subgroup analyses and Deeks' funnel plot asymmetry test were used to address heterogeneity. RESULT Finally, 24 journal articles and one letter were included. Anti-PAD4 antibody had a good diagnostic value between RA and healthy individuals, but it might be lower between RA and other rheumatic diseases. Moreover, anti-PAD4 could slightly enhance RA diagnostic sensitivity with a combination of ACPA or ACPA/RF. Anti-PAD4 antibody was positively correlated with HLA-SE and negatively correlated with ever or current smoking in patients with RA. RA patients with anti-PAD4 antibody had higher DAS28, ESR, swollen joint count (SJC) and the possibility of having interstitial lung disease (ILD) and pulmonary fibrosis compared with those without. CONCLUSION Our study suggests that anti-PAD4 antibody is a potentially useful diagnostic biomarker and clinical indicator for RA. Further mechanistic studies are required to understand the impact of HLA-SE and smoking on the production of anti-PAD4 antibody.
Collapse
Affiliation(s)
- Guangyue Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayi Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Chen Y, Teng Y, Xu P, Wang S. The Role of Citrullination Modification in CD4 + T Cells in the Pathogenesis of Immune-Related Diseases. Biomolecules 2024; 14:400. [PMID: 38672418 PMCID: PMC11047979 DOI: 10.3390/biom14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The post-translational modifications (PTMs) of proteins play a crucial role in increasing the functional diversity of proteins and are associated with the pathogenesis of various diseases. This review focuses on a less explored PTM called citrullination, which involves the conversion of arginine to citrulline. This process is catalyzed by peptidyl arginine deiminases (PADs). Different members of the PAD family have distinct tissue distribution patterns and functions. Citrullination is a post-translational modification of native proteins that can alter their structure and convert them into autoantigens; thus, it mediates the occurrence of autoimmune diseases. CD4+ T cells, including Th1, Th2, and Th17 cells, are important immune cells involved in mediating autoimmune diseases, allergic reactions, and tumor immunity. PADs can induce citrullination in CD4+ T cells, suggesting a role for citrullination in CD4+ T cell subset differentiation and function. Understanding the role of citrullination in CD4+ T cells may provide insights into immune-related diseases and inflammatory processes.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Teng
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ping Xu
- Department of Laboratory Medicine, The Fifth People’s Hospital of Suzhou, Suzhou 215505, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Huang L, Zuo Y, Yang H, He X, Zhang L. Identification of key genes as potential diagnostic and therapeutic targets for comorbidity of myasthenia gravis and COVID-19. Front Neurol 2024; 14:1334131. [PMID: 38384322 PMCID: PMC10879883 DOI: 10.3389/fneur.2023.1334131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder. Coronavirus disease 2019 (COVID-19) has a significant impact on the health and quality of life of MG patients and may even trigger the onset of MG in some cases. With the worldwide development of the COVID-19 vaccination, several new-onset MG cases and exacerbations following the COVID-19 vaccines have been acknowledged. The potential link between myasthenia gravis (MG) and COVID-19 has prompted the need for further investigation into the underlying molecular mechanism. Methods and results The differential expression analysis identified six differentially expressed genes (DEGs) shared by myasthenia gravis (MG) and COVID-19, namely SAMD9, PLEK, GZMB, JUNB, NR4A1, and NR1D1. The relationship between the six common genes and immune cells was investigated in the COVID-19 dataset. The predictive value of the shared genes was assessed and a nomogram was constructed using machine learning algorithms. The regulatory miRNAs, transcription factors and small molecular drugs were predicted, and the molecular docking was carried out by AutoDock. Discussion We have identified six common DEGs of MG and COVID-19 and explored their immunological effects and regulatory mechanisms. The result may provide new insights for further mechanism research.
