1
|
Hsu WF, Lee MH, Lii CK, Peng CY. No Difference in Liver Damage Induced by Isocaloric Fructose or Glucose in Mice with a High-Fat Diet. Nutrients 2024; 16:3571. [PMID: 39458565 PMCID: PMC11510609 DOI: 10.3390/nu16203571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The diverse effects of fructose and glucose on the progression of metabolic dysfunction-associated steatotic liver disease remain uncertain. This study investigated the effects, in animal models, of high-fat diets (HFDs) supplemented with either glucose or fructose. Methods: Six-week-old, male C57BL/6J mice were randomly allocated to four groups: normal diet (ND), HFD, HFD supplemented with fructose (30% w/v, HFD + Fru), and HFD supplemented with glucose (initially 30%, HFD + Glu). After 24 weeks, liver and plasma samples were gathered for analysis. In addition, 39 patients with obesity undergoing bariatric surgery with wedge liver biopsy were enrolled in the clinical study. Results: The HFD + Glu group consumed more water than did the HFD and HFD + Fru groups. Thus, we reduced the glucose concentration from 30% at baseline to 15% at week 2 and 10% starting from week 6. The HFD + Fru and HFD + Glu groups had a similar average caloric intake (p = 0.463). The HFD increased hepatic steatosis, plasma lipid levels, lipogenic enzymes, steatosis-related oxidative stress, hepatic inflammation, and early-stage liver fibrosis. Supplementation with fructose or glucose exacerbated liver damage, but no significant differences were identified between the two. The expression patterns of hepatic ceramides in HFD-fed mice (with or without supplemental fructose or glucose) were similar to those observed in patients with obesity and severe hepatic steatosis or metabolic dysfunction-associated steatohepatitis. Conclusions: Fructose and glucose similarly exacerbated liver damage when added to an HFD. Ceramides may be involved in the progression of hepatic lipotoxicity.
Collapse
Affiliation(s)
- Wei-Fan Hsu
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Ming-Hsien Lee
- Metabolic and Bariatric Surgical Department, