1
|
Aghajanloo B, Nazarnezhad S, Arshadi F, Prakash Kottapalli AG, Pastras C, Asadnia M. Emerging trends in biosensor and microfluidics integration for inner ear theragnostics. Biosens Bioelectron 2025; 286:117588. [PMID: 40408897 DOI: 10.1016/j.bios.2025.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/31/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Advancements in inner ear theragnostics are critical for addressing the pervasive challenges of diagnosing and treating hearing and balance disorders, which significantly impact quality of life. This paper reviews biosensors and devices that leverage advanced functional nanomaterials, microfabrication techniques, and nano-biotechnology to enhance theragnostic applications for the inner ear. The paper highlights the development of diverse electromechanical, electrochemical, and biomarker sensors for inner ear theragnostics. Electromechanical sensors replicate the cochlear and vestibular sensory structures through bioinspired designs, while electrochemical sensors are used to measure the level of ions and chemicals in the inner ear fluid, providing insights into the health and disease of the hearing and balance organs. Biomarker sensors focus on screening of inner ear diseases through early detection of correlated biomarkers based on point of care diagnostics. This study also examines the use of microfluidic devices with sensory elements to provide a compact and integrated model of the fluid-filled cochlea. In addition, advanced delivery strategies, including targeted drug delivery systems and nanocarriers are explored for their ability to improve the penetration and distribution of therapeutics within the inner ear. The study also highlights the importance of pharmacokinetics and post-treatment monitoring as critical indicators for assessing the efficacy of micro/nanotechnology-based theragnostic approaches. By consolidating these innovations, this work offers a comprehensive framework for advancing otology, paving the way for novel diagnostic tools, effective treatments, and future clinical applications.
Collapse
Affiliation(s)
| | - Simin Nazarnezhad
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Arshadi
- School of Engineering, Macquarie University, Sydney, Australia
| | - Ajay Giri Prakash Kottapalli
- Department of Bioinspired MEMS and Biomedical Devices (BMBD), Engineering and Technology Institute (ENTEG), University of Groningen, Groningen, Netherlands
| | | | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, Australia.
| |
Collapse
|
2
|
Hammer DR, Voruz F, Aksit A, Breil E, Rousset F, Senn P, Ilmjärv S, Olson ES, Lalwani AK, Kysar JW. Novel dual-lumen microneedle delivers adeno-associated viral vectors in the guinea pig inner ear via the round window membrane. Biomed Microdevices 2025; 27:27. [PMID: 40493265 DOI: 10.1007/s10544-025-00751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2025] [Indexed: 06/12/2025]
Abstract
The clinical need for minimally invasive inner ear diagnostics and therapeutics has grown rapidly in recent years, particularly with the development of gene therapies for treating hearing and balance disorders. These therapies often require delivery of large injectate volumes that can cause hearing damage. In response to this challenge, dual-lumen microneedles, with two separate fluidic pathways controlled independently by micropumps, were designed for simultaneous aspiration and delivery to the inner ear across the round window membrane (RWM) and were fabricated using 2-photon polymerization (2PP). To assess the proof of concept of the dual-lumen microneedle device, simultaneous injection of 5 µL of adeno-associated virus (AAV) expressing green fluorescent protein (GFP) and aspiration of 5 µL of perilymph was performed in guinea pigs in vivo. Hearing thresholds were measured using auditory brainstem response (ABR) at time points before and 1 week after the procedure. Confocal imaging of the cochlea, the utricle, and the contralateral inner ear was employed to quantify and characterize the spatial distribution of hair cells with AAV transduction. Dual-lumen microneedle devices were found to be functional in the surgical setting. There was hearing loss limited to higher frequencies of 24 kHz and 28 kHz with ABR mean threshold shifts of 13 dB sound pressure level (SPL) (p = 0.03) and 23 dB SPL (p < 0.01), respectively. Furthermore, cochlear AAV transduction with a stereotypical basoapical gradient was observed in all animals (n = 5). Thus, dual-lumen microneedles can facilitate delivery of large volumes of therapeutic material into the inner ear, overcoming the limitations of single-lumen microneedles.
Collapse
Affiliation(s)
- Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - François Voruz
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Eugénie Breil
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Antion Biosciences SA, Plan-les-Ouates, Switzerland
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA.
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York City, NY, 10032, USA.
| |
Collapse
|
3
|
Péporté ARJ, Gallix B, Venkatasamy A. Perilymphatic Signal Changes in Vestibular Schwannoma: A Potential Biomarker of Progressive Hearing Loss? Otolaryngol Head Neck Surg 2025. [PMID: 40105466 DOI: 10.1002/ohn.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Vestibular schwannomas influence the magnetic resonance (MR) signal intensity (SI) in the vestibular cistern and cochlear perilymph. The aim of this study is to evaluate the relationship between perilymphatic signal changes on gradient-echo T2-weighted 3 T MR sequence and the clinical symptoms. STUDY DESIGN Retrospective case-control study. SETTING The study was conducted at the Institute of Image-Guided Surgery in Strasbourg, France. METHODS Patients with vestibular schwannoma who underwent magnetic resonance imaging at our institution between 2008 and 2016 were retrospectively reviewed. A control group consisted of individuals without past or present otological symptoms. The vestibular schwannomas were divided into three groups, based on the degree of internal auditory canal obstruction. The SI ratios of the vestibular cistern to cerebrospinal fluid (CSF) and cochlea to CSF were compared with clinical data. RESULTS We included 172 patients with vestibular schwannoma and 61 controls. Vestibular schwannoma was associated with a significant decrease of the SI ratio of the vestibular cistern to CSF (0.716 ± 0.297 vs 1.06 ± 0.21, P = .004) and cochlea to CSF (0.66 ± 0.199 vs 0.903 ± 0.011, P = .004) compared to controls, with significant negative correlation between both the SI ratios of the vestibular cistern and cochlea to CSF with tumor volume (P < .001). Among all the symptoms studied, the SI ratio of the cistern normalized by CSF was significantly associated with progressive hearing loss (P = .003). CONCLUSION Perilymphatic vestibular cistern and cochlear SI changes appear to be a promising noninvasive biomarker for hearing impairment in vestibular schwannoma.
Collapse
Affiliation(s)
| | - Benoît Gallix
- Department of Radiology, Faculté de médecine, Université de Strasbourg, Strasbourg, France
- American Hospital of Paris, Neuilly-sur-Seine, France
- INRIA, Institut national de recherche en sciences et technologies du numérique, Paris, France
- Department of Diagnostic Radiology, Montreal General Hospital Site, Mc Gill University, Montreal, Québec, Canada
| | - Aïna Venkatasamy
- Department of Radiology, Institute of Image-Guided Surgery, Strasbourg, France
- ICube UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg/CNRS, Illkirch, France
- Plateforme Imageries du Vivant, Université de Paris, PARCC, INSERM, Paris, France
- Department of Radiology - Medical Physics, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Zhang Z, Wang Q, Zhou Z, Peng A, Jiang W. Comparative Proteomic Analysis of Endolymphatic Sac Luminal Fluid in Patients with Meniere's Disease and Controls. J Inflamm Res 2024; 17:10209-10222. [PMID: 39649425 PMCID: PMC11625438 DOI: 10.2147/jir.s474910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024] Open
Abstract
Introduction Meniere's disease (MD) is known to be caused by the dysfunction of the endolymphatic sac (ES), but its molecular mechanism is unknown. Methods We performed a comparative proteomic analysis of ES luminal fluids (ELFs) from patients with MD and controls. Results We found 6 differentially expressed proteins, including 2 significantly increased proteins and 4 significantly decreased proteins, 8 proteins identified exclusively in at least 7 of the 8 ELF samples from MD patients and 3 proteins detected solely in at least 4 of the 5 ELF samples from controls. Discussion The increased levels of IGLV 3-9 and IGLV1-47 in MD group compared with control group suggested an increased inflammatory reactions and a decreased level of Aldehyde dehydrogenase 2 in MD group compared with control group might result in oxidative damage and inflammatory lesions in the ES of MD. Whereas CD44 identified exclusively in MD samples might be involved in the metabolism of its ligand, hyaluronic acid for overproduction of endolymph in the ES of MD.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Zhou Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Wenqi Jiang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Walia A, Shew MA, Durakovic N, Herzog JA, Cirrito JR, Yuede CM, Wick CC, Manis M, Holtzman DM, Buchman CA, Rutherford MA. Alzheimer's Disease-Related Analytes Amyloid-β and Tau in Perilymph: Correlation With Patient Age and Cognitive Score. Otolaryngol Head Neck Surg 2024; 171:1850-1858. [PMID: 39189154 PMCID: PMC11606756 DOI: 10.1002/ohn.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE To describe the collection methods for perilymph fluid biopsy during cochlear implantation, detect levels of amyloid β 42 and 40 (Aβ42 and Aβ40), and total tau (tTau) analytes with a high-precision assay, to compare these levels with patient age and Montreal Cognitive Assessment (MoCA) scores, and explore potential mechanisms and relationships with otic pathology. STUDY DESIGN Prospective study. SETTING Tertiary referral center. METHODS Perilymph was collected from 25 patients using polyimide tubing to avoid amyloid adherence to glass, and analyzed with a single-molecule array advanced digital enzyme-linked immunosorbent assay platform for Aβ40, Aβ42, and tTau. Cognition was assessed by MoCA. RESULTS Perilymph volumes ranged from ∼1 to 13 µL, with analyte concentrations spanning 2.67 to 1088.26 pg/mL. All samples had detectable levels of tTau, Aβ40, and Aβ42, with a significant positive correlation between Aβ42 and Aβ40 levels. Levels of Aβ42, Aβ40, and tTau were positively correlated with age, while MoCA scores were inversely correlated with age. tTau and Aβ42/Aβ40-ratios were significantly correlated with MoCA scores. CONCLUSION Alzheimer's disease-associated peptides Aβ42, Aβ40, and tau analytes are detectable in human perilymph at levels approximately 10-fold lower than those found in cerebrospinal fluid (CSF). These species increase with age and correlate with cognitive impairment indicators, suggesting their potential utility as biomarkers for cognitive impairment in patients undergoing cochlear implantation. Future research should investigate the origin of these analytes in the perilymph and their potential links to inner ear pathologies and hearing loss, as well as their relationships to CSF and plasma levels in individuals.
Collapse
Affiliation(s)
- Amit Walia
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew A. Shew
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Nedim Durakovic
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jacques A. Herzog
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - John R. Cirrito
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Carla M. Yuede
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Cameron C. Wick
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Melissa Manis
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Craig A. Buchman
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mark A. Rutherford
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Gadenstaetter AJ, Krumpoeck PE, Auinger AB, Yildiz E, Tu A, Matula C, Arnoldner C, Landegger LD. Prestin in Human Perilymph, Cerebrospinal Fluid, and Blood as a Biomarker for Hearing Loss. Otolaryngol Head Neck Surg 2024; 171:1825-1833. [PMID: 38988299 PMCID: PMC11605028 DOI: 10.1002/ohn.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Determining the concentration of prestin in human blood, cerebrospinal fluid (CSF), and perilymph (PL), and evaluating its suitability as a clinical biomarker for sensori-neural hearing loss (SNHL). STUDY DESIGN Human blood, CSF, and PL samples were intraoperatively collected from 42 patients with tumors of the internal auditory canal or with intracochlear tumors undergoing translabyrinthine or middle fossa tumor removal. Prestin concentration was measured using enzyme-linked immunosorbent assay and linear regression analyses were performed to investigate its associations with audiological as well as vestibular test results. SETTING Tertiary referral center. RESULTS The median prestin concentration in blood samples of the 42 study participants (26 women, mean ± standard deviation age, 52.7 ± 12.5 years) was 1.32 (interquartile range, IQR, 0.71-1.99) ng/mL. CSF prestin levels were significantly higher with 4.73 (IQR, 2.45-14.03) ng/mL (P = .005). With 84.74 (IQR, 38.95-122.00) ng/mL, PL prestin concentration was significantly higher compared to blood (P = .01) and CSF (P = .03) levels. Linear regression analyses showed significant associations of CSF prestin concentration with preoperative hearing levels (pure-tone average and word recognition; P = .008, R2 = 0.1894; P = .03, R2 = 0.1857), but no correlations with blood or PL levels. CONCLUSION AND RELEVANCE This study's findings highlight the volatile nature of prestin levels and provide the first insights into this potential biomarker's concentrations in body fluids apart from blood. Future investigations should comprehensively assess human prestin levels with different etiologies of SNHL, prestin's natural homeostasis and systemic circulation, and its temporal dynamics after cochlear trauma. Finally, clinically approved detection kits for prestin are urgently required prior to considering a potential translational implementation of this diagnostic technique.
Collapse
Affiliation(s)
- Anselm Joseph Gadenstaetter
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Paul Emmerich Krumpoeck
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Alice Barbara Auinger
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Erdem Yildiz
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Aldine Tu
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Christian Matula
- Department of Neurosurgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas David Landegger
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Fröhlich M, Deutz J, Wangenheim M, Rau TS, Lenarz T, Kral A, Schurzig D. The role of pressure and friction forces in automated insertion of cochlear implants. Front Neurol 2024; 15:1430694. [PMID: 39170077 PMCID: PMC11337231 DOI: 10.3389/fneur.2024.1430694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Objectives Despite the success of cochlear implant (CI) surgery for hearing restoration, reducing CI electrode insertion forces is an ongoing challenge with the goal to further reduce post-implantation hearing loss. While research in this field shows that both friction and quasistatic pressure forces occur during CI insertion, there is a lack of studies distinguishing between these origins. The present study was conducted to analyze the contribution of both force phenomena during automated CI insertion. Methods Five MED-EL FLEX28 CI electrode arrays were inserted into both a regular and uncoiled version of the same average scala tympani (ST). Both ST models had a pressure release hole at the apical end, which was kept open or closed to quantify pressure forces. ST models were filled with different sodium dodecyl sulfate (SDS) lubricants (1, 5, and 10% SDS, water). The viscosity of lubricants was determined using a rheometer. Insertions were conducted with velocities ranging from v= 0.125 mm/s to 2.0 mm/s. Results Viscosity of SDS lubricants at 20°C was 1.28, 1.96, and 2.51 mPas for 1, 5, and 10% SDS, respectively, which lies within the values reported for human perilymph. In the uncoiled ST model, forces remained within the noise floor (maximum: 0.049 × 10-3 N ± 1.5 × 10-3 N), indicating minimal contribution from quasistatic pressure. Conversely, forces using the regular, coiled ST model were at least an order of magnitude larger (minimum: Fmax = 28.95 × 10-3 N, v = 1 mm/s, 10% SDS), confirming that friction forces are the main contributor to total insertion forces. An N-way ANOVA revealed that both lubricant viscosity and insertion speed significantly reduce insertion forces (p < 0.001). Conclusion For the first time, this study demonstrates that at realistic perilymph viscosities, quasistatic pressure forces minimally affect the total insertion force profile during insertion. Mixed friction is the main determinant, and significantly decreases with increaseing insertion speeds. This suggests that in clinical settings with similar ST geometries and surgical preparation, quasistatic pressure plays a subordinate role. Moreover, the findings indicate that managing the hydrodynamics of the cochlear environment, possibly through pre-surgical preparation or the use of specific lubricants, could effectively reduce insertion forces.
Collapse
Affiliation(s)
- Max Fröhlich
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Jaro Deutz
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Institute of Dynamic and Vibration Research, Leibniz University Hannover, Hannover, Germany
| | - Matthias Wangenheim
- Institute of Dynamic and Vibration Research, Leibniz University Hannover, Hannover, Germany
| | - Thomas S. Rau
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Daniel Schurzig
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
8
|
Di Stadio A, Ralli M, Kaski D, Koohi N, Gioacchini FM, Kysar JW, Lalwani AK, Warnecke A, Bernitsas E. Exploring Inner Ear and Brain Connectivity through Perilymph Sampling for Early Detection of Neurological Diseases: A Provocative Proposal. Brain Sci 2024; 14:621. [PMID: 38928621 PMCID: PMC11201480 DOI: 10.3390/brainsci14060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Recent evidence shows that it is possible to identify the elements responsible for sensorineural hearing loss, such as pro-inflammatory cytokines and macrophages, by performing perilymph sampling. However, current studies have only focused on the diagnosis of such as otologic conditions. Hearing loss is a feature of certain neuroinflammatory disorders such as multiple sclerosis, and sensorineural hearing loss (SNHL) is widely detected in Alzheimer's disease. Although the environment of the inner ear is highly regulated, there are several communication pathways between the perilymph of the inner ear and cerebrospinal fluid (CSF). Thus, examination of the perilymph may help understand the mechanism behind the hearing loss observed in certain neuroinflammatory and neurodegenerative diseases. Herein, we review the constituents of CSF and perilymph, the anatomy of the inner ear and its connection with the brain. Then, we discuss the relevance of perilymph sampling in neurology. Currently, perilymph sampling is only performed during surgical procedures, but we hypothesize a simplified and low-invasive technique that could allow sampling in a clinical setting with the same ease as performing an intratympanic injection under direct visual check. The use of this modified technique could allow for perilymph sampling in people with hearing loss and neuroinflammatory/neurodegenerative disorders and clarify the relationship between these conditions; in fact, by measuring the concentration of neuroinflammatory and/or neurodegenerative biomarkers and those typically expressed in the inner ear in aging SNHL, it could be possible to understand if SNHL is caused by aging or neuroinflammation.
Collapse
Affiliation(s)
- Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95131 Catania, Italy
- Sense Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (D.K.); (N.K.)
| | - Massimo Ralli
- Organ of Sense Department, University La Sapienza, 00185 Rome, Italy;
| | - Diego Kaski
- Sense Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (D.K.); (N.K.)
| | - Nehzat Koohi
- Sense Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (D.K.); (N.K.)
| | - Federico Maria Gioacchini
- Ear, Nose, and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | - Jeffrey W. Kysar
- Otolaryngology—Head and Neck Department, Columbia University, New York, NY 10032, USA; (J.W.K.); (A.K.L.)
| | - Anil K. Lalwani
- Otolaryngology—Head and Neck Department, Columbia University, New York, NY 10032, USA; (J.W.K.); (A.K.L.)
| | - Athanasia Warnecke
- Department of Otolaryngology—Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany;
| | - Evanthia Bernitsas
- Multiple Sclerosis Center, Neurology Department, Wayne State University, Detroit, MI 48201, USA;
| |
Collapse
|
9
|
Edvardsson Rasmussen J, Li P, Laurell G, Bergquist J, Eriksson PO. Hearing loss and its association with the proteome of perilymph, cerebrospinal fluid, and tumor tissue in patients with vestibular schwannoma. Sci Rep 2024; 14:14118. [PMID: 38898156 PMCID: PMC11187212 DOI: 10.1038/s41598-024-64352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
This study examined the association between hearing loss in sporadic vestibular schwannoma patients and the proteome of perilymph (PL), cerebrospinal fluid (CSF), and vestibular schwannoma. Intraoperative sampling of PL and of CSF, and biopsy of vestibular schwannoma tissue, was performed in 32, 32, and 20 patients with vestibular schwannoma, respectively. Perilymph and CSF in three patients with meningioma and normal hearing were also sampled. The proteomes were identified by liquid chromatography coupled to high-resolution tandem mass spectrometry. Preoperative hearing function of the patients was evaluated with pure tone audiometry, with mean values at frequencies of 500, 1000, 2000, and 4000 Hz (PTA4) in the tumor-affected ear used to delineate three hearing groups. Analysis of the PL samples revealed significant upregulation of complement factor H-related protein 2 (CFHR2) in patients with severe to profound hearing loss after false discovery rate correction. Pathway analysis of biofunctions revealed higher activation scores in the severe/profound hearing loss group of leukocyte migration, viral infection, and migration of cells in PL. Upregulation of CFHR2 and activation of these pathways indicate chronic inflammation in the cochlea of vestibular schwannoma patients with severe to profound hearing loss compared with patients with normal hearing or mild hearing loss.
Collapse
Affiliation(s)
- Jesper Edvardsson Rasmussen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
| | - Peng Li
- Computational Research Centre for Complex Chronic Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Göran Laurell
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Per Olof Eriksson
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Sriperumbudur KK, Appali R, Gummer AW, van Rienen U. Understanding the impact of modiolus porosity on stimulation of spiral ganglion neurons by cochlear implants. Sci Rep 2024; 14:9593. [PMID: 38671022 PMCID: PMC11053021 DOI: 10.1038/s41598-024-59347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Moderate-to-profound sensorineural hearing loss in humans is treatable by electrically stimulating the auditory nerve (AN) with a cochlear implant (CI). In the cochlea, the modiolus presents a porous bony interface between the CI electrode and the AN. New bone growth caused by the presence of the CI electrode or neural degeneration inflicted by ageing or otological diseases might change the effective porosity of the modiolus and, thereby, alter its electrical material properties. Using a volume conductor description of the cochlea, with the aid of a 'mapped conductivity' method and an ad-hoc 'regionally kinetic' equation system, we show that even a slight variation in modiolus porosity or pore distribution can disproportionately affect AN stimulation. Hence, because of porosity changes, an inconsistent CI performance might occur if neural degeneration or new bone growth progress after implantation. Appropriate electrical material properties in accordance with modiolar morphology and pathology should be considered in patient-specific studies. The present first-of-its-kind in-silico study advocates for contextual experimental studies to further explore the utility of modiolus porous morphology in optimising the CI outcome.
Collapse
Affiliation(s)
- Kiran K Sriperumbudur
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.
- Research and Development, MED-EL Medical Electronics GmbH, Innsbruck, Austria.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Anthony W Gummer
- Department of Otolaryngology, University of Tübingen, Tübingen, Germany.
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia.
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Malesci R, Lombardi M, Abenante V, Fratestefano F, Del Vecchio V, Fetoni AR, Troisi J. A Systematic Review on Metabolomics Analysis in Hearing Impairment: Is It a Possible Tool in Understanding Auditory Pathologies? Int J Mol Sci 2023; 24:15188. [PMID: 37894867 PMCID: PMC10607298 DOI: 10.3390/ijms242015188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
With more than 466 million people affected, hearing loss represents the most common sensory pathology worldwide. Despite its widespread occurrence, much remains to be explored, particularly concerning the intricate pathogenic mechanisms underlying its diverse phenotypes. In this context, metabolomics emerges as a promising approach. Indeed, lying downstream from molecular biology's central dogma, the metabolome reflects both genetic traits and environmental influences. Furthermore, its dynamic nature facilitates well-defined changes during disease states, making metabolomic analysis a unique lens into the mechanisms underpinning various hearing impairment forms. Hence, these investigations may pave the way for improved diagnostic strategies, personalized interventions and targeted treatments, ultimately enhancing the clinical management of affected individuals. In this comprehensive review, we discuss findings from 20 original articles, including human and animal studies. Existing literature highlights specific metabolic changes associated with hearing loss and ototoxicity of certain compounds. Nevertheless, numerous critical issues have emerged from the study of the current state of the art, with the lack of standardization of methods, significant heterogeneity in the studies and often small sample sizes being the main limiting factors for the reliability of these findings. Therefore, these results should serve as a stepping stone for future research aimed at addressing the aforementioned challenges.
Collapse
Affiliation(s)
- Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Martina Lombardi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
| | - Vera Abenante
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Federica Fratestefano
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Jacopo Troisi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
12
|
Lin Z, He B, Chen C, Wu Q, Wang X, Hou M, Duan M, Yang J, Sun L. Potential biomarkers in peripheral blood mononuclear cells of patients with sporadic Ménière's disease based on proteomics. Acta Otolaryngol 2023; 143:636-646. [PMID: 37603046 DOI: 10.1080/00016489.2023.2241517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Ménière's disease (MD) mainly refers to the endolymphatic hydrops in membranous labyrinth of the inner ear. Application of the mass spectrometry-based proteomics techniques has not been applied in the field of MD. OBJECTIVES To search for potential differential proteins to identify the disease biomarkers and reveal disease bioinformatics-related mechanisms through applying protein technology to analyze the expression changes of peripheral blood mononuclear cells (PBMCs) in sporadic MD patients. MATERIAL AND METHODS 15 MD patients and 15 healthy individuals were enrolled. PBMCs from them were extracted, and their protein expression was identified and compared by LC-MS/MS and spectra analysis. RESULTS There was significant difference in protein expression between MD patients and the control group. GO and KEGG analysis showed that endocytosis was involved in MD patients. Western blot results of CHMP1A and MMP9 protein showed that the expression of CHMP1A was higher in the MD group than that in the control group, while MMP9 was down-regulated. Immunohistochemistry confirmed that CHMP1A and MMP9 were expressed in the endolymphatic sacs of MD patients and in the inner ear of adult mice. CONCLUSIONS AND SIGNIFICANCE Endocytosis may be involved in the pathogenesis of sporadic MD, furthermore CHMP1A, VPS4A, FCN3 and MMP9 could be considered as potential biomarkers.
Collapse
Affiliation(s)
- Zhengyu Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qiong Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaowen Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mingyue Hou
- Department of Otorhinolaryngology, Lanling People's Hospital, Lanling, China
| | - Maoli Duan
- Ear Nose and Throat Patient Area, Trauma and Reparative Medicine Theme, Karolinska University Hospital, Stockholm, Sweden
- Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
13
|
Leong S, Aksit A, Szeto B, Feng SJ, Ji X, Soni RK, Olson ES, Kysar JW, Lalwani AK. Anatomic, Physiologic, and Proteomic Consequences of Repeated Microneedle-Mediated Perforations of the Round Window Membrane. Hear Res 2023; 432:108739. [PMID: 36966687 DOI: 10.1016/j.heares.2023.108739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND We have developed 3D-printed microneedle technology for diagnostic aspiration of perilymph and intracochlear delivery of therapeutic agents. Single microneedle-mediated round window membrane (RWM) perforation does not cause hearing loss, heals within 48-72 h, and yields sufficient perilymph for proteomic analysis. In this study, we investigate the anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the same RWM at different timepoints. METHODS 100-μm-diameter hollow microneedles were fabricated using two-photon polymerization (2PP) lithography. The tympanic bullae of Hartley guinea pigs (n = 8) were opened with adequate exposure of the RWM. Distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) were recorded to assess hearing. The hollow microneedle was introduced into the bulla and the RWM was perforated; 1 μL of perilymph was aspirated from the cochlea over the course of 45 s. 72 h later, the above procedure was repeated with aspiration of an additional 1 μL of perilymph. 72 h after the second perforation, RWMs were harvested for confocal imaging. Perilymph proteomic analysis was completed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two perforations and aspirations were performed in 8 guinea pigs. In six, CAP, DPOAE, and proteomic analysis were obtained; in one, only CAP and DPOAE results were obtained; and in one, only proteomics results were obtained. Hearing tests demonstrated mild hearing loss at 1-4 kHz and 28 kHz, most consistent with conductive hearing loss. Confocal microscopy demonstrated complete healing of all perforations with full reconstitution of the RWM. Perilymph proteomic analysis identified 1855 proteins across 14 samples. The inner ear protein cochlin was observed in all samples, indicating successful aspiration of perilymph. Non-adjusted paired t-tests with p < 0.01 revealed significant changes in 13 of 1855 identified proteins (0.7%) between the first and second aspirations. CONCLUSIONS We demonstrate that repeated microneedle perforation of the RWM is feasible, allows for complete healing of the RWM, and minimally changes the proteomic expression profile. Thus, microneedle-mediated repeated aspirations in a single animal can be used to monitor the response to inner ear treatments over time.
Collapse
|
14
|
Arambula AM, Gu S, Warnecke A, Schmitt HA, Staecker H, Hoa M. In Silico Localization of Perilymph Proteins Enriched in Meńier̀e Disease Using Mammalian Cochlear Single-cell Transcriptomics. OTOLOGY & NEUROTOLOGY OPEN 2023; 3:e027. [PMID: 38516320 PMCID: PMC10950140 DOI: 10.1097/ono.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 03/23/2024]
Abstract
Hypothesis Proteins enriched in the perilymph proteome of Meńier̀e disease (MD) patients may identify affected cell types. Utilizing single-cell transcriptome datasets from the mammalian cochlea, we hypothesize that these enriched perilymph proteins can be localized to specific cochlear cell types. Background The limited understanding of human inner ear pathologies and their associated biomolecular variations hinder efforts to develop disease-specific diagnostics and therapeutics. Perilymph sampling and analysis is now enabling further characterization of the cochlear microenvironment. Recently, enriched inner ear protein expression has been demonstrated in patients with MD compared to patients with other inner ear diseases. Localizing expression of these proteins to cochlear cell types can further our knowledge of potential disease pathways and subsequent development of targeted therapeutics. Methods We compiled previously published data regarding differential perilymph proteome profiles amongst patients with MD, otosclerosis, enlarged vestibular aqueduct, sudden hearing loss, and hearing loss of undefined etiology (controls). Enriched proteins in MD were cross-referenced against published single-cell/single-nucleus RNA-sequencing datasets to localize gene expression to specific cochlear cell types. Results In silico analysis of single-cell transcriptomic datasets demonstrates enrichment of a unique group of perilymph proteins associated with MD in a variety of intracochlear cells, and some exogeneous hematologic and immune effector cells. This suggests that these cell types may play an important role in the pathology associated with late MD, suggesting potential future areas of investigation for MD pathophysiology and treatment. Conclusions Perilymph proteins enriched in MD are expressed by specific cochlear cell types based on in silico localization, potentially facilitating development of disease-specific diagnostic markers and therapeutics.
Collapse
Affiliation(s)
- Alexandra M. Arambula
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Athanasia Warnecke
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Heike A. Schmitt
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
15
|
Malfeld K, Armbrecht N, Pich A, Volk HA, Lenarz T, Scheper V. Prevention of Noise-Induced Hearing Loss In Vivo: Continuous Application of Insulin-like Growth Factor 1 and Its Effect on Inner Ear Synapses, Auditory Function and Perilymph Proteins. Int J Mol Sci 2022; 24:ijms24010291. [PMID: 36613734 PMCID: PMC9820558 DOI: 10.3390/ijms24010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
As noise-induced hearing loss (NIHL) is a leading cause of occupational diseases, there is an urgent need for the development of preventive and therapeutic interventions. To avoid user-compliance-based problems occurring with conventional protection devices, the pharmacological prevention is currently in the focus of hearing research. Noise exposure leads to an increase in reactive oxygen species (ROS) in the cochlea. This way antioxidant agents are a promising option for pharmacological interventions. Previous animal studies reported preventive as well as therapeutic effects of Insulin-like growth factor 1 (IGF-1) in the context of NIHL. Unfortunately, in patients the time point of the noise trauma cannot always be predicted, and additive effects may occur. Therefore, continuous prevention seems to be beneficial. The present study aimed to investigate the preventive potential of continuous administration of low concentrations of IGF-1 to the inner ear in an animal model of NIHL. Guinea pigs were unilaterally implanted with an osmotic minipump. One week after surgery they received noise trauma, inducing a temporary threshold shift. Continuous IGF-1 delivery lasted for seven more days. It did not lead to significantly improved hearing thresholds compared to control animals. Quite the contrary, there is a hint for a higher noise susceptibility. Nevertheless, changes in the perilymph proteome indicate a reduced damage and better repair mechanisms through the IGF-1 treatment. Thus, future studies should investigate delivery methods enabling continuous prevention but reducing the risk of an overdosage.
Collapse
Affiliation(s)
- Kathrin Malfeld
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Nina Armbrecht
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
16
|
Wichova H, Shew M, Nelson-Brantley J, Warnecke A, Prentiss S, Staecker H. MicroRNA Profiling in the Perilymph of Cochlear Implant Patients: Identifying Markers that Correlate to Audiological Outcomes. J Am Acad Audiol 2022; 32:627-635. [PMID: 35609590 DOI: 10.1055/s-0041-1742234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS MicroRNA (miRNA) expression profiles from human perilymph correlate to post cochlear implantation (CI) hearing outcomes. BACKGROUND The high inter-individual variability in speech perception among cochlear implant recipients is still poorly understood. MiRNA expression in perilymph can be used to characterize the molecular processes underlying inner ear disease and to predict performance with a cochlear implant. METHODS Perilymph collected during CI from 17 patients was analyzed using microarrays. MiRNAs were identified and multivariable analysis using consonant-nucleus-consonant testing at 6 and 18 months post implant activation was performed. Variables analyzed included age, gender, preoperative pure tone average (PTA), and preoperative speech discrimination (word recognition [WR]). Gene ontology analysis was performed to identify potential functional implications of changes in the identified miRNAs. RESULTS Distinct miRNA profiles correlated to preoperative PTA and WR. Patients classified as poor performers showed downregulation of six miRNAs that potentially regulate pathways related to neuronal function and cell survival. CONCLUSION Individual miRNA profiles can be identified in microvolumes of perilymph. Distinct non-coding RNA expression profiles correlate to preoperative hearing and postoperative cochlear implant outcomes.
Collapse
Affiliation(s)
| | - Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, Missouri
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, School of Medicine, University of Kanas, Kansas City, Kansas
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sandra Prentiss
- Department of Otolaryngology Head and Neck Surgery, University of Miami School of Medicine, Miami, Florida
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City Kansas
| |
Collapse
|
17
|
van Dieken A, Staecker H, Schmitt H, Harre J, Pich A, Roßberg W, Lenarz T, Durisin M, Warnecke A. Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas. Front Cell Dev Biol 2022; 10:847157. [PMID: 35573665 PMCID: PMC9096870 DOI: 10.3389/fcell.2022.847157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
The high complexity of the cellular architecture of the human inner ear and the inaccessibility for tissue biopsy hampers cellular and molecular analysis of inner ear disease. Sampling and analysis of perilymph may present an opportunity for improved diagnostics and understanding of human inner ear pathology. Analysis of the perilymph proteome from patients undergoing cochlear implantation was carried out revealing a multitude of proteins and patterns of protein composition that may enable characterisation of patients into subgroups. Based on existing data and databases, single proteins that are not present in the blood circulation were related to cells within the cochlea to allow prediction of which cells contribute to the individual perilymph proteome of the patients. Based on the results, we propose a human atlas of the cochlea. Finally, druggable targets within the perilymph proteome were identified. Understanding and modulating the human perilymph proteome will enable novel avenues to improve diagnosis and treatment of inner ear diseases.
Collapse
Affiliation(s)
- Alina van Dieken
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck, Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Willi Roßberg
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Durisin M, Krüger C, Pich A, Warnecke A, Steffens M, Zeilinger C, Lenarz T, Prenzler N, Schmitt H. Proteome profile of patients with excellent and poor speech intelligibility after cochlear implantation: Can perilymph proteins predict performance? PLoS One 2022; 17:e0263765. [PMID: 35239655 PMCID: PMC8893673 DOI: 10.1371/journal.pone.0263765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Modern proteomic analysis and reliable surgical access to gain liquid inner ear biopsies have enabled in depth molecular characterization of the cochlea microenvironment. In order to clarify whether the protein composition of the perilymph can provide new insights into individual hearing performance after cochlear implantation (CI), computational analysis in correlation to clinical performance after CI were performed based on the proteome profile derived from perilymph samples (liquid biopsies). Perilymph samples from cochlear implant recipients have been analyzed by mass spectrometry (MS). The proteins were identified using the shot-gun proteomics method and quantified and analyzed using Max Quant, Perseus and IPA software. A total of 75 perilymph samples from 68 (adults and children) patients were included in the analysis. Speech perception data one year after implantation were available for 45 patients and these were used for subsequent analysis. According to their hearing performance, patients with excellent (n = 22) and poor (n = 14) performance one year after CI were identified and used for further analysis. The protein composition and statistically significant differences in the two groups were detected by relative quantification of the perilymph proteins. With this procedure, a selection of 287 proteins were identified in at least eight samples in both groups. In the perilymph of the patients with excellent and poor performance, five and six significantly elevated proteins were identified respectively. These proteins seem to be involved in different immunological processes in excellent and poor performer. Further analysis on the role of specific proteins as predictors for poor or excellent performance among CI recipients are mandatory. Combinatory analysis of molecular inner ear profiles and clinical performance data using bioinformatics analysis may open up new possibilities for patient stratification. The impact of such prediction algorithms on diagnosis and treatment needs to be established in further studies.
Collapse
Affiliation(s)
- Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Caroline Krüger
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Melanie Steffens
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Carsten Zeilinger
- BMWZ (Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Nils Prenzler
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Boullaud L, Blasco H, Trinh TT, Bakhos D. Metabolomic Studies in Inner Ear Pathologies. Metabolites 2022; 12:metabo12030214. [PMID: 35323657 PMCID: PMC8955628 DOI: 10.3390/metabo12030214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Sensorineural hearing loss is the most common sensory deficit. The etiologies of sensorineural hearing loss have been described and can be congenital or acquired. For congenital non-syndromic hearing loss, mutations that are related to sites of cochlear damage have been discovered (e.g., connexin proteins, mitochondrial genes, etc.). For cytomegalovirus infection or auditory neuropathies, mechanisms are also well known and well researched. Although the etiologies of sensorineural hearing loss may be evident for some patients, the damaged sites and pathological mechanisms remain unclear for patients with progressive post-lingual hearing loss. Metabolomics is an emerging technique in which all metabolites present in a sample at a given time are analyzed, reflecting a physiological state. The objective of this study was to review the literature on the use of metabolomics in hearing loss. The findings of this review suggest that metabolomic studies may help to develop objective tests for diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Luc Boullaud
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Correspondence: ; Tel.: +33-247-474-785; Fax: +33-247-473-600
| | - Hélène Blasco
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Department of Biochemistry and Molecular Biology, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Thuy-Trân Trinh
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - David Bakhos
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- House Institute Foundation, Los Angeles, CA 90057, USA
| |
Collapse
|
20
|
Kaderbay A, Berger F, Bouamrani A, Bidart M, Petre G, Baguant A, Giraud L, Schmerber S. Perilymph metabolomic and proteomic MALDI-ToF profiling with porous silicon chips: a proof-of-concept study. Hear Res 2022; 417:108457. [DOI: 10.1016/j.heares.2022.108457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
|
21
|
Peter MS, Warnecke A, Staecker H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. J Clin Med 2022; 11:jcm11020316. [PMID: 35054010 PMCID: PMC8781055 DOI: 10.3390/jcm11020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
In the clinical setting, the pathophysiology of sensorineural hearing loss is poorly defined and there are currently no diagnostic tests available to differentiate between subtypes. This often leaves patients with generalized treatment options such as steroids, hearing aids, or cochlear implantation. The gold standard for localizing disease is direct biopsy or imaging of the affected tissue; however, the inaccessibility and fragility of the cochlea make these techniques difficult. Thus, the establishment of an indirect biopsy, a sampling of inner fluids, is needed to advance inner ear diagnostics and allow for the development of novel therapeutics for inner ear disease. A promising source is perilymph, an inner ear liquid that bathes multiple structures critical to sound transduction. Intraoperative perilymph sampling via the round window membrane of the cochlea has been successfully used to profile the proteome, metabolome, and transcriptome of the inner ear and is a potential source of biomarker discovery. Despite its potential to provide insight into inner ear pathologies, human perilymph sampling continues to be controversial and is currently performed only in conjunction with a planned procedure where the inner ear is opened. Here, we review the safety of procedures in which the inner ear is opened, highlight studies where perilymph analysis has advanced our knowledge of inner ear diseases, and finally propose that perilymph sampling could be done as a stand-alone procedure, thereby advancing our ability to accurately classify sensorineural hearing loss.
Collapse
Affiliation(s)
- Madeleine St. Peter
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, D-30625 Hanover, Germany;
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Correspondence:
| |
Collapse
|
22
|
Dexamethasone for Inner Ear Therapy: Biocompatibility and Bio-Efficacy of Different Dexamethasone Formulations In Vitro. Biomolecules 2021; 11:biom11121896. [PMID: 34944539 PMCID: PMC8699596 DOI: 10.3390/biom11121896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023] Open
Abstract
Dexamethasone is widely used in preclinical studies and clinical trials to treat inner ear disorders. The results of those studies vary widely, maybe due to the different dexamethasone formulations used. Laboratory (lab) and medical grade (med) dexamethasone (DEX, C22H29FO5) and dexamethasone dihydrogen phosphate-disodium (DPS, C22H28FNa2O8P) were investigated for biocompatibility and bio-efficacy in vitro. The biocompatibility of each dexamethasone formulation in concentrations from 0.03 to 10,000 µM was evaluated using an MTT assay. The concentrations resulting in the highest cell viability were selected to perform a bio-efficiency test using a TNFα-reduction assay. All dexamethasone formulations up to 900 µM are biocompatible in vitro. DPS-lab becomes toxic at 1000 µM and DPS-med at 2000 µM, while DEX-lab and DEX-med become toxic at 4000 µM. Bio-efficacy was evaluated for DEX-lab and DPS-med at 300 µM, for DEX-med at 60 µM, and DPS-lab at 150 µM, resulting in significantly reduced expression of TNFα, with DPS-lab having the highest effect. Different dexamethasone formulations need to be applied in different concentration ranges to be biocompatible. The concentration to be applied in future studies should carefully be chosen based on the respective dexamethasone form, application route and duration to ensure biocompatibility and bio-efficacy.
Collapse
|
23
|
Zhuang P, Phung S, Warnecke A, Arambula A, St Peter M, He M, Staecker H. Isolation of sensory hair cell specific exosomes in human perilymph. Neurosci Lett 2021; 764:136282. [PMID: 34619343 PMCID: PMC9171839 DOI: 10.1016/j.neulet.2021.136282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Evaluation of hearing loss patients using clinical audiometry has been unable to give a definitive cellular or molecular diagnosis, hampering the development of treatments of sensorineural hearing loss. However, biopsy of inner ear tissue without losing residual hearing function for pathologic diagnosis is extremely challenging. In a clinical setting, perilymph can be accessed, potentially allowing the development of fluid based diagnostic tests. Recent approaches to improving inner ear diagnostics have been focusing on the evaluation of the proteomic or miRNA profiles of perilymph. Inspired by recent characterization and classification of many neurodegenerative diseases using exosomes which not only are produced in locally in diseased tissue but are transported beyond the blood brain barrier, we demonstrate the isolation of human inner ear specific exosomes using a novel ultrasensitive immunomagnetic nano pom-poms capture-release approach. Using perilymph samples harvested from surgical procedures, we were able to isolate exosomes from sensorineural hearing loss patients in only 2-5 μL of perilymph. By isolating sensory hair cell derived exosomes through their expression level of myosin VIIa, we for the first-time sample material from hair cells in the living human inner ear. This work sets up the first demonstration of immunomagnetic capture-release nano pom-pom isolated exosomes for liquid biopsy diagnosis of sensorineural hearing loss. With the ability to isolate exosomes derived from different cell types for molecular characterization, this method also can be developed for analyzing exosomal biomarkers from more accessible patient tissue fluids such as plasma.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
| | - Suiching Phung
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Alexandra Arambula
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Madeleine St Peter
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
24
|
Schmitt HA, Pich A, Prenzler NK, Lenarz T, Harre J, Staecker H, Durisin M, Warnecke A. Personalized Proteomics for Precision Diagnostics in Hearing Loss: Disease-Specific Analysis of Human Perilymph by Mass Spectrometry. ACS OMEGA 2021; 6:21241-21254. [PMID: 34471729 PMCID: PMC8387986 DOI: 10.1021/acsomega.1c01136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/09/2021] [Indexed: 05/11/2023]
Abstract
Despite a vast amount of data generated by proteomic analysis on cochlear fluid, novel clinically applicable biomarkers of inner ear diseases have not been identified hitherto. The aim of the present study was to analyze the proteome of human perilymph from cochlear implant patients, thereby identifying putative changes of the composition of the cochlear fluid perilymph due to specific diseases. Sampling of human perilymph was performed during cochlear implantation from patients with clinically or radiologically defined inner ear diseases like enlarged vestibular aqueduct (EVA; n = 14), otosclerosis (n = 10), and Ménière's disease (n = 12). Individual proteins were identified by a shotgun proteomics approach and data-dependent acquisition, thereby revealing 895 different proteins in all samples. Based on quantification values, a disease-specific protein distribution in the perilymph was demonstrated. The proteins short-chain dehydrogenase/reductase family 9C member 7 and esterase D were detected in nearly all samples of Ménière's disease patients, but not in samples of patients suffering from EVA and otosclerosis. The presence of both proteins in the inner ear tissue of adult mice and neonatal rats was validated by immunohistochemistry. Whether these proteins have the potential for a biomarker in the perilymph of Ménière's disease patients remains to be elucidated.
Collapse
Affiliation(s)
- Heike A. Schmitt
- Department
of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence of the German Research Foundation (DFG; “Deutsche
Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Core
Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Nils K. Prenzler
- Department
of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence of the German Research Foundation (DFG; “Deutsche
Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department
of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence of the German Research Foundation (DFG; “Deutsche
Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jennifer Harre
- Department
of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence of the German Research Foundation (DFG; “Deutsche
Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Hinrich Staecker
- Department
of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Martin Durisin
- Department
of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence of the German Research Foundation (DFG; “Deutsche
Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department
of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence of the German Research Foundation (DFG; “Deutsche
Forschungsgemeinschaft”) “Hearing4all”, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
25
|
Iyer JS, Seist R, Moon IS, Stankovic KM. Two Photon Fluorescence Microscopy of the Unstained Human Cochlea Reveals Organ of Corti Cytoarchitecture. Front Cell Neurosci 2021; 15:690953. [PMID: 34421541 PMCID: PMC8376148 DOI: 10.3389/fncel.2021.690953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide, and it typically originates from the cochlea. Methods to visualize intracochlear cells in living people are currently lacking, limiting not only diagnostics but also therapies for SNHL. Two-photon fluorescence microscopy (TPFM) is a high-resolution optical imaging technique. Here we demonstrate that TPFM enables visualization of sensory cells and auditory nerve fibers in an unstained, non-decalcified adult human cochlea.
Collapse
Affiliation(s)
- Janani S Iyer
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Richard Seist
- Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otorhinolaryngology - Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - In Seok Moon
- Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Konstantina M Stankovic
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
26
|
Peter N, Huber A, Egli S, Held U, Steigmiller K, Röösli C. Retrospective Investigation of Contralateral Hearing Thresholds of Patients With Sporadic Vestibular Schwannoma. Otolaryngol Head Neck Surg 2021; 166:933-942. [PMID: 34340628 DOI: 10.1177/01945998211033570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the contralateral hearing of patients with sporadic vestibular schwannoma (VS). STUDY DESIGN Retrospective cohort study. SETTING Pure-tone audiograms of the contralateral ear from patients with a wait-and-scan strategy were compared to the ones who received therapy. Due to a possible bias caused by the therapy, hearing thresholds before and after radiotherapy or surgery were compared separately with the wait-and-scan group. METHODS From 1979 to 2017, 508 patients with sporadic VS could be included in the study. Of these, 240 received regular controls in the sense of wait-and-scan, 72 underwent radiotherapy (63 audiograms before and 43 after radiotherapy), and 196 had a surgery (186 audiograms before and 146 after surgery). Age-normalized hearing thresholds of the contralateral ear from patients with a wait-and-scan strategy were compared to ones who received therapy. In addition, hearing thresholds were compared to norm values. RESULTS There was no evidence for a difference in the contralateral hearing of patients with sporadic VS between the wait-and-scan and therapy groups. The mean difference of hearing thresholds in our sample to norm values was found to be larger for the high frequencies and more pronounced in male patients. CONCLUSION There was no evidence for a difference in the contralateral hearing loss of patients with sporadic VS between the wait-and-scan and therapy groups. However, there was some indirect indication of poorer contralateral hearing in all patients with sporadic VS compared to normative values.
Collapse
Affiliation(s)
- Nicole Peter
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Huber
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon Egli
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ulrike Held
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Klaus Steigmiller
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Christof Röösli
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
McLean WJ, Hinton AS, Herby JT, Salt AN, Hartsock JJ, Wilson S, Lucchino DL, Lenarz T, Warnecke A, Prenzler N, Schmitt H, King S, Jackson LE, Rosenbloom J, Atiee G, Bear M, Runge CL, Gifford RH, Rauch SD, Lee DJ, Langer R, Karp JM, Loose C, LeBel C. Improved Speech Intelligibility in Subjects With Stable Sensorineural Hearing Loss Following Intratympanic Dosing of FX-322 in a Phase 1b Study. Otol Neurotol 2021; 42:e849-e857. [PMID: 33617194 PMCID: PMC8279894 DOI: 10.1097/mao.0000000000003120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES There are no approved pharmacologic therapies for chronic sensorineural hearing loss (SNHL). The combination of CHIR99021+valproic acid (CV, FX-322) has been shown to regenerate mammalian cochlear hair cells ex vivo. The objectives were to characterize the cochlear pharmacokinetic profile of CV in guinea pigs, then measure FX-322 in human perilymph samples, and finally assess safety and audiometric effects of FX-322 in humans with chronic SNHL. STUDY DESIGNS Middle ear residence, cochlear distribution, and elimination profiles of FX-322 were assessed in guinea pigs. Human perilymph sampling following intratympanic FX-322 dosing was performed in an open-label study in cochlear implant subjects. Unilateral intratympanic FX-322 was assessed in a Phase 1b prospective, randomized, double-blinded, placebo-controlled clinical trial. SETTING Three private otolaryngology practices in the US. PATIENTS Individuals diagnosed with mild to moderately severe chronic SNHL (≤70 dB standard pure-tone average) in one or both ears that was stable for ≥6 months, medical histories consistent with noise-induced or idiopathic sudden SNHL, and no significant vestibular symptoms. INTERVENTIONS Intratympanic FX-322. MAIN OUTCOME MEASURES Pharmacokinetics of FX-322 in perilymph and safety and audiometric effects. RESULTS After intratympanic delivery in guinea pigs and humans, FX-322 levels in the cochlear extended high-frequency region were observed and projected to be pharmacologically active in humans. A single dose of FX-322 in SNHL subjects was well tolerated with mild, transient treatment-related adverse events (n = 15 FX-322 vs 8 placebo). Of the six patients treated with FX-322 who had baseline word recognition in quiet scores below 90%, four showed clinically meaningful improvements (absolute word recognition improved 18-42%, exceeding the 95% confidence interval determined by previously published criteria). No significant changes in placebo-injected ears were observed. At the group level, FX-322 subjects outperformed placebo group in word recognition in quiet when averaged across all time points, with a mean improvement from baseline of 18.9% (p = 0.029). For words in noise, the treated group showed a mean 1.3 dB signal-to-noise ratio improvement (p = 0.012) relative to their baseline scores while placebo-treated subjects did not (-0.21 dB, p = 0.71). CONCLUSIONS Delivery of FX-322 to the extended high-frequency region of the cochlea is well tolerated and enhances speech recognition performance in multiple subjects with stable chronic hearing loss.
Collapse
Affiliation(s)
- Will J. McLean
- Frequency Therapeutics, Woburn, MA & Farmington, CT
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT
| | | | | | - Alec N. Salt
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, MO
| | - Jared J. Hartsock
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, MO
| | - Sam Wilson
- Frequency Therapeutics, Woburn, MA & Farmington, CT
| | | | - Thomas Lenarz
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Nils Prenzler
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Heike Schmitt
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation “Hearing4all”, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | - Christina L. Runge
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| | - René H. Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Steven D. Rauch
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, Boston
| | - Daniel J. Lee
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, Boston
| | - Robert Langer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jeffrey M. Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School Boston MA
- Harvard-MIT Division of Health Science and Technology
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Carl LeBel
- Frequency Therapeutics, Woburn, MA & Farmington, CT
| |
Collapse
|
28
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Shew M, Wichova H, St Peter M, Warnecke A, Staecker H. Distinct MicroRNA Profiles in the Perilymph and Serum of Patients With Menière's Disease. Front Neurol 2021; 12:646928. [PMID: 34220670 PMCID: PMC8242941 DOI: 10.3389/fneur.2021.646928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Hypothesis: Menière's disease microRNA (miRNA) profiles are unique and are reflected in the perilymph and serum of patients. Background: Development of effective biomarkers for Menière's disease are needed. miRNAs are small RNA sequences that downregulate mRNA translation and play a significant role in a variety of disease states, ultimately making them a promising biomarker. miRNAs can be readily isolated from human inner ear perilymph and serum, and may exhibit disease-specific profiles. Methods: Perilymph sampling was performed in 10 patients undergoing surgery; 5 patients with Meniere's disease and 5 patients with otosclerosis serving as controls. miRNAs were isolated from the serum of 5 patients with bilateral Menière's disease and compared to 5 healthy age-matched controls. For evaluation of miRNAs an Agilent miRNA gene chip was used. Analysis of miRNA expression was carried out using Qlucore and Ingenuitey Pathway Analysis software. Promising miRNAs biomarkers were validated using qPCR. Results: In the perilymph of patients with Menière's disease, we identified 16 differentially expressed miRNAs that are predicted to regulate over 220 different cochlear genes. Six miRNAs are postulated to regulate aquaporin expression and twelve miRNAs are postulated to regulate a variety of inflammatory and autoimmune pathways. When comparing perilymph with serum samples, miRNA-1299 and−1270 were differentially expressed in both the perilymph and serum of Ménière's patients compared to controls. Further analysis using qPCR confirmed miRNA-1299 is downregulated over 3-fold in Meniere's disease serum samples compared to controls. Conclusions: Patients with Ménière's disease exhibit distinct miRNA expression profiles within both the perilymph and serum. The altered perilymph miRNAs identified can be linked to postulated Ménière's disease pathways and may serve as biomarkers. miRNA-1299 was validated to be downregulated in both the serum and perilymph of Menière's patients.
Collapse
Affiliation(s)
- Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Madeleine St Peter
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hanover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| |
Collapse
|
30
|
Ölander C, Edvardsson Rasmussen J, Eriksson PO, Laurell G, Rask-Andersen H, Bergquist J. The proteome of the human endolymphatic sac endolymph. Sci Rep 2021; 11:11850. [PMID: 34088924 PMCID: PMC8178308 DOI: 10.1038/s41598-021-89597-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
The endolymphatic sac (ES) is the third part of the inner ear, along with the cochlea and vestibular apparatus. A refined sampling technique was developed to analyse the proteomics of ES endolymph. With a tailored solid phase micro-extraction probe, five ES endolymph samples were collected, and six sac tissue biopsies were obtained in patients undergoing trans-labyrinthine surgery for sporadic vestibular schwannoma. The samples were analysed using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to identify the total number of proteins. Pathway identification regarding molecular function and protein class was presented. A total of 1656 non-redundant proteins were identified, with 1211 proteins detected in the ES endolymph. A total of 110 proteins were unique to the ES endolymph. The results from the study both validate a strategy for in vivo and in situ human sampling during surgery and may also form a platform for further investigations to better understand the function of this intriguing part of the inner ear.
Collapse
Affiliation(s)
- Christine Ölander
- Department of Surgical Sciences, Section of Otolaryngology and Head Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Jesper Edvardsson Rasmussen
- Department of Surgical Sciences, Section of Otolaryngology and Head Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Per Olof Eriksson
- Department of Surgical Sciences, Section of Otolaryngology and Head Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Section of Otolaryngology and Head Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology and Head Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
31
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|
32
|
Stabenau KA, Zimmermann MT, Mathison A, Zeighami A, Samuels TL, Chun RH, Papsin BC, McCormick ME, Johnston N, Kerschner JE. RNA Sequencing and Pathways Analyses of Middle Ear Epithelia From Patients With Otitis Media. Laryngoscope 2021; 131:2590-2597. [PMID: 33844317 DOI: 10.1002/lary.29551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Otitis media (OM) is the most common pediatric diagnosis in the United States. However, our understanding of the molecular pathogenesis of OM remains relatively poor. Investigation of molecular pathways involved in OM may improve the understanding of this disease process and elucidate novel therapeutic targets. In this study, RNA sequencing (RNA-Seq) was used to discern cellular changes associated with OME compared to healthy middle ear epithelium (MEE). STUDY DESIGN Ex vivo case-control translational. METHODS Middle ear epithelia was collected from five pediatric patients diagnosed with OME undergoing tympanostomy tube placement and five otherwise healthy pediatric patients undergoing cochlear implantation. Specimens underwent RNA-Seq and pathways analyses. RESULTS A total of 1,292 genes exhibited differential expression in MEE from OME patients compared to controls including genes involved in inflammation, immune response to bacterial OM pathogens, mucociliary clearance, regulation of proliferation and transformation, and auditory cell differentiation. Top networks identified in OME were organismal injury and abnormalities, cell morphology, and auditory disease. Top Ingenuity canonical pathways identified were axonal guidance signaling, which contains genes associated with auditory development and disease and nicotine degradation II and III pathways. Associated upstream regulators included β-estradiol, dexamethasone, and G-protein-coupled estrogen receptor-1 (GPER1), which are associated with otoprotection or inflammation during insult. CONCLUSIONS RNA-Seq demonstrates differential gene expression in MEE from patients with OME compared to healthy controls with important implications for infection susceptibility, hearing loss, and a role for tobacco exposure in the development and/or severity of OME in pediatric patients. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Kaleigh A Stabenau
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Angela Mathison
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Atefeh Zeighami
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Robert H Chun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael E McCormick
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
33
|
Lee JH, Hwang YJ, Li H, Kim H, Suh MW, Han D, Oh SH. In-depth proteome of perilymph in guinea pig model. Proteomics 2021; 21:e2000138. [PMID: 33459488 DOI: 10.1002/pmic.202000138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
The vast majority of sensorineural hearing loss is caused by impairment of the inner ear cells. Proteomic analysis of perilymph may therefore improve our understanding of inner ear diseases and hearing loss. However, the investigation of the human perilymph proteome was limited due to technical difficulties in perilymph sampling. The guinea pig (Cavia porcellus) is frequently used as an experimental model in preclinical hearing research. In this study, we analyzed samples of perilymph collected from 12 guinea pigs to overcome limited experimental information regarding its proteome. We identified a total of 1413 proteins, establishing a greatly expanded proteome of the previously inferred guinea pig perilymph. This provides a comprehensive proteomic resource for the research community, which will facilitate future molecular-phenotypic studies using the guinea pig as an experimental model of relevance to human inner ear biology.
