1
|
Xu Y, Du J, Zhang K, Li J, Zou F, Li X, Meng Y, Chen Y, Tao L, Zhao F, Ma L, Shen B, Zhou D, Sun Y, Yan G, Zhu C. The Dual Resistance Mechanism of CYP325G4 and CYP6AA9 in Culex pipiens pallens Legs According to Transcriptome and Proteome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27150-27162. [PMID: 39604078 DOI: 10.1021/acs.jafc.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mosquitoes within the Culex pipiens complex play a crucial role in human disease transmission. Insecticides, especially pyrethroids, are used to control these vectors. Mosquito legs are the main entry point and barrier for insecticides to gain their neuronal targets. However, the resistance mechanism in mosquito legs is unclear. Herein, we employed transcriptomic analyses and isobaric tags for relative and absolute quantitation techniques to investigate the resistance mechanism, focusing on Cx. pipiens legs. We discovered 2346 differentially expressed genes (DEGs) between deltamethrin-resistant (DR) and deltamethrin-sensitive (DS) mosquito legs, including 41 cytochrome P450 genes. In the same comparison, we identified 228 differentially expressed proteins (DEPs), including six cytochrome P450 proteins. Combined transcriptome and proteome analysis revealed only two upregulated P450 genes, CYP325G4 and CYP6AA9. The main clusters of DEGs and DEPs were associated with metabolic processes, such as cytochrome P450-mediated metabolism of drugs and xenobiotics. Transcription analysis revealed high CYP325G4 and CYP6AA9 expression in the DR strain at 72 h posteclosion compared with that in the DS strain, particularly in the legs. Mosquitoes knocked down for CYP325G4 were more sensitive to deltamethrin than the controls. CYP325G4 knockdown reduced the expression of several chlorinated hydrocarbon (CHC)-related genes, which altered the cuticle thickness and structure. Conversely, CYP6AA9 knockdown increased CHC gene expression without altering cuticle thickness and structure. P450 activity analysis demonstrated that CYP325G4 and CYP6AA9 contributed to metabolic resistance in the midgut and legs. This study identified CYP325G4 as a novel mosquito deltamethrin resistance factor, being involved in both metabolic and cuticular resistance mechanisms. The previously identified CYP6AA9 was investigated for its involvement in metabolic resistance and potential cuticular resistance in mosquito legs. These findings enhance our comprehension of resistance mechanisms, identifying P450s as promising targets for the future management of mosquito vector resistance, and laying a theoretical groundwork for mosquito resistance management.
Collapse
Affiliation(s)
- Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Kewei Zhang
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Feifei Zou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xixi Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufen Meng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fengming Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Guiyun Yan
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
2
|
Wang Z, Liu PK, Li L. A Tutorial Review of Labeling Methods in Mass Spectrometry-Based Quantitative Proteomics. ACS MEASUREMENT SCIENCE AU 2024; 4:315-337. [PMID: 39184361 PMCID: PMC11342459 DOI: 10.1021/acsmeasuresciau.4c00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 08/27/2024]
Abstract
Recent advancements in mass spectrometry (MS) have revolutionized quantitative proteomics, with multiplex isotope labeling emerging as a key strategy for enhancing accuracy, precision, and throughput. This tutorial review offers a comprehensive overview of multiplex isotope labeling techniques, including precursor-based, mass defect-based, reporter ion-based, and hybrid labeling methods. It details their fundamental principles, advantages, and inherent limitations along with strategies to mitigate the limitation of ratio-distortion. This review will also cover the applications and latest progress in these labeling techniques across various domains, including cancer biomarker discovery, neuroproteomics, post-translational modification analysis, cross-linking MS, and single-cell proteomics. This Review aims to provide guidance for researchers on selecting appropriate methods for their specific goals while also highlighting the potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Zicong Wang
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Peng-Kai Liu
- Biophysics
Graduate program, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Biophysics
Graduate program, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Wisconsin
Center for NanoBioSystems, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Koussis K, Haase S, Withers-Martinez C, Flynn HR, Kunzelmann S, Christodoulou E, Ibrahim F, Skehel M, Baker DA, Blackman MJ. Activation loop phosphorylation and cGMP saturation of PKG regulate egress of malaria parasites. PLoS Pathog 2024; 20:e1012360. [PMID: 38935780 PMCID: PMC11236177 DOI: 10.1371/journal.ppat.1012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development.
Collapse
Affiliation(s)
- Konstantinos Koussis
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
| | - Silvia Haase
- Host-Pathogen Interactions in Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Helen R. Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Fairouz Ibrahim
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Dhawka L, Palfini V, Hambright E, Blanco I, Poon C, Kahl A, Resch U, Bhawal R, Benakis C, Balachandran V, Holder A, Zhang S, Iadecola C, Hochrainer K. Post-ischemic ubiquitination at the postsynaptic density reversibly influences the activity of ischemia-relevant kinases. Commun Biol 2024; 7:321. [PMID: 38480905 PMCID: PMC10937959 DOI: 10.1038/s42003-024-06009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke. The data are available in a searchable web interface ( https://hochrainerlab.shinyapps.io/StrokeUbiOmics/ ). We detected increased ubiquitination of 198 proteins, many of which localize to the postsynaptic density (PSD) of glutamatergic neurons. Among these were proteins essential for maintaining PSD architecture, such as PSD95, as well as NMDA and AMPA receptor subunits. The largest enzymatic group at the PSD with elevated post-ischemic ubiquitination were kinases, such as CaMKII, PKC, Cdk5, and Pyk2, whose aberrant activities are well-known to contribute to post-ischemic neuronal death. Concurrent phospho-proteomics revealed altered PSD-associated phosphorylation patterns, indicative of modified kinase activities following stroke. PSD-located CaMKII, PKC, and Cdk5 activities were decreased while Pyk2 activity was increased after stroke. Removal of ubiquitin restored kinase activities to pre-stroke levels, identifying ubiquitination as the responsible molecular mechanism for post-ischemic kinase regulation. These findings unveil a previously unrecognized role of ubiquitination in the regulation of essential kinases involved in ischemic injury.
Collapse
Affiliation(s)
- Luvna Dhawka
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Victoria Palfini
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emma Hambright
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ismary Blanco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Carrie Poon
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anja Kahl
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ulrike Resch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ruchika Bhawal
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Corinne Benakis
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vaishali Balachandran
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alana Holder
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Leung TCN, Lu SN, Chu CN, Lee J, Liu X, Ngai SM. Temporal Quantitative Proteomic and Phosphoproteomic Profiling of SH-SY5Y and IMR-32 Neuroblastoma Cells during All- Trans-Retinoic Acid-Induced Neuronal Differentiation. Int J Mol Sci 2024; 25:1047. [PMID: 38256121 PMCID: PMC10816102 DOI: 10.3390/ijms25021047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans-retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes and phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. Relative quantification of proteins and phosphopeptides with subsequent gene ontology analysis revealed that several biological processes, including cytoskeleton organization, cell division, chaperone function and protein folding, and one-carbon metabolism, were associated with ATRA-induced differentiation in both cell lines. Furthermore, kinase-substrate enrichment analysis predicted altered activities of several kinases during differentiation. Among these, CDK5 exhibited increased activity, while CDK2 displayed reduced activity. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Collapse
Affiliation(s)
- Thomas C. N. Leung
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Scott Ninghai Lu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Cheuk Ning Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Joy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Xingyu Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Dhawka L, Palfini V, Hambright E, Blanco I, Poon C, Kahl A, Resch U, Bhawal R, Benakis C, Balachandran V, Zhang S, Iadecola C, Hochrainer K. Post-ischemic ubiquitination at the postsynaptic density reversibly influences the activity of ischemia-relevant kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.552860. [PMID: 37662420 PMCID: PMC10473581 DOI: 10.1101/2023.08.21.552860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke. The data are available in a searchable web interface ( https://hochrainerlab.shinyapps.io/StrokeUbiOmics/ ). We detected increased ubiquitination of 198 proteins, many of which localize to the postsynaptic density (PSD) of glutamatergic neurons. Among these were proteins essential for maintaining PSD architecture, such as PSD95, as well as NMDA and AMPA receptor subunits. The largest enzymatic group at the PSD with elevated post-ischemic ubiquitination were kinases, such as CaMKII, PKC, Cdk5, and Pyk2, whose aberrant activities are well-known to contribute to post-ischemic neuronal death. Concurrent phospho-proteomics revealed altered PSD-associated phosphorylation patterns, indicative of modified kinase activities following stroke. PSD-located CaMKII, PKC, and Cdk5 activities were decreased while Pyk2 activity was increased after stroke. Removal of ubiquitin restored kinase activities to pre-stroke levels, identifying ubiquitination as the responsible molecular mechanism for post-ischemic kinase regulation. These findings unveil a previously unrecognized role of ubiquitination in the regulation of essential kinases involved in ischemic injury.