Collapse
Affiliation(s)
- Liyan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yao Zuo
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
| | - Hui Yang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Xiaofang He
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Zhang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| |
Collapse
|
9
|
Song N, Welsh RA, Sadegh-Nasseri S. Proper development of long-lived memory CD4 T cells requires HLA-DO function. Front Immunol 2023; 14:1277609. [PMID: 37908352 PMCID: PMC10613709 DOI: 10.3389/fimmu.2023.1277609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction HLA-DO (DO) is an accessory protein that binds DM for trafficking to MIIC and has peptide editing functions. DO is mainly expressed in thymic medulla and B cells. Using biochemical experiments, our lab has discovered that DO has differential effects on editing peptides of different sequences: DO increases binding of DM-resistant peptides and reduces the binding of DM-sensitive peptides to the HLA-DR1 molecules. In a separate line of work, we have established that appropriate densities of antigen presentation by B cells during the contraction phase of an infection, induces quiescence in antigen experienced CD4 T cells, as they differentiate into memory T cells. This quiescence phenotype helps memory CD4 T cell survival and promotes effective memory responses to secondary Ag challenge. Methods Based on our mechanistic understanding of DO function, it would be expected that if the immunodominant epitope of antigen is DM-resistant, presentation of decreased densities of pMHCII by B cells would lead to faulty development of memory CD4 T cells in the absence of DO. We explored the effects of DO on development of memory CD4 T cells and B cells utilizing two model antigens, H5N1-Flu Ag bearing DM-resistant, and OVA protein, which has a DM-sensitive immunodominant epitope and four mouse strains including two DO-deficient Tg mice. Using Tetramers and multiple antibodies against markers of memory CD4 T cells and B cells, we tracked memory development. Results We found that immunized DR1+DO-KO mice had fewer CD4 memory T cells and memory B cells as compared to the DR1+DO-WT counterpart and had compromised recall responses. Conversely, OVA specific memory responses elicited in HA immunized DR1+DO-KO mice were normal. Conclusion These results demonstrate that in the absence of DO, the presentation of cognate foreign antigens in the DO-KO mice is altered and can impact the proper development of memory cells. These findings provide new insights on vaccination design leading to better immune memory responses.
Collapse
|
10
|
Curran AM, Girgis AA, Jang Y, Crawford JD, Thomas MA, Kawalerski R, Coller J, Bingham CO, Na CH, Darrah E. Citrullination modulates antigen processing and presentation by revealing cryptic epitopes in rheumatoid arthritis. Nat Commun 2023; 14:1061. [PMID: 36828807 PMCID: PMC9958131 DOI: 10.1038/s41467-023-36620-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Cryptic peptides, hidden from the immune system under physiologic conditions, are revealed by changes to MHC class II processing and hypothesized to drive the loss of immune tolerance to self-antigens in autoimmunity. Rheumatoid arthritis (RA) is an autoimmune disease characterized by immune responses to citrullinated self-antigens, in which arginine residues are converted to citrullines. Here, we investigate the hypothesis that citrullination exposes cryptic peptides by modifying protein structure and proteolytic cleavage. We show that citrullination alters processing and presentation of autoantigens, resulting in the generation of a unique citrullination-dependent repertoire composed primarily of native sequences. This repertoire stimulates T cells from RA patients with anti-citrullinated protein antibodies more robustly than controls. The generation of this unique repertoire is achieved through altered protease cleavage and protein destabilization, rather than direct presentation of citrulline-containing epitopes, suggesting a novel paradigm for the role of protein citrullination in the breach of immune tolerance in RA.
Collapse
Affiliation(s)
- Ashley M Curran
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander A Girgis
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yura Jang
- Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jonathan D Crawford
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mekha A Thomas
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Kawalerski
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Coller
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Clifton O Bingham
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika Darrah
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Johnson TP, Antiochos B, Rosen A. Mechanisms of Autoimmunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
12
|
Newsome SD, Johnson T. Stiff person syndrome spectrum disorders; more than meets the eye. J Neuroimmunol 2022; 369:577915. [PMID: 35717735 PMCID: PMC9274902 DOI: 10.1016/j.jneuroim.2022.577915] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Stiff person syndrome spectrum disorders (SPSD) are a group of rare neuroimmunological disorders that often include painful spasms and rigidity. However, patients have highly heterogeneous signs and symptoms which may reflect different mechanistic disease processes. Understanding subsets of patients based on clinical phenotype may be important for prognosis and guiding treatment. The goal of this review is to provide updates on SPSD and its expanding clinical spectrum, prognostic markers, and treatment considerations. Further, we describe the current understanding in immunopathogenesis and highlight gaps in our knowledge appropriate for future research directions. Examples of revised diagnostic criteria for SPSD based on phenotype are also presented.
Collapse
Affiliation(s)
- Scott D Newsome
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tory Johnson
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Section of Infections of the Nervous System, NINDS, NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
Moosic KB, Ananth K, Andrade F, Feith DJ, Darrah E, Loughran TP. Intersection Between Large Granular Lymphocyte Leukemia and Rheumatoid Arthritis. Front Oncol 2022; 12:869205. [PMID: 35646651 PMCID: PMC9136414 DOI: 10.3389/fonc.2022.869205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia, a rare hematologic malignancy, has long been associated with rheumatoid arthritis (RA), and the diseases share numerous common features. This review aims to outline the parallels and comparisons between the diseases as well as discuss the potential mechanisms for the relationship between LGL leukemia and RA. RA alone and in conjunction with LGL leukemia exhibits cytotoxic T-cell (CTL) expansions, HLA-DR4 enrichment, RA-associated autoantibodies, female bias, and unknown antigen specificity of associated T-cell expansions. Three possible mechanistic links between the pathogenesis of LGL leukemia and RA have been proposed, including LGL leukemia a) as a result of longstanding RA, b) as a consequence of RA treatment, or c) as a driver of RA. Several lines of evidence point towards LGL as a driver of RA. CTL involvement in RA pathogenesis is evidenced by citrullination and granzyme B cleavage that modifies the repertoire of self-protein antigens in target cells, particularly neutrophils, killed by the CTLs. Further investigations of the relationship between LGL leukemia and RA are warranted to better understand causal pathways and target antigens in order to improve the mechanistic understanding and to devise targeted therapeutic approaches for both disorders.
Collapse
Affiliation(s)
- Katharine B. Moosic
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kusuma Ananth
- Department of Medicine, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - Felipe Andrade
- Department of Medicine, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Erika Darrah
- Department of Medicine, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
14
|
Zeng X, Zheng M, Liu T, Bahabayi A, Song S, Alimu X, Kang R, Lu S, Song Y, Liu C. Cytotoxic T Lymphocytes Expressing GPR56 are Up-regulated in the Peripheral Blood of Patients with Active Rheumatoid Arthritis and Reflect Disease Progression. Immunol Invest 2022; 51:1804-1819. [PMID: 35404706 DOI: 10.1080/08820139.2022.2058403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This study aims to elucidate the changes in the percentage of GPR56 and/or granzyme B (GZMB) positive cells in rheumatoid arthritis (RA) CD4 and CD8 T lymphocytes, and to explore their clinical value in diagnosing and reflecting the progression of RA. METHODS The percentages of GPR56 and/or GZMB positive cells were analyzed in peripheral blood (PB) and spleen T cells in a collagen-induced arthritis (CIA) model established in DBA/1 mice. The percentages of GPR56+ and/or GZMB+ cells were further analyzed in PBs from RA patients and healthy controls. Correlation analysis was performed between clinical indicators and GPR56+, GZMB+, and GPR56+ GZMB+ T cells. Receiver operating characteristic (ROC) curves were used to evaluate the value of GPR56 and GZMB in differentiating active and stable remitting RA. RESULTS GPR56+ levels were increased in CD4 and CD8 T cells in the PB of CIA mice. The percentages of GPR56+ and GZMB+ cells were increased in both CD4 and CD8 T cell subsets in patients with active RA. GPR56+, GZMB+, and GPR56+ GZMB+ cells were positively correlated with rheumatoid factor and DAS28. ROC analysis revealed that AUCs for GPR56+, GZMB+, and GPR56+ GZMB+ cell percentages to distinguish active RA from stable remission RA were 0.7106, 0.6941, 0.7024, with cut-off values of 16.35, 16.40, 14.80 in CD4 + T cells, and 0.8031, 0.8086, 0.8196 with cut-off values 60.25, 62.15, 40.15 in CD8 + T cells, respectively. CONCLUSIONS GPR56+ and/or GZMB+ T cells are up-regulated in patients with active RA and reflect their condition. The detection of GPR56 and GZMB is helpful for RA disease assessment.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shi Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ying Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
15
|
Civieri G, Iop L, Tona F. Antibodies against Angiotensin II Type 1 and Endothelin 1 Type A Receptors in Cardiovascular Pathologies. Int J Mol Sci 2022; 23:ijms23020927. [PMID: 35055116 PMCID: PMC8778295 DOI: 10.3390/ijms23020927] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II receptor type 1 (AT1R) and endothelin-1 receptor type A (ETAR) are G-protein-coupled receptors (GPCRs) expressed on the surface of a great variety of cells: immune cells, vascular smooth cells, endothelial cells, and fibroblasts express ETAR and AT1R, which are activated by endothelin 1 (ET1) and angiotensin II (AngII), respectively. Certain autoantibodies are specific for these receptors and can regulate their function, thus being known as functional autoantibodies. The function of these antibodies is similar to that of natural ligands, and it involves not only vasoconstriction, but also the secretion of proinflammatory cytokines (such as interleukin-6 (IL6), IL8 and TNF-α), collagen production by fibroblasts, and reactive oxygen species (ROS) release by fibroblasts and neutrophils. The role of autoantibodies against AT1R and ETAR (AT1R-AAs and ETAR-AAs, respectively) is well described in the pathogenesis of many medical conditions (e.g., systemic sclerosis (SSc) and SSc-associated pulmonary hypertension, cystic fibrosis, and allograft dysfunction), but their implications in cardiovascular diseases are still unclear. This review summarizes the current evidence regarding the effects of AT1R-AAs and ETAR-AAs in cardiovascular pathologies, highlighting their roles in heart transplantation and mechanical circulatory support, preeclampsia, and acute coronary syndromes.
Collapse
|
16
|
Pan J, Liu W, Chen Y, Zhang C, Lin C. Effect of Peptidylarginine Deiminase 4 on Endothelial Progenitor Cell Function in Peripheral Arterial Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7550693. [PMID: 34349829 PMCID: PMC8328689 DOI: 10.1155/2021/7550693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023]
Abstract
At present, the global prevalence of peripheral arterial disease is increasing year by year, and it has become a worldwide disease. Studies have shown that transplanting endothelial progenitor cells (EPCs) into ischemic tissues can improve the tissue ischemia, thereby having a therapeutic effect on peripheral arterial diseases. This indicates that EPCs play a therapeutic effect in peripheral arterial disease. Recent studies have shown that peptidylarginine deiminase (PAD) is involved in the regulation of epigenetics and its inhibitor Cl-amidine can improve endothelium-dependent vasodilation and significantly reduce the formation of arterial thrombosis. It can also play a role in hematopoietic stem cells that share the same origin with EPCs. Therefore, we speculate that PAD4 may also have an effect on EPCs through a similar mechanism, thereby participating in the damage and repair of peripheral arterial disease. Therefore, we first detected the expression of PAD4 in EPCs of peripheral arterial disease and detected changes in the number and function of endothelial progenitor cells in peripheral blood after injecting the PAD4 inhibitor Cl-amidine into mice. A mouse model of lower limb ischemia was established to explore the effect of PAD4 on the function of EPCs in peripheral arterial disease. The results show that PAD4 is highly expressed in peripheral arterial diseases and the PAD4 inhibitor Cl-amidine can increase the number of EPCs and can treat peripheral arterial diseases by improving the proliferation, migration, and vascularization of EPCs.
Collapse
Affiliation(s)
- Jialin Pan
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenqin Liu
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ye Chen
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Cong Lin
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
17
|
Partnering for the major histocompatibility complex class II and antigenic determinant requires flexibility and chaperons. Curr Opin Immunol 2021; 70:112-121. [PMID: 34146954 DOI: 10.1016/j.coi.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Cytotoxic, or helper T cells recognize antigen via T cell receptors (TCRs) that can see their target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. For MHC class II epitope selection from exogenous pathogens or self-antigens, participation of several accessory proteins, molecular chaperons, processing enzymes within multiple vesicular compartments is necessary. A major contributing factor is the MHC class II structure itself that uniquely offers a dynamic and flexible groove essential for epitope selection. In this review, I have taken a historical perspective focusing on the flexibility of the MHC II molecules as the driving force in determinant selection and interactions with the accessory molecules in antigen processing, HLA-DM and HLA-DO.
Collapse
|
18
|
Song W, Ye J, Pan N, Tan C, Herrmann M. Neutrophil Extracellular Traps Tied to Rheumatoid Arthritis: Points to Ponder. Front Immunol 2021; 11:578129. [PMID: 33584645 PMCID: PMC7878527 DOI: 10.3389/fimmu.2020.578129] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, neutrophil extracellular traps at the forefront of neutrophil biology have proven to help capture and kill pathogens involved in the inflammatory process. There is growing evidence that persistent neutrophil extracellular traps drive the pathogenesis of autoimmune diseases. In this paper, we summarize the potential of neutrophil extracellular traps to drive the pathogenesis of rheumatoid arthritis and experimental animal models. We also describe the diagnosis and treatment of rheumatoid arthritis in association with neutrophil extracellular traps.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Martin Herrmann
- Department of Internal Medicine 3, Universitätsklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Qiao J, Zhou M, Li Z, Ren J, Gao G, Zhen J, Cao G, Ding L. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis. J Int Med Res 2020; 48:300060520962954. [PMID: 33143503 PMCID: PMC7780569 DOI: 10.1177/0300060520962954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Little is known about the roles of granzyme B in rheumatoid arthritis (RA). We aimed to evaluate the serum level of granzyme B in patients with RA and determine relationships with clinical features and joint destruction of RA. METHODS We enrolled 100 patients with RA, 50 patients with osteoarthritis (OA), and 50 healthy controls (HC). Granzyme B serum concentrations were measured by ELISA; we then analyzed associations between granzyme B levels, clinical features, and joint destruction by calculating Sharp scores and disease activity as measured by Disease Activity Score-28 based on erythrocyte sedimentation rate (DAS28-ESR) in patients with RA. RESULTS Compared with HC and patients with OA, serum granzyme B levels in patients with RA were remarkably elevated. Serum granzyme B levels did not differ between patients with OA and HC. Granzyme B levels correlated with ESR, rheumatoid factor, swollen joint counts, joint erosion scores, total Sharp scores, and DAS28-ESR. Moreover, patients with RA with high disease activity had higher granzyme B levels. CONCLUSIONS Serum granzyme B levels were elevated significantly in patients with RA and correlated positively with disease activity and joint destruction. Serum granzyme B may have potential applications in laboratory evaluation of patients with RA.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Orthopedics, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Ren