Collapse
Affiliation(s)
- Jung Hun Lee
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yu-Jung Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
34
|
Szeto B, Aksit A, Valentini C, Yu M, Werth EG, Goeta S, Tang C, Brown LM, Olson ES, Kysar JW, Lalwani AK. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear Res 2021; 400:108141. [PMID: 33307286 PMCID: PMC8656365 DOI: 10.1016/j.heares.2020.108141] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inner ear diagnostics is limited by the inability to atraumatically obtain samples of inner ear fluid. The round window membrane (RWM) is an attractive portal for accessing perilymph samples as it has been shown to heal within one week after the introduction of microperforations. A 1 µL volume of perilymph is adequate for proteome analysis, yet the total volume of perilymph within the scala tympani of the guinea pig is limited to less than 5 µL. This study investigates the safety and reliability of a novel hollow microneedle device to aspirate perilymph samples adequate for proteomic analysis. METHODS The guinea pig RWM was accessed via a postauricular surgical approach. 3D-printed hollow microneedles with an outer diameter of 100 µm and an inner diameter of 35 µm were used to perforate the RWM and aspirate 1 µL of perilymph. Two perilymph samples were analyzed by liquid chromatography-mass spectrometry-based quantitative proteomics as part of a preliminary study. Hearing was assessed before and after aspiration using compound action potential (CAP) and distortion product otoacoustic emissions (DPOAE). RWMs were harvested 72 h after aspiration and evaluated for healing using confocal microscopy. RESULTS There was no permanent damage to hearing at 72 h after perforation as assessed by CAP (n = 7) and DPOAE (n = 8), and all perforations healed completely within 72 h (n = 8). In the two samples of perilymph analyzed, 620 proteins were detected, including the inner ear protein cochlin, widely recognized as a perilymph marker. CONCLUSION Hollow microneedles can facilitate aspiration of perilymph across the RWM at a quality and volume adequate for proteomic analysis without causing permanent anatomic or physiologic dysfunction. Microneedles can mediate safe and effective intracochlear sampling and show great promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Chris Valentini
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Michelle Yu
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Chuanning Tang
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Elizabeth S Olson
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States; Department of Mechanical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
35
|
Conte G, Casale S, Caschera L, Lo Russo FM, Paolella C, Cinnante C, Berardino FD, Zanetti D, Stocchetti D, Scola E, Bassi L, Triulzi F. Assessment of the Membranous Labyrinth in Infants Using a Heavily T2-weighted 3D FLAIR Sequence without Contrast Agent Administration. AJNR Am J Neuroradiol 2021; 42:377-381. [PMID: 33509916 DOI: 10.3174/ajnr.a6876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Imaging is fundamental to assessing the acoustic pathway in infants with congenital deafness. We describe our depiction of the membranous labyrinth in infants using the heavily T2-weighted 3D FLAIR sequence without a contrast agent. MATERIALS AND METHODS We retrospectively reviewed 10 infants (20 ears) (median term equivalent age: 2 weeks; IQR: 1-5 weeks) who had undergone brain MR imaging including a noncontrast heavily T2-weighted 3D FLAIR scan of the temporal bone. For each ear, 3 observers analyzed, in consensus, the saccule, the utricle, and the 3 ampullae, assessing the visibility (score 0, not appreciable; score 1, visible without well-defined boundaries; score 2, visible with well-defined boundaries) and morphology ("expected" or "unexpected" compared with adults). The heavily T2-weighted 3D FLAIR sequence was scored for overall quality (score 0, inadequate; score 1, adequate but with the presence of image degradation; score 2, adequate). RESULTS Six (60%) MR examinations were considered adequate (score 1 or 2). The saccule was visible in 10 ears (83.3%) with an expected morphology in 9 ears (90%). In 1 ear of an infant with congenital deafness, the saccule showed an unexpected morphology. The utricle was visible as expected in 12 ears (100%). The lateral ampulla was visible in 5 ears (41.6%), the superior ampulla was visible in 6 ears (50.0%), and the posterior ampulla was visible in 6 ears (50.0%), always with expected morphology (100%). CONCLUSIONS MR imaging can depict the membranous labyrinth in infants using heavily T2-weighted 3D FLAIR without an injected contrast agent, but the sequence acquisition time reduces its feasibility in infants undergoing MR studies during natural sleep.
Collapse
Affiliation(s)
- G Conte
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - S Casale
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - L Caschera
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - F M Lo Russo
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - C Paolella
- Department of Advanced Biomedical Sciences (C.P.), University of Naples "Federico II," Naples, Italy
| | - C Cinnante
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | | | | | - D Stocchetti
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - E Scola
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - L Bassi
- NICU (L.B.), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Milan, Italy
| | - F Triulzi
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.).,Department of Pathophysiology and Transplantation (F.T.), University of Milan, Milan, Italy
| |
Collapse
|
36
|
Liu S, Yang Y, Mao X, Deng L, Shuai C, Yao Y, Shi Y, Yin Z. Improving glucose metabolism in the auditory cortex delays the aging of auditory function of guinea pig. Mech Ageing Dev 2020; 190:111292. [PMID: 32592712 DOI: 10.1016/j.mad.2020.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 11/30/2022]
Abstract
The glucose homeostasis is essential for brain function, and energy deficiency is a key feature of brain aging. We investigated whether improving glucose metabolism in the auditory cortex can delay the aging of auditory function of guinea pigs with age-related hearing loss (ARHL) by d-galactose. Auditory function was assessed by auditory brainstem response (ABR), glucose metabolism was detected by micro PET/CT, and the proteome were identified in auditory cortex by two-dimensional electrophoresis and matrix assisted laser desorption/ionization mass spectrometry. Glucose metabolism decreased in the auditory cortex of d-galactose group, and improving glucose metabolism can delay the aging of auditory function by upregulating seven metabolism-related proteins including ATP synthase subunit beta, triosephosphate isomerase, creatine kinase U-type, pyruvate dehydrogenase E1 component subunit beta, alpha-enolase, phosphoglycerate kinase, and tubulin beta-2A chain. These results suggest that the decrease of glucose metabolism in the auditory cortex may be an important role in the aging of auditory function, and improving glucose metabolism in the auditory cortex can delay the aging of auditory function of guinea pig with ARHL induced by d-galactose.
Collapse
Affiliation(s)
- Shuyun Liu
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Taiping Avenue 25, Luzhou 646000, PR China
| | - Ye Yang
- Department of Biochemistry, Southwest Medical University, Xianglin Road 1, Luzhou 646000, PR China
| | - Xuemei Mao
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Taiping Avenue 25, Luzhou 646000, PR China; Department of Otorhinolaryngology, Xiang'an Hospital of Xiamen University, Xiang'an East Road 2000, Xiamen, Fujian 361102, PR China
| | - Liqiang Deng
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Taiping Avenue 25, Luzhou 646000, PR China; Department of Pediatric Otolaryngology, The First People's Hospital of Chenzhou, Luojiajing 102, Chenzhou 423000, PR China
| | - Changjuan Shuai
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Taiping Avenue 25, Luzhou 646000, PR China; Department of Otorhinolaryngology, People's Hospital of Qingbaijiang District of ChengDu, Fenghuang East Four Road 15, Qingbaijiang 610300, PR China
| | - Yu Yao
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Taiping Avenue 25, Luzhou 646000, PR China; Department of Otorhinolaryngology, People's Hospital of WenJiang District of ChengDu, Wanchun East Road 10, WenJiang 611130, PR China
| | - Yuling Shi
- Clinical Medicine, Southwest Medical University, Xianglin Road 1, Luzhou 646000, PR China
| | - Zedeng Yin
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Taiping Avenue 25, Luzhou 646000, PR China.
| |
Collapse
|
37
|
El-Saied S, Schmitt H, Durisin M, Joshua BZ, Abu Tailakh M, Prenzler N, Lenarz T, Kaplan DM, Lewis EC, Warnecke A. Endogenous α1-antitrypsin levels in the perilymphatic fluid correlates with severity of hearing loss. Clin Otolaryngol 2020; 45:495-499. [PMID: 32246580 DOI: 10.1111/coa.13541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To determine the levels of endogenous α1-antitrypsin in the perilymph of patients undergoing cochlear implant (CI), and its reverse association with the severity of hearing loss. STUDY DESIGN Retrospective study. SETTING Tertiary care university hospital. PARTICIPANTS The study includes 38 patients undergoing CI surgery, 11 patients diagnosed with congenital deafness and 27 non-congenital deafness, eight patients diagnosed with moderate hearing loss (N = 8; PTA = 70 dB), severe hearing loss (N = 11; PTA 70-90 dB) and profound hearing loss (N = 19; PTA > 90 dB). MAIN OUTCOME AND MEASURE 1 to 12 μL perilymphatic fluids were collected by micropipette. α1-antitrypsin levels were determined, and current and historic audiological parameters were obtained. RESULTS The congenital and non-congenital group exhibited AAT concentrations of 2.5 ± 1.9 × 106 LFQ and 3.2 ± 1.2 × 106 LFQ, respectively (mean ± SD; P = .38). Mean levels of α1-antitrypsin in the perilymph fluid within the moderate group was 3.64 × 106 ± 2.1 × 106 LFQ vs 3.5 × 106 ± 1.2 × 106 in severe hearing loss (P = .81) and 2.4 × 106 ± 1.1 × 106 LFQ in the profound hearings loss group (P = .06). The difference in levels of AAT in samples from the severe hearings loss group vs the profound hearings loss group reached statistical significance (P = .04). CONCLUSION Insufficiency in α1-antitrypsin levels in the perilymph fluid of the inner ear appears to display a relationship with the severity of hearing loss. The prospect of introducing clinical-grade plasma-purified α1-antitrypsin directly onto the site of cochlear injury deserves thorough investigation.