Collapse
|
7
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
8
|
Zhang X, Wang BZ, Kim M, Nash TR, Liu B, Rao J, Lock R, Tamargo M, Soni RK, Belov J, Li E, Vunjak-Novakovic G, Fine B. STK25 inhibits PKA signaling by phosphorylating PRKAR1A. Cell Rep 2022; 40:111203. [PMID: 35977512 PMCID: PMC9446420 DOI: 10.1016/j.celrep.2022.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/10/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
In the heart, protein kinase A (PKA) is critical for activating calcium handling and sarcomeric proteins in response to beta-adrenergic stimulation leading to increased myocardial contractility and performance. The catalytic activity of PKA is tightly regulated by regulatory subunits that inhibit the catalytic subunit until released by cAMP binding. Phosphorylation of type II regulatory subunits promotes PKA activation; however, the role of phosphorylation in type I regulatory subunits remain uncertain. Here, we utilize human induced pluripotent stem cell cardiomyocytes (iPSC-CMs) to identify STK25 as a kinase of the type Iα regulatory subunit PRKAR1A. Phosphorylation of PRKAR1A leads to inhibition of PKA kinase activity and increased binding to the catalytic subunit in the presence of cAMP. Stk25 knockout in mice diminishes Prkar1a phosphorylation, increases Pka activity, and augments contractile response to beta-adrenergic stimulation. Together, these data support STK25 as a negative regulator of PKA signaling through phosphorylation of PRKAR1A.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bryan Z Wang
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Trevor R Nash
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Bohao Liu
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jenny Rao
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - John Belov
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric Li
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Barry Fine
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Phosphoproteomics Unravel HBV Triggered Rewiring of Host Phosphosignaling Events. Int J Mol Sci 2022; 23:ijms23095127. [PMID: 35563518 PMCID: PMC9104152 DOI: 10.3390/ijms23095127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection persists as a major global health problem despite the availability of HBV vaccines for disease prevention. However, vaccination rates remains low in some regions of the world, driving the need for novel strategies to minimise infections and prevent disease progression. Thus, understanding of perturbed molecular signaling events during early phases of HBV infection is required. Phosphosignaling is known to be involved in the HBV infection processes, yet systems-level changes in phosphosignaling pathways in the host during infection remain unclear. To this end, we performed phosphoproteome profiling on HBV-infected HepG2-NTCP cells. Our results showed that HBV infection drastically altered the host phosphoproteome and its associated proteins, including kinases. Computational analysis of this phosphoproteome revealed dysregulation of the pathways involved in immune responses, cell cycle processes, and RNA processing during HBV infection. Kinase Substrate Enrichment Analysis (KSEA) identified the dysregulated activities of important kinases, including those from CMGC (CDK, MAPK, GSK, and CLK), AGC (protein kinase A, G, and C), and TK (Tyrosine Kinase) families. Of note, the inhibition of CLKs significantly reduced HBV infection in HepG2-NTCP cells. In all, our study unravelled the aberrated phosphosignaling pathways and the associated kinases, presenting potential entry points for developing novel therapeutic strategies for HBV treatment.
Collapse
|
10
|
Xu D, Zhu X, Ren J, Huang S, Xiao Z, Jiang H, Tan Y. Quantitative proteomic analysis of cervical cancer based on TMT-labeled quantitative proteomics. J Proteomics 2022; 252:104453. [PMID: 34915198 DOI: 10.1016/j.jprot.2021.104453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Cervical cancer is the second most common gynecological malignancy, which immensely threatens the well-being of women. However, the pathogenesis of cervical cancer is still unclear. Using tandem mass tags-labeled quantitative proteomic technology and bioinformatics tools, we analyzed the exfoliated cervical cells from the normal and cervical cancer groups to establish a cancer-specific protein profile, thereby identifying key proteins related to cervical oncogenesis. When compared with the normal group, a total of 351 differentially expressed proteins were identified in the cervical cancer group, including 247 up-regulated and 104 down-regulated proteins. Gene ontology function annotation revealed that the differentially expressed proteins were mainly involved in the single-multicellular organism process, multicellular organismal process, and negative regulation of biological process. These proteins were discerned to play a role in the extracellular membrane-bounded organelle, exosome of cell components, protein binding, structural molecule activity, and enzyme binding of molecular functions. The results of Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment proved that these differentially expressed proteins were mainly involved in PI3K - Akt, ECM-receptor interaction, complement and coagulation cascades, and other signaling pathways. Particularly, peroxiredoxin-2 may be involved in cervical tumor oncogenesis through inhibition of apoptosis signaling. SIGNIFICANCE: In this study, we determined that the proteins of the cervical cancer group exhibited qualitative and quantitative changes, and a total of 351 differentially expressed proteins were identified. The functions and signaling pathways of these differentially expressed proteins have laid a theoretical foundation for elucidating the molecular mechanism of cervical cancer.
Collapse
Affiliation(s)
- Dianqin Xu
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Xiaoyu Zhu
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ji Ren
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shan Huang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ziwen Xiao
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hongmei Jiang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yujie Tan
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
11
|
Liu X, Fields R, Schweppe DK, Paulo JA. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging. Expert Rev Proteomics 2021; 18:795-807. [PMID: 34652972 DOI: 10.1080/14789450.2021.1994390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Protein phosphorylation is a primary mechanism of signal transduction in cellular systems. Isobaric tagging can be used to investigate alterations in phosphorylation events in sample multiplexing experiments where quantification extends across all conditions. As such, innovations in tandem mass tag methods can facilitate the expansion of the depth and breadth of phosphoproteomic analyses. AREAS COVERED This review discusses the current state of tandem mass tag-centric phosphoproteomics and highlights advances in reagent chemistry, instrumentation, data acquisition, and data analysis. We stress that approaches for phosphoproteomic investigations require high-specificity enrichment, sensitive detection, and accurate phosphorylation site localization. EXPERT OPINION Tandem mass tag-centric phosphoproteomics will continue to be an important conduit for our understanding of signal transduction in living organisms. We anticipate that progress in phosphopeptide enrichment methodologies, enhancements in instrumentation and data acquisition technologies, and further refinements in analytical strategies will be key to the discovery of biologically relevant findings from phosphoproteomics studies.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| |
Collapse
|
12
|
Ahn D, Bhushan G, McConville TH, Annavajhala MK, Soni RK, Wong Fok Lung T, Hofstaedter CE, Shah SS, Chong AM, Castano VG, Ernst RK, Uhlemann AC, Prince A. An acquired acyltransferase promotes Klebsiella pneumoniae ST258 respiratory infection. Cell Rep 2021; 35:109196. [PMID: 34077733 PMCID: PMC8283688 DOI: 10.1016/j.celrep.2021.109196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Klebsiella pneumoniae ST258 is a human pathogen associated with poor outcomes worldwide. We identify a member of the acyltransferase superfamily 3 (atf3), enriched within the ST258 clade, that provides a major competitive advantage for the proliferation of these organisms in vivo. Comparison of a wild-type ST258 strain (KP35) and a Δatf3 isogenic mutant generated by CRISPR-Cas9 targeting reveals greater NADH:ubiquinone oxidoreductase transcription and ATP generation, fueled by increased glycolysis. The acquisition of atf3 induces changes in the bacterial acetylome, promoting lysine acetylation of multiple proteins involved in central metabolism, specifically Zwf (glucose-6 phosphate dehydrogenase). The atf3-mediated metabolic boost leads to greater consumption of glucose in the host airway and increased bacterial burden in the lung, independent of cytokine levels and immune cell recruitment. Acquisition of this acyltransferase enhances fitness of a K. pneumoniae ST258 isolate and may contribute to the success of this clonal complex as a healthcare-associated pathogen.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Gitanjali Bhushan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Thomas H McConville
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Medini K Annavajhala
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Shivang S Shah
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander M Chong
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Victor G Castano
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Breyer F, Härtlova A, Thurston T, Flynn HR, Chakravarty P, Janzen J, Peltier J, Heunis T, Snijders AP, Trost M, Ley SC. TPL-2 kinase induces phagosome acidification to promote macrophage killing of bacteria. EMBO J 2021; 40:e106188. [PMID: 33881780 PMCID: PMC8126920 DOI: 10.15252/embj.2020106188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
Tumour progression locus 2 (TPL‐2) kinase mediates Toll‐like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase‐independent regulatory function for TPL‐2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL‐2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL‐2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V‐ATPase proton pump subunits. Furthermore, TPL‐2 stimulated the phosphorylation of DMXL1, a regulator of V‐ATPases, to induce V‐ATPase assembly and phagosome acidification. Consistent with these results, TPL‐2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL‐2 therefore controls innate immune responses of macrophages to bacteria via V‐ATPase induction of phagosome maturation.
Collapse
Affiliation(s)
| | - Anetta Härtlova
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Teresa Thurston
- Department of Infectious Diseases, MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | | | | | | | - Julien Peltier
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Steven C Ley
- The Francis Crick Institute, London, UK.,Department of Immunology & Inflammation, Centre for Molecular Immunology & Inflammation, Imperial College London, London, UK
| |
Collapse
|
14
|
Paulo JA, Schweppe DK. Advances in quantitative high-throughput phosphoproteomics with sample multiplexing. Proteomics 2021; 21:e2000140. [PMID: 33455035 DOI: 10.1002/pmic.202000140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Eukaryotic protein phosphorylation modulates nearly every major biological process. Phosphorylation regulates protein activity, mediates cellular signal transduction, and manipulates cellular structure. Consequently, the dysregulation of kinase and phosphatase pathways has been linked to a multitude of diseases. Mass spectrometry-based proteomic techniques are increasingly used for the global interrogation of perturbations in phosphorylation-based cellular signaling. Strategies for studying phosphoproteomes require high-specificity enrichment, sensitive detection, and accurate localization of phosphorylation sites with advanced LC-MS/MS techniques and downstream informatics. Sample multiplexing with isobaric tags has also been integral to recent advancements in throughput and sensitivity for phosphoproteomic studies. Each of these facets of phosphoproteomics analysis present distinct challenges and thus opportunities for improvement and innovation. Here, we review current methodologies, explore persistent challenges, and discuss the outlook for isobaric tag-based quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Joao A Paulo
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
15
|
Balestra AC, Koussis K, Klages N, Howell SA, Flynn HR, Bantscheff M, Pasquarello C, Perrin AJ, Brusini L, Arboit P, Sanz O, Castaño LPB, Withers-Martinez C, Hainard A, Ghidelli-Disse S, Snijders AP, Baker DA, Blackman MJ, Brochet M. Ca 2+ signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG. SCIENCE ADVANCES 2021; 7:7/13/eabe5396. [PMID: 33762339 PMCID: PMC7990342 DOI: 10.1126/sciadv.abe5396] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Calcium signaling regulated by the cGMP-dependent protein kinase (PKG) controls key life cycle transitions in the malaria parasite. However, how calcium is mobilized from intracellular stores in the absence of canonical calcium channels in Plasmodium is unknown. Here, we identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages. Phosphoproteomic analyses reveal multiple ICM1 phosphorylation events dependent on PKG activity. Stage-specific depletion of Plasmodium berghei ICM1 prevents gametogenesis due to a block in intracellular calcium mobilization, while conditional loss of Plasmodium falciparum ICM1 is detrimental for the parasite resulting in severely reduced calcium mobilization, defective egress, and lack of invasion. Our findings suggest that ICM1 is a key missing link in transducing PKG-dependent signals and provide previously unknown insights into atypical calcium homeostasis in malaria parasites essential for pathology and disease transmission.