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guanghan Gao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jumei Zhen
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lixiang Ding
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Tiniakou E, Fava A, McMahan ZH, Guhr T, O’Meally RN, Shah AA, Wigley FM, Cole RN, Boin F, Darrah E. Definition of Naturally Processed Peptides Reveals Convergent Presentation of Autoantigenic Topoisomerase I Epitopes in Scleroderma. Arthritis Rheumatol 2020; 72:1375-1384. [PMID: 32162841 PMCID: PMC7486267 DOI: 10.1002/art.41248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Autoimmune responses to DNA topoisomerase I (topo I) are found in a subset of scleroderma patients who are at high risk for interstitial lung disease (ILD) and mortality. Anti-topo I antibodies (ATAs) are associated with specific HLA-DRB1 alleles, and the frequency of HLA-DR-restricted topo I-specific CD4+ T cells is associated with the presence, severity, and progression of ILD. Although this strongly implicates the presentation of topo I peptides by HLA-DR in scleroderma pathogenesis, the processing and presentation of topo I has not been studied. METHODS We developed a natural antigen processing assay (NAPA) to identify putative CD4+ T cell epitopes of topo I presented by monocyte-derived dendritic cells (mo-DCs) from 6 ATA-positive patients with scleroderma. Mo-DCs were pulsed with topo I protein, HLA-DR-peptide complexes were isolated, and eluted peptides were analyzed by mass spectrometry. We then examined the ability of these naturally presented peptides to induce CD4+ T cell activation in 11 ATA-positive and 11 ATA-negative scleroderma patients. RESULTS We found that a common set of 10 topo I epitopes was presented by Mo-DCs from scleroderma patients with diverse HLA-DR variants. Sequence analysis revealed shared peptide-binding motifs within the HLA-DRβ chains of ATA-positive patients and a subset of topo I epitopes with distinct sets of anchor residues capable of binding to multiple different HLA-DR variants. The NAPA-derived epitopes elicited robust CD4+ T cell responses in 73% of ATA-positive patients (8 of 11), and the number of epitopes recognized correlated with ILD severity (P = 0.025). CONCLUSION These findings mechanistically implicate the presentation of a convergent set of topo I epitopes in the development of scleroderma.
Collapse
Affiliation(s)
- Eleni Tiniakou
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| | - Andrea Fava
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| | - Zsuzsanna H. McMahan
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| | - Tara Guhr
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ami A. Shah
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| | - Fredrick M. Wigley
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco Boin
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94122, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
21
|
Darrah E, Davis RL, Curran AM, Naik P, Chen R, Na CH, Giles JT, Andrade F. Citrulline Not a Major Determinant in the Recognition of Peptidylarginine Deiminase 2 and 4 by Autoantibodies in Rheumatoid Arthritis. Arthritis Rheumatol 2020; 72:1476-1482. [PMID: 32255561 DOI: 10.1002/art.41276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/26/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Citrullinated proteins are hallmark targets of autoantibodies in rheumatoid arthritis (RA). Our study was undertaken to determine the effect of autocitrullination on the recognition of peptidylarginine deiminases (PADs) 2 and 4 by autoantibodies in RA. METHODS Autocitrullination sites in PAD2 and PAD4 were determined by mass spectrometry and literature review. Antibodies against native and autocitrullinated PADs in 184 patients with RA were detected by enzyme-linked immunosorbent assay. Linear regression analysis, outlier calculations, and competition assays were performed to evaluate antibody reactivity to native and citrullinated PADs. RESULTS Autocitrullination of PAD2 and PAD4 was detected in 16 (48%) of 33 arginine residues and 7 (26%) of 27 arginine residues, respectively. Despite robust autocitrullination, autoantibodies bound similarly to native and citrullinated PAD2 or PAD4 (ρ = 0.927 and ρ = 0.903, respectively; each P < 0.0001). Although subsets of anti-PAD-positive sera were identified as exhibiting preferential recognition of native or citrullinated PAD2 (40.5% or 4.8%, respectively) or PAD4 (11.7% or 10.4%, respectively), competition assays confirmed that the majority of anti-PAD reactivity was attributed to a pool of autoantibodies that bound irrespective of citrullination status. CONCLUSION Autocitrullination does not affect autoantibody reactivity to PADs in the majority of patients with RA, demonstrating that anti-PAD antibodies are distinct from anti-citrullinated protein antibodies in their dependence on citrullination for binding.