Collapse
Affiliation(s)
- Sabri El-Saied
- Department of Otolaryngology - Head and Neck Surgery, Soroka University Medical Center, Be'er Sheva, Israel.,Department of clinical biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Heike Schmitt
- Otorhinolaryngology Department, Head and Neck Surgery, Hanover Medical University, Hannover, Germany
| | - Martin Durisin
- Otorhinolaryngology Department, Head and Neck Surgery, Hanover Medical University, Hannover, Germany
| | - Ben-Zion Joshua
- Department of Otolaryngology - Head and Neck Surgery, Soroka University Medical Center, Be'er Sheva, Israel
| | - Muhammad Abu Tailakh
- Recanati School for Community Health Professions, Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Soroka University Medical Center, Be'er Sheva, Israel
| | - Nils Prenzler
- Otorhinolaryngology Department, Head and Neck Surgery, Hanover Medical University, Hannover, Germany
| | - Thomas Lenarz
- Otorhinolaryngology Department, Head and Neck Surgery, Hanover Medical University, Hannover, Germany
| | - Daniel M Kaplan
- Department of Otolaryngology - Head and Neck Surgery, Soroka University Medical Center, Be'er Sheva, Israel
| | - Eli C Lewis
- Department of clinical biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Athanasia Warnecke
- Otorhinolaryngology Department, Head and Neck Surgery, Hanover Medical University, Hannover, Germany
| |
Collapse
|
38
|
Trinh TT, Blasco H, Emond P, Andres C, Lefevre A, Lescanne E, Bakhos D. Relationship between Metabolomics Profile of Perilymph in Cochlear-Implanted Patients and Duration of Hearing Loss. Metabolites 2019; 9:metabo9110262. [PMID: 31683919 PMCID: PMC6918144 DOI: 10.3390/metabo9110262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023] Open
Abstract
Perilymph metabolomic analysis is an emerging innovative strategy to improve our knowledge of physiopathology in sensorineural hearing loss. This study aims to develop a metabolomic profile of human perilymph with which to evaluate the relationship between metabolome and the duration of hearing loss. Inclusion criteria were eligibility for cochlear implantation and easy access to the round window during surgery; patients with residual acoustic hearing in the ear to be implanted were excluded. Human perilymph was sampled from 19 subjects during cochlear implantation surgery. The perilymph analysis was performed by Liquid Chromatography-High-Resolution Mass and data were analyzed by supervised multivariate analysis based on Partial Least-Squares Discriminant Analysis and univariate analysis. Samples were grouped according to their median duration of hearing loss. We included the age of patients as a covariate in our models. Statistical analysis and pathways evaluation were performed using Metaboanalyst. Nineteen samples of human perilymph were analyzed, and a total of 106 different metabolites were identified. Metabolomic profiles were significantly different for subjects with ≤ 12 or > 12 years of hearing loss, highlighting the following discriminant compounds: N-acetylneuraminate, glutaric acid, cystine, 2-methylpropanoate, butanoate and xanthine. As expected, the age of patients was also one of the main discriminant parameters. Metabolic signatures were observed for duration of hearing loss. These findings are promising steps towards illuminating the pathophysiological pathways associated with etiologies of sensorineural hearing loss, and hold open the possibilities of further explorations into the mechanisms of sensorineural hearing loss using metabolomic analysis.
Collapse
Affiliation(s)
- Thuy-Trân Trinh
- Service ORL et Chirurgie Cervico-Faciale, CHRU de Tours, 37000 Tours, France.
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours, 59037 LILLE CEDEX, France.
- Université François-Rabelais, 37000 Tours, France.
- Inserm U1253, 37000 Tours, France.
- Centre SLA, Service de Neurologie, CHRU Bretonneau, 37044 Tours, France.
| | - Patrick Emond
- Université François-Rabelais, 37000 Tours, France.
- PPF (programme pluri-formation), Université François-Rabelais, 37000 Tours, France.
| | - Christian Andres
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours, 59037 LILLE CEDEX, France.
- Université François-Rabelais, 37000 Tours, France.
- Inserm U1253, 37000 Tours, France.
- Centre SLA, Service de Neurologie, CHRU Bretonneau, 37044 Tours, France.
| | - Antoine Lefevre
- Inserm U1253, 37000 Tours, France.
- PPF (programme pluri-formation), Université François-Rabelais, 37000 Tours, France.
| | - Emmanuel Lescanne
- Service ORL et Chirurgie Cervico-Faciale, CHRU de Tours, 37000 Tours, France.
- Université François-Rabelais, 37000 Tours, France.
| | - David Bakhos
- Service ORL et Chirurgie Cervico-Faciale, CHRU de Tours, 37000 Tours, France.
- Université François-Rabelais, 37000 Tours, France.
- Inserm U1253, 37000 Tours, France.
| |
Collapse
|
39
|
Pirttilä K, Videhult Pierre P, Haglöf J, Engskog M, Hedeland M, Laurell G, Arvidsson T, Pettersson C. An LCMS-based untargeted metabolomics protocol for cochlear perilymph: highlighting metabolic effects of hydrogen gas on the inner ear of noise exposed Guinea pigs. Metabolomics 2019; 15:138. [PMID: 31587113 PMCID: PMC6778533 DOI: 10.1007/s11306-019-1595-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) is an increasing problem in society and accounts for a third of all cases of acquired hearing loss. NIHL is caused by formation of reactive oxygen species (ROS) in the cochlea causing oxidative stress. Hydrogen gas (H2) can alleviate the damage caused by oxidative stress and can be easily administered through inhalation. OBJECTIVES To present a protocol for untargeted metabolomics of guinea pig perilymph and investigate the effect of H2 administration on the perilymph metabolome of noise exposed guinea pigs. METHODS The left ear of guinea pigs were exposed to hazardous impulse noise only (Noise, n = 10), noise and H2 (Noise + H2, n = 10), only H2 (H2, n = 4), or untreated (Control, n = 2). Scala tympani perilymph was sampled from the cochlea of both ears. The polar component of the perilymph metabolome was analyzed using a HILIC-UHPLC-Q-TOF-MS-based untargeted metabolomics protocol. Multivariate data analysis (MVDA) was performed separately for the exposed- and unexposed ear. RESULTS MVDA allowed separation of groups Noise and Noise + H2 in both the exposed and unexposed ear and yielded 15 metabolites with differentiating relative abundances. Seven were found in both exposed and unexposed ear data and included two osmoprotectants. Eight metabolites were unique to the unexposed ear and included a number of short-chain acylcarnitines. CONCLUSIONS A HILIC-UHPLC-Q-TOF-MS-based protocol for untargeted metabolomics of perilymph is presented and shown to be fit-for-purpose. We found a clear difference in the perilymph metabolome of noise exposed guinea pigs with and without H2 treatment.
Collapse
Affiliation(s)
- Kristian Pirttilä
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| | - Pernilla Videhult Pierre
- Division of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jakob Haglöf
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Engskog
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Göran Laurell
- Department of Surgical Science, Uppsala University, Uppsala, Sweden
| | | | - Curt Pettersson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Bommakanti K, Iyer JS, Stankovic KM. Cochlear histopathology in human genetic hearing loss: State of the science and future prospects. Hear Res 2019; 382:107785. [PMID: 31493568 PMCID: PMC6778517 DOI: 10.1016/j.heares.2019.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
Sensorineural hearing loss (SNHL) is an extraordinarily common disability, affecting 466 million people across the globe. Half of these incidents are attributed to genetic mutations that disrupt the structure and function of the cochlea. The human cochlea's interior cannot be imaged or biopsied without damaging hearing; thus, everything known about the morphologic correlates of hereditary human deafness comes from histopathologic studies conducted in either cadaveric human temporal bone specimens or animal models of genetic deafness. The purpose of the present review is to a) summarize the findings from all published histopathologic studies conducted in human temporal bones with known SNHL-causing genetic mutations, and b) compare the reported phenotypes of human vs. mouse SNHL caused by the same genetic mutation. The fact that human temporal bone histopathologic analysis has been reported for only 22 of the nearly 200 identified deafness-causing genes suggests a great need for alternative and improved techniques for studying human hereditary deafness; in light of this, the present review concludes with a summary of promising future directions, specifically in the fields of high resolution cochlear imaging, intracochlear fluid biopsy, and gene therapy.
Collapse
Affiliation(s)
- Krishna Bommakanti
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; University of California San Diego School of Medicine, San Diego, CA, USA
| | - Janani S Iyer
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA; Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Lassaletta L, Calvino M, Morales-Puebla JM, Lapunzina P, Rodriguez-de la Rosa L, Varela-Nieto I, Martinez-Glez V. Biomarkers in Vestibular Schwannoma-Associated Hearing Loss. Front Neurol 2019; 10:978. [PMID: 31620068 PMCID: PMC6759574 DOI: 10.3389/fneur.2019.00978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Vestibular schwannomas (VSs) are benign tumors composed of differentiated neoplastic Schwann cells. They can be classified into two groups: sporadic VS and those associated with neurofibromatosis type 2 (NF2). VSs usually grow slowly, initially causing unilateral sensorineural hearing loss (HL) and tinnitus. These tumors cause HL both due to compression of the auditory nerve or the labyrinthine artery and due to the secretion of different substances potentially toxic to the inner ear or the cochlear nerve. As more and more patients are diagnosed and need to be managed, we are more than ever in need of searching for biomarkers associated with these tumors. Owing to an unknown toxic substance generated by the tumor, HL in VS may be linked to a high protein amount of perilymph. Previous studies have identified perilymph proteins correlated with tumor-associated HL, including μ-Crystallin (CRYM), low density lipoprotein receptor-related protein 2 (LRP2), immunoglobulin (Ig) γ-4 chain C region, Ig κ-chain C region, complement C3, and immunoglobulin heavy constant γ 3. Besides, the presence of specific subtypes of heat shock protein 70 has been suggested to be associated with preservation of residual hearing. It has been recently demonstrated that chemokine receptor-4 (CXCR4) is overexpressed in sporadic VS as well as in NF2 tumors and that hearing disability and CXCR4 expression may be correlated. Further, the genetic profile of VS and its relationship with poor hearing has also been studied, including DNA methylation, deregulated genes, growth factors, and NF2 gene mutations. The knowledge of biomarkers associated with VS would be of significant value to maximize outcomes of hearing preservation in these patients.
Collapse
Affiliation(s)
- Luis Lassaletta
- Department of Otorhinolaryngology, La Paz University Hospital, Madrid, Spain.,IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain
| | - Miryam Calvino
- Department of Otorhinolaryngology, La Paz University Hospital, Madrid, Spain.,IdiPAZ Research Institute, Madrid, Spain
| | | | - Pablo Lapunzina
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Lourdes Rodriguez-de la Rosa
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Isabel Varela-Nieto
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Victor Martinez-Glez
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| |
Collapse
|
42
|
Landegger LD, Vasilijic S, Fujita T, Soares VY, Seist R, Xu L, Stankovic KM. Cytokine Levels in Inner Ear Fluid of Young and Aged Mice as Molecular Biomarkers of Noise-Induced Hearing Loss. Front Neurol 2019; 10:977. [PMID: 31632328 PMCID: PMC6749100 DOI: 10.3389/fneur.2019.00977] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide, frequently caused by noise trauma and aging, with inflammation being implicated in both pathologies. Here, we provide the first direct measurements of proinflammatory cytokines in inner ear fluid, perilymph, of adolescent and 2-year-old mice. The perilymph of adolescent mice exposed to the noise intensity resulting in permanent auditory threshold elevations had significantly increased levels of IL-6, TNF-α, and CXCL1 6 h after exposure, with CXCL1 levels being most elevated (19.3 ± 6.2 fold). We next provide the first immunohistochemical localization of CXCL1 in specific cochlear supporting cells, and its presumed receptor, Duffy antigen receptor for chemokines (DARC), in hair cells and spiral ganglion neurons. Our results demonstrate the feasibility of molecular diagnostics of SNHL using only 0.5 μL of perilymph, and motivate future sub-μL based diagnostics of human SNHL based on liquid biopsy of the inner ear to guide therapy, promote hearing protection, and monitor response to treatment.