Collapse
Affiliation(s)
- Aurélia C Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Konstantinos Koussis
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Steven A Howell
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, UK
| | - Marcus Bantscheff
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Carla Pasquarello
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Patrizia Arboit
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Olalla Sanz
- Diseases of the Developing World Global Health Pharma Unit, GlaxoSmithKline, 28760 Tres Cantos, Spain
| | | | | | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
16
|
Fu Q, Liu Z, Bhawal R, Anderson ET, Sherwood RW, Yang Y, Thannhauser T, Schroyen M, Tang X, Zhang H, Zhang S. Comparison of MS 2, synchronous precursor selection MS 3, and real-time search MS 3 methodologies for lung proteomes of hydrogen sulfide treated swine. Anal Bioanal Chem 2020; 413:419-429. [PMID: 33099676 DOI: 10.1007/s00216-020-03009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
Abstract
Tandem mass tags (TMTs) have increasingly become an attractive technique for global proteomics. However, its effectiveness for multiplexed quantitation by traditional tandem mass spectrometry (MS2) suffers from ratio distortion. Synchronous precursor selection (SPS) MS3 has been widely accepted for improved quantitation accuracy, but concurrently decreased proteome coverage. Recently, a Real-Time Search algorithm has been integrated with the SPS MS3 pipeline (RTS MS3) to provide accurate quantitation and improved depth of coverage. In this mechanistic study of the impact of exposure to hydrogen sulfide (H2S) on the respiration of swine, we used TMT-based comparative proteomics of lung tissues from control and H2S-treated subjects as a test case to evaluate traditional MS2, SPS MS3, and RTS MS3 acquisition methods on both the Orbitrap Fusion and Orbitrap Eclipse platforms. Comparison of the results obtained by the MS2 with those of SPS MS3 and RTS MS3 methods suggests that the MS3-driven quantitative strategies provided a more accurate global-scale quantitation; however, only RTS MS3 provided proteomic coverage that rivaled that of traditional MS2 analysis. RTS MS3 not only yields more productive MS3 spectra than SPS MS3 but also appears to focus the analysis more effectively on unique peptides. Furthermore, pathway enrichment analyses of the H2S-altered proteins demonstrated that an additional apoptosis pathway was discovered exclusively by RTS MS3. This finding was verified by RT-qPCR, western blotting, and TUNEL staining experiments. We conclude that RTS MS3 workflow enables simultaneous improvement of quantitative accuracy and proteome coverage over alternative approaches (MS2 and SPS MS3). Graphical abstract.