Collapse
Affiliation(s)
- Erika Darrah
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan L Davis
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley M Curran
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pooja Naik
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruiqiang Chen
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chan Hyun Na
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jon T Giles
- Columbia University College of Physicians and Surgeons, New York, New York
| | - Felipe Andrade
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol 2020; 16:301-315. [PMID: 32341463 DOI: 10.1038/s41584-020-0409-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) have an important role in the pathogenesis of rheumatoid arthritis (RA) owing to their ability to generate citrullinated proteins - the hallmark autoantigens of RA. Of the five PAD enzyme isoforms, PAD2 and PAD4 are the most strongly implicated in RA at both genetic and cellular levels, and PAD inhibitors have shown therapeutic efficacy in mouse models of inflammatory arthritis. PAD2 and PAD4 are additionally targeted by autoantibodies in distinct clinical subsets of patients with RA, suggesting anti-PAD antibodies as possible biomarkers for RA diagnosis and prognosis. This Review weighs the evidence that supports a pathogenic role for PAD enzymes in RA as both promoters and targets of the autoimmune response, as well as discussing the mechanistic and therapeutic implications of these findings in the wider context of RA pathogenesis. Understanding the origin and consequences of dysregulated PAD enzyme activity and immune responses against PAD enzymes will be important to fully comprehend the pathogenic mechanisms involved in this disease and for the development of novel strategies to treat and prevent RA.
Collapse
Affiliation(s)
- Ashley M Curran
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pooja Naik
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon T Giles
- Division of Rheumatology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Romero V, Darrah E, Andrade F. Generation of Distinct Patterns of Rheumatoid Arthritis Autoantigens by Peptidylarginine Deiminase Types 2 and 4 During Perforin-Induced Cell Damage. Arthritis Rheumatol 2020; 72:912-918. [PMID: 31876120 DOI: 10.1002/art.41196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To address the independent roles of peptidylarginine deiminase type 2 (PAD2) and PAD4 in generating rheumatoid arthritis (RA) autoantigens by using a system that mimics intracellular citrullination in the RA joint. METHODS PAD2- or PAD4-expressing 293T cells and mock-transfected cells were used as targets in cytotoxic assays using lymphokine-activated killer cells, cytotoxic YT cell granule contents, or purified human perforin. Protein citrullination and autoantigen production were determined by immunoblotting using the anti-modified citrulline-Senshu method and RA sera (n = 30), respectively. RESULTS RA sera recognized at least 3 categories of autoantigens in PAD-expressing target cells killed by the cytotoxic lymphocyte granule-induced death pathway. These included: 1) autoantigens targeted in their native form, 2) citrullinated antigens, and 3) antigens cleaved by cytotoxic proteases (e.g., granzymes). Interestingly, although target cells expressing PAD2 or PAD4 showed prominent hypercitrullination of a broad range of proteins during cytotoxic granule-induced cell damage, autoantibodies in RA sera targeted only a very limited number of antigens in hypercitrullinated cells. Furthermore, RA sera showed distinct reactivities to autoantigens generated by PAD2 or PAD4. CONCLUSION The cytotoxic granule-induced death pathway has the capacity to modify antigens by inducing hypercitrullination and antigen cleavage in target cells. Interestingly, among a large number of citrullinated proteins generated by PAD2 and PAD4 in cells, only a few are likely involved in the production of autoantibodies in RA.