Collapse
Affiliation(s)
- Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Takeshi Fujita
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Vitor Y Soares
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Richard Seist
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Early S, Moon IS, Bommakanti K, Hunter I, Stankovic KM. A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear. Hear Res 2019; 381:107761. [DOI: 10.1016/j.heares.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
|
44
|
Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear Res 2019; 380:175-186. [DOI: 10.1016/j.heares.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
|
45
|
Warnecke A, Prenzler NK, Schmitt H, Daemen K, Keil J, Dursin M, Lenarz T, Falk CS. Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea. Front Neurol 2019; 10:665. [PMID: 31293504 PMCID: PMC6603180 DOI: 10.3389/fneur.2019.00665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular pathomechanisms in the majority of patients suffering from acute or progressive sensorineural hearing loss cannot be determined yet. The size and the complex architecture of the cochlea make biopsy and in-depth histological analyses impossible without severe damage of the organ. Thus, histopathology correlated to inner disease is only possible after death. The establishment of a technique for perilymph sampling during cochlear implantation may enable a liquid biopsy and characterization of the cochlear microenvironment. Inflammatory processes may not only participate in disease onset and progression in the inner ear, but may also control performance of the implant. However, little is known about cytokines and chemokines in the human inner ear as predictive markers for cochlear implant performance. First attempts to use multiplex protein arrays for inflammatory markers were successful for the identification of cytokines, chemokines, and endothelial markers present in the human perilymph. Moreover, unsupervised cluster and principal component analyses were used to group patients by lead cytokines and to correlate certain proteins to clinical data. Endothelial and epithelial factors were detected at higher concentrations than typical pro-inflammatory cytokines such as TNF-a or IL-6. Significant differences in VEGF family members have been observed comparing patients with deafness to patients with residual hearing with significantly reduced VEGF-D levels in patients with deafness. In addition, there is a trend toward higher IGFBP-1 levels in these patients. Hence, endothelial and epithelial factors in combination with cytokines may present robust biomarker candidates and will be investigated in future studies in more detail. Thus, multiplex protein arrays are feasible in very small perilymph samples allowing a qualitative and quantitative analysis of inflammatory markers. More results are required to advance this method for elucidating the development and course of specific inner ear diseases or for perioperative characterization of cochlear implant patients.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Nils K Prenzler
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Kerstin Daemen
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Jana Keil
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Martin Dursin
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Christine S Falk
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| |
Collapse
|
46
|
Lin HC, Ren Y, Lysaght AC, Kao SY, Stankovic KM. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS One 2019; 14:e0218292. [PMID: 31185063 PMCID: PMC6559673 DOI: 10.1371/journal.pone.0218292] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
The vast majority of hearing loss, the most common sensory impairment, and vertigo, which commonly causes falls, both reflect underlying dysfunction of inner ear cells. Perilymph sampling can thus provide molecular cues to hearing and balance disorders. While such "liquid biopsy" of the inner ear is not yet in routine clinical practice, previous studies have uncovered alterations in perilymph in patients with certain types of hearing loss. However, the proteome of perilymph from patients with intact hearing has been unknown. Furthermore, no complete characterization of perilymph from patients with vestibular dysfunction has been reported. Here, using liquid-chromatography with tandem mass spectrometry, we analyzed samples of normal perilymph collected from three patients with skull base meningiomas and intact hearing. We identified 228 proteins that were common across the samples, establishing a greatly expanded proteome of the previously inferred normal human perilymph. Further comparison to perilymph obtained from three patients with vestibular dysfunction with drop attacks due to Meniere's disease showed 38 proteins with significantly differential abundance. The abundance of four protein candidates with previously unknown roles in inner ear biology was validated in murine cochleae by immunohistochemistry and in situ hybridization: AACT, HGFAC, EFEMP1, and TGFBI. Together, these results motivate future work in characterizing the normal human perilymph and identifying biomarkers of inner ear disease.
Collapse
Affiliation(s)
- Hsiao-Chun Lin
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Yin Ren
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Andrew C. Lysaght
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States of America
| | - Shyan-Yuan Kao
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Konstantina M. Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States of America
- Harvard Program in Therapeutic Science, Harvard University, Boston, United States of America
| |
Collapse
|
47
|
Höhl M, Zeilinger C, Roth B, Meinhardt-Wollweber M, Morgner U. Multivariate discrimination of heat shock proteins using a fiber optic Raman setup for in situ analysis of human perilymph. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:043110. [PMID: 31043005 DOI: 10.1063/1.5030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Raman spectroscopy has proven to be an effective tool for molecular analysis in different applications. In clinical diagnostics, its application has enabled nondestructive investigation of biological tissues and liquids. The human perilymph, for example, is an inner ear liquid, essential for the hearing sensation. The composition of this liquid is correlated with pathophysiological parameters and was analyzed by extraction and mass spectrometry so far. In this work, we present a fiber optic probe setup for the Raman spectroscopic sampling of inner ear proteins in solution. Multivariate data analysis is applied for the discrimination of individual proteins (heat shock proteins) linked to a specific type of hearing impairment. This proof-of-principle is a first step toward a system for sensitive and continuous in vivo perilymph investigation in the future.
Collapse
Affiliation(s)
- Martin Höhl
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Carsten Zeilinger
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Bernhard Roth
- Hannoversches Zentrum für Optische Technologien, Leibniz Universität Hannover, Hannover 30167, Germany
| | | | - Uwe Morgner
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| |
Collapse
|
48
|
de Vries I, Schmitt H, Lenarz T, Prenzler N, Alvi S, Staecker H, Durisin M, Warnecke A. Detection of BDNF-Related Proteins in Human Perilymph in Patients With Hearing Loss. Front Neurosci 2019; 13:214. [PMID: 30971872 PMCID: PMC6445295 DOI: 10.3389/fnins.2019.00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/25/2019] [Indexed: 12/05/2022] Open
Abstract
The outcome of cochlear implantation depends on multiple variables including the underlying health of the cochlea. Brain derived neurotrophic factor (BDNF) has been shown to support spiral ganglion neurons and to improve implant function in animal models. Whether endogenous BDNF or BDNF-regulated proteins can be used as biomarkers to predict cochlear health and implant outcome has not been investigated yet. Gene expression of BDNF and downstream signaling molecules were identified in tissue of human cochleae obtained from normal hearing patients (n = 3) during skull base surgeries. Based on the gene expression data, bioinformatic analysis was utilized to predict the regulation of proteins by BDNF. The presence of proteins corresponding to these genes was investigated in perilymph (n = 41) obtained from hearing-impaired patients (n = 38) during cochlear implantation or skull base surgery for removal of vestibular schwannoma by nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Analyzed by mass spectrometry were 41 perilymph samples despite three patients undergoing bilateral cochlear implantation. These particular BDNF regulated proteins were not detectable in any of the perilymph samples. Subsequently, targeted analysis of the perilymph proteome data with Ingenuity Pathway Analysis (IPA) identified further proteins in human perilymph that could be regulated by BDNF. These BDNF regulated proteins were correlated to the presence of residual hearing (RH) prior to implantation and to the performance data with the cochlear implant after 1 year. There was overall a decreased level of expression of BDNF-regulated proteins in profoundly hearing-impaired patients compared to patients with some RH. Phospholipid transfer protein was positively correlated to the preoperative hearing level of the patients. Our data show that combination of gene expression arrays and bioinformatic analysis can aid in the prediction of downstream signaling proteins related to the BDNF pathway. Proteomic analysis of perilymph may help to identify the presence or absence of these molecules in the diseased organ. The impact of such prediction algorithms on diagnosis and treatment needs to be established in further studies.
Collapse
Affiliation(s)
- Ines de Vries
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Nils Prenzler
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Sameer Alvi
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| |
Collapse
|
49
|
Bonne NX, Risoud M, Hoa M, Lemesre PE, Aboukais R, Le Rhun E, Dubrulle F, Baroncini M, Lejeune JP, Vincent C. Hearing Response Following Internal Auditory Canal Decompression in Neurofibromatosis Type 2. Neurosurgery 2019; 85:E560-E567. [DOI: 10.1093/neuros/nyz057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/27/2019] [Indexed: 12/28/2022] Open
Abstract
AbstractBACKGROUNDHearing response following an osteodural decompression of the internal auditory canal (IAC) is controversial.OBJECTIVETo evaluate the course of auditory brainstem responses (ABRs) and the early hearing response during the first year following IAC decompression for small to medium-sized vestibular schwannomas occurring in neurofibromatosis type 2 (NF2).METHODSRetrospective chart review of middle fossa craniotomy for IAC osteodural decompression in NF2-related vestibular schwannomas.RESULTSTwelve NF2 patients were operated on from 2011 to 2016 for IAC decompression. All had NF2 according to the Manchester criteria. All had a progressive change of their ABRs documented from the diagnosis of NF2 over a mean period of 6.25 [0.36;10.9] yr. Treatment was proposed to stop hearing progression based on the speech discrimination scores (SDSs; n = 4) or for hearing maintenance (n = 8). In patients with prior hearing progression, hearing responses were observed in 3 of the 4 patients during the first year. One patient kept on progressing. In the hearing maintenance group, the SDSs remained stable. SDSs improved from 85% [20-100] to 92.5% [60-100] on average (n = 12) and from 55% [20-80] to 77.5% [50-100] in the hearing progression group (n = 4). ABRs improved in 4 patients following decompression.CONCLUSIONIAC decompression allows early objective hearing responses in select patients. We suggest that the procedure should be offered to patients with hearing progression based on their SDSs and/or associated progressive increases in their wave III and V latencies on ABRs.
Collapse
Affiliation(s)
- Nicolas-Xavier Bonne
- CHU Lille, Otologie et Otoneurologie, Université de Lille, Inserm U1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
- Université de Lille, Inserm U1192, Protéomique Réponse Inflamatoire Spectrométrie de Masse, PRISM, Lille, France
| | - Michaël Risoud
- CHU Lille, Otologie et Otoneurologie, Université de Lille, Inserm U1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Michael Hoa
- Department of Otolaryngology, Georgetown University Hospital, NC, Washington, District of Columbia
| | - Pierre-Emmanuel Lemesre
- CHU Lille, Otologie et Otoneurologie, Université de Lille, Inserm U1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Rabih Aboukais
- CHU Lille, Department of General and Stereotaxic Neurosurgery, Lille, France
| | - Emilie Le Rhun
- Université de Lille, Inserm U1192, Protéomique Réponse Inflamatoire Spectrométrie de Masse, PRISM, Lille, France
- CHU Lille, Department of General and Stereotaxic Neurosurgery, Lille, France
| | | | - Marc Baroncini
- CHU Lille, Department of General and Stereotaxic Neurosurgery, Lille, France
| | - Jean-Paul Lejeune
- CHU Lille, Department of General and Stereotaxic Neurosurgery, Lille, France
| | - Christophe Vincent
- CHU Lille, Otologie et Otoneurologie, Université de Lille, Inserm U1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| |
Collapse
|
50
|
Cochlear FLAIR Signal Changes in Hearing Preservation Vestibular Schwannoma Surgery. Otol Neurotol 2019; 40:375-383. [DOI: 10.1097/mao.0000000000002102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|