Collapse
Affiliation(s)
- Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Robert W Sherwood
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Jones AW, Flynn HR, Uhlmann F, Snijders AP, Touati SA. Assessing Budding Yeast Phosphoproteome Dynamics in a Time-Resolved Manner using TMT10plex Mass Tag Labeling. STAR Protoc 2020; 1:100022. [PMID: 32685930 PMCID: PMC7357674 DOI: 10.1016/j.xpro.2020.100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Amine-reactive Tandem Mass Tag 10plex (TMT10plex) labeling permits multiplexed protein identification and quantitative analysis by tandem mass spectrometry (MS/MS). We have used this technology to label 20 Saccharomyces cerevisiae samples collected in a time-resolved manner from a wild-type and phosphatase mutant background to characterize phosphoproteome dynamics. Here, we provide a detailed protocol for biological and mass spectrometry sample preparation and analysis. For complete details on the use and execution of this protocol, please refer to Touati et al. (2019). Characterization of the phosphoproteome in a time-resolved manner TMT10plex Mass Tag labelling of budding yeast extracts Mass spectrometry sample preparation and analysis
Collapse
Affiliation(s)
- Andrew W Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK.,Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.,Institut de Biologie Paris Seine, CNRS UMR7622, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Davies H, Belda H, Broncel M, Ye X, Bisson C, Introini V, Dorin-Semblat D, Semblat JP, Tibúrcio M, Gamain B, Kaforou M, Treeck M. An exported kinase family mediates species-specific erythrocyte remodelling and virulence in human malaria. Nat Microbiol 2020; 5:848-863. [PMID: 32284562 PMCID: PMC7116245 DOI: 10.1038/s41564-020-0702-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
The most severe form of human malaria is caused by Plasmodium falciparum. Its virulence is closely linked to the increase in rigidity of infected erythrocytes and their adhesion to endothelial receptors, obstructing blood flow to vital organs. Unlike other human-infecting Plasmodium species, P. falciparum exports a family of 18 FIKK serine/threonine kinases into the host cell, suggesting that phosphorylation may modulate erythrocyte modifications. We reveal substantial species-specific phosphorylation of erythrocyte proteins by P. falciparum but not by Plasmodium knowlesi, which does not export FIKK kinases. By conditionally deleting all FIKK kinases combined with large-scale quantitative phosphoproteomics we identified unique phosphorylation fingerprints for each kinase, including phosphosites on parasite virulence factors and host erythrocyte proteins. Despite their non-overlapping target sites, a network analysis revealed that some FIKKs may act in the same pathways. Only the deletion of the non-exported kinase FIKK8 resulted in reduced parasite growth, suggesting the exported FIKKs may instead support functions important for survival in the host. We show that one kinase, FIKK4.1, mediates both rigidification of the erythrocyte cytoskeleton and trafficking of the adhesin and key virulence factor PfEMP1 to the host cell surface. This establishes the FIKK family as important drivers of parasite evolution and malaria pathology.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Xingda Ye
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Claudine Bisson
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Viola Introini
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marta Tibúrcio
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Myrsini Kaforou
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
19
|
Transcriptomic and proteomic profiling of glial versus neuronal Dube3a overexpression reveals common molecular changes in gliopathic epilepsies. Neurobiol Dis 2020; 141:104879. [PMID: 32344153 DOI: 10.1016/j.nbd.2020.104879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023] Open
Abstract
Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.
Collapse
|
20
|
Patel A, Perrin AJ, Flynn HR, Bisson C, Withers-Martinez C, Treeck M, Flueck C, Nicastro G, Martin SR, Ramos A, Gilberger TW, Snijders AP, Blackman MJ, Baker DA. Cyclic AMP signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biol 2019; 17:e3000264. [PMID: 31075098 PMCID: PMC6530879 DOI: 10.1371/journal.pbio.3000264] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACβ) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.