Collapse
Affiliation(s)
- Violeta Romero
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erika Darrah
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Fert-Bober J, Darrah E, Andrade F. Insights into the study and origin of the citrullinome in rheumatoid arthritis. Immunol Rev 2019; 294:133-147. [PMID: 31876028 DOI: 10.1111/imr.12834] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of autoantibodies and autoreactive T cells to citrullinated proteins and citrullinating enzymes in patients with rheumatoid arthritis (RA), together with the accumulation of citrullinated proteins in rheumatoid joints, provides substantial evidence that dysregulated citrullination is a hallmark feature of RA. However, understanding mechanisms that dysregulate citrullination in RA has important challenges. Citrullination is a normal process in immune and non-immune cells, which is likely activated by different conditions (eg, inflammation) with no pathogenic consequences. In a complex inflammatory environment such as the RA joint, unique strategies are therefore required to dissect specific mechanisms involved in the abnormal production of citrullinated proteins. Here, we will review current models of citrullination in RA and discuss critical components that, in our view, are relevant to understanding the accumulation of citrullinated proteins in the RA joint, collectively referred to as the RA citrullinome. In particular, we will focus on potential caveats in the study of citrullination in RA and will highlight methods to precisely detect citrullinated proteins in complex biological samples, which is a confirmatory approach to mechanistically link the RA citrullinome with unique pathogenic pathways in RA.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Philogene MC, Johnson T, Vaught AJ, Zakaria S, Fedarko N. Antibodies against Angiotensin II Type 1 and Endothelin A Receptors: Relevance and pathogenicity. Hum Immunol 2019; 80:561-567. [PMID: 31010696 PMCID: PMC8015780 DOI: 10.1016/j.humimm.2019.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Antibodies against two G-protein coupled receptors (GPCRs), angiotensin II type 1 receptor (AT1R) and endothelin A receptor (ETAR) are among a growing number of autoantibodies that are found to be associated with allograft dysfunction. AT1R antibodies (AT1Rabs) and ETAR antibodies (ETARabs) have been shown to activate their target receptors and affect signaling pathways. Multiple single center reports have shown an association between presence of these antibodies and acute or chronic rejection and graft loss in kidney, heart, liver, lung and composite tissue transplantations. However, the characteristics of patients that are most likely to develop adverse outcomes, the phenotypes associated with graft damage solely due to these antibodies, and the antibody titer required to cause dysfunction are areas that remain controversial. This review compiles existing knowledge on the effect of antibodies against GPCRs in other diseases in order to bridge the gap in knowledge within transplantation biology. Future areas for research are highlighted and include the need for functional assays and treatment protocols for transplant patients who present with AT1Rabs and ETARabs. Understanding how antibodies that activate GPCRs influence transplantation outcome will have direct clinical implications for preemptive evaluation of transplant candidates as well as the post-transplant care of organ recipients.
Collapse
Affiliation(s)
- Mary Carmelle Philogene
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Tory Johnson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arthur Jason Vaught
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sammy Zakaria
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Neal Fedarko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Russo V, Klein T, Lim DJ, Solis N, Machado Y, Hiroyasu S, Nabai L, Shen Y, Zeglinski MR, Zhao H, Oram CP, Lennox PA, Van Laeken N, Carr NJ, Crawford RI, Franzke CW, Overall CM, Granville DJ. Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction. Sci Rep 2018; 8:9690. [PMID: 29946113 PMCID: PMC6018769 DOI: 10.1038/s41598-018-28070-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023] Open
Abstract
In healthy skin, epidermis and dermis are anchored together at the dermal-epidermal junction (DEJ), a specialized basement membrane pivotal for skin integrity and function. However, increased inflammation in the DEJ is associated with the disruption and separation of this junction and sub-epidermal blistering. Granzyme B (GzmB) is a serine protease secreted by immune cells. Dysregulated inflammation may lead to increased GzmB accumulation and proteolysis in the extracellular milieu. Although elevated GzmB is observed at the level of the DEJ in inflammatory and blistering skin conditions, the present study is the first to explore GzmB in the context of DEJ degradation in autoimmune sub-epidermal blistering. In the present study, GzmB induced separation of the DEJ in healthy human skin. Subsequently, α6/β4 integrin, collagen VII, and collagen XVII were identified as extracellular substrates for GzmB through western blot, and specific cleavage sites were identified by mass spectrometry. In human bullous pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa acquisita, GzmB was elevated at the DEJ when compared to healthy samples, while α6/β4 integrin, collagen VII, and collagen XVII were reduced or absent in the area of blistering. In summary, our results suggest that regardless of the initial causation of sub-epidermal blistering, GzmB activity is a common final pathway that could be amenable to a single targeted treatment approach.