Collapse
Affiliation(s)
- Avnish Patel
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Helen R. Flynn
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephen R. Martin
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Tim W. Gilberger
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ambrosius P. Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Zhang Z, Ahmed-Braimah YH, Goldberg ML, Wolfner MF. Calcineurin-dependent Protein Phosphorylation Changes During Egg Activation in Drosophila melanogaster. Mol Cell Proteomics 2019; 18:S145-S158. [PMID: 30478224 PMCID: PMC6427240 DOI: 10.1074/mcp.ra118.001076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/19/2018] [Indexed: 01/26/2023] Open
Abstract
In almost all animals studied to date, the crucial process of egg activation, by which an arrested mature oocyte transitions into an actively developing embryo, initiates with an increase in Ca2+ in the oocyte's cytoplasm. This Ca2+ rise sets off a series of downstream events, including the completion of meiosis and the dynamic remodeling of the oocyte transcriptome and proteome, which prepares the oocyte for embryogenesis. Calcineurin is a highly conserved phosphatase that is activated by Ca2+ upon egg activation and that is required for the resumption of meiosis in Xenopus,, ascidians, and Drosophila. The molecular mechanisms by which calcineurin transduces the calcium signal to regulate meiosis and other downstream events are still unclear. In this study, we investigate the regulatory role of calcineurin during egg activation in Drosophila melanogaster,. Using mass spectrometry, we quantify the phosphoproteomic and proteomic changes that occur during egg activation, and we examine how these events are affected when calcineurin function is perturbed in female germ cells. Our results show that calcineurin regulates hundreds of phosphosites and also influences the abundance of numerous proteins during egg activation. We find calcineurin-dependent changes in cell cycle regulators including Fizzy (Fzy), Greatwall (Gwl) and Endosulfine (Endos); in protein translation modulators including PNG, NAT, eIF4G, and eIF4B; and in important components of signaling pathways including GSK3β and Akt1. Our results help elucidate the events that occur during the transition from oocyte to embryo.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
22
|
Navarrete-Perea J, Yu Q, Gygi SP, Paulo JA. Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. J Proteome Res 2018; 17:2226-2236. [PMID: 29734811 DOI: 10.1021/acs.jproteome.8b00217] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) coupled toisobaric labeling has developed rapidly into a powerful strategy for high-throughput protein quantification. Sample multiplexing and exceptional sensitivity allow for the quantification of tens of thousands of peptides and, by inference, thousands of proteins from multiple samples in a single MS experiment. Accurate quantification demands a consistent and robust sample-preparation strategy. Here, we present a detailed workflow for SPS-MS3-based quantitative abundance profiling of tandem mass tag (TMT)-labeled proteins and phosphopeptides that we have named the streamlined (SL)-TMT protocol. We describe a universally applicable strategy that requires minimal individual sample processing and permits the seamless addition of a phosphopeptide enrichment step ("mini-phos") with little deviation from the deep proteome analysis. To showcase our workflow, we profile the proteome of wild-type Saccharomyces cerevisiae yeast grown with either glucose or pyruvate as the carbon source. Here, we have established a streamlined TMT protocol that enables deep proteome and medium-scale phosphoproteome analysis.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Qing Yu
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
23
|
Kwon Y, Ju S, Kaushal P, Lee JW, Lee C. Neutralizing the Detrimental Effect of an N-Hydroxysuccinimide Quenching Reagent on Phosphopeptide in Quantitative Proteomics. Anal Chem 2018; 90:3019-3023. [PMID: 29406695 DOI: 10.1021/acs.analchem.7b04678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most common chemistries used to label primary amines utilizes N-hydroxysuccinimide (NHS), which is also structurally incorporated in various quantitative proteomic reagents such as isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT). In this paper we report detrimental effect of hydroxylamine, a widely used quenching reagent for excess NHS, on phosphopeptides. We found an impairment in the degree of phosphopeptide identification when hydroxylamine-quenched TMT-labeled samples were vacuum-dried and desalted compared to the nondried (just diluted) and desalted ones prior to phosphoenrichment. We have also demonstrated that vacuum-drying in the presence of hydroxylamine promotes β-elimination of phosphate groups from phosphoserine and phosphothreonine while having a minimalistic effect on phosphotyrosine. Additionally, we herein report that this negative impact of hydroxylamine could be minimized by direct desalting after appropriate dilution of quenched samples. We also found a 1.6-fold increase in the number of phosphopeptide identifications after employing our optimized method. The above method was also successfully applied to human tumor tissues to quantify over 15000 phosphopeptides from 3 mg TMT 6-plex labeled-peptides.
Collapse
Affiliation(s)
- Yumi Kwon
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Korea.,Department of Life Science and Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Korea
| | - Shinyeong Ju
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Korea.,Department of Life Science and Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Korea
| | - Prashant Kaushal
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Korea.,Division of Bio-Medical Science and Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Korea
| | - Cheolju Lee
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Korea.,Division of Bio-Medical Science and Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , Korea
| |
Collapse
|