Collapse
Affiliation(s)
- Valerio Russo
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Theo Klein
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Darielle J Lim
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Layla Nabai
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Yue Shen
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Matthew R Zeglinski
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Hongyan Zhao
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Cameron P Oram
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Peter A Lennox
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nancy Van Laeken
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nick J Carr
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Richard I Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, V5Z 4E8, Canada
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center and Faculty of Medicine - University of Freiburg, 79104, Freiburg, Germany
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
27
|
Johnson TP, Nath A. Neurological syndromes driven by postinfectious processes or unrecognized persistent infections. Curr Opin Neurol 2018; 31:318-324. [PMID: 29547402 PMCID: PMC11391419 DOI: 10.1097/wco.0000000000000553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The immune system serves a critical role in protecting the host against various pathogens. However, under circumstances, once triggered by the infectious process, it may be detrimental to the host. This may be as a result of nonspecific immune activation or due to a targeted immune response to a specific host antigen. In this opinion piece, we discuss the underlying mechanisms that lead to such an inflammatory or autoimmune syndrome affecting the nervous system. We examine these hypotheses in the context of recent emerging infections to provide mechanistic insight into the clinical manifestations and rationale for immunomodulatory therapy. RECENT FINDINGS Some pathogens endure longer than previously thought. Persistent infections may continue to drive immune responses resulting in chronic inflammation or development of autoimmune processes, resulting in damage to the nervous system. Patients with genetic susceptibilities in immune regulation may be particularly vulnerable to pathogen driven autoimmune responses. SUMMARY The presence of prolonged pathogens may result in chronic immune stimulations that drives immune-mediated neurologic complications. Understanding the burden and mechanisms of these processes is challenging but important.
Collapse
Affiliation(s)
- Tory P Johnson
- Richard T Johnson Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Clinical and immunological aspects of anti-peptidylarginine deiminase type 4 (anti-PAD4) autoantibodies in rheumatoid arthritis. Autoimmun Rev 2018; 17:94-102. [DOI: 10.1016/j.autrev.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
|
29
|
Lourido L, Blanco FJ, Ruiz-Romero C. Defining the proteomic landscape of rheumatoid arthritis: progress and prospective clinical applications. Expert Rev Proteomics 2017; 14:431-444. [PMID: 28425787 DOI: 10.1080/14789450.2017.1321481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The heterogeneity of Rheumatoid Arthritis (RA) and the absence of clinical tests accurate enough to identify the early stages of this disease have hampered its management. Therefore, proteomics research is increasingly focused on the discovery of novel biological markers, which would not only be able make an early diagnosis, but also to gain insight into the different pathological mechanisms underlying the heterogeneity of RA and also to stratify patients, which is critical to enabling effective treatments. Areas covered: The proteomic approaches that have been utilised to provide knowledge about RA pathogenesis, and to identify biomarkers for RA diagnosis, prognosis, disease monitoring and prediction of response to therapy, are summarized. Expert commentary: Although each proteomic study is unique in its design, all of them have contributed to the understanding of RA pathogenesis and the discovery of promising biomarkers for patient stratification, which would improve clinical care of RA patients. Still, efforts need to be made to validate these findings and translate them into clinical practice.
Collapse
Affiliation(s)
- Lucía Lourido
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,b RIER-RED de Inflamación y Enfermedades Reumáticas , INIBIC-CHUAC , A Coruña , Spain
| | - Francisco J Blanco
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,b RIER-RED de Inflamación y Enfermedades Reumáticas , INIBIC-CHUAC , A Coruña , Spain
| | - Cristina Ruiz-Romero
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,c CIBER-BBN Instituto de Salud Carlos III , INIBIC-CHUAC , A Coruña , Spain
| |
Collapse
|
30
|
Kim A, Boronina TN, Cole RN, Darrah E, Sadegh-Nasseri S. Distorted Immunodominance by Linker Sequences or other Epitopes from a Second Protein Antigen During Antigen-Processing. Sci Rep 2017; 7:46418. [PMID: 28422163 PMCID: PMC5396073 DOI: 10.1038/srep46418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 11/09/2022] Open
Abstract
The immune system focuses on and responds to very few representative immunodominant epitopes from pathogenic insults. However, due to the complexity of the antigen processing, understanding the parameters that lead to immunodominance has proved difficult. In an attempt to uncover the determinants of immunodominance among several dominant epitopes, we utilized a cell free antigen processing system and allowed the system to identify the hierarchies among potential determinants. We then tested the results in vivo; in mice and in human. We report here, that immunodominance of known sequences in a given protein can change if two or more proteins are being processed and presented simultaneously. Surprisingly, we find that new spacer/tag sequences commonly added to proteins for purification purposes can distort the capture of the physiological immunodominant epitopes. We warn against adding tags and spacers to candidate vaccines, or recommend cleaving it off before using for vaccination.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatiana N Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | |
Collapse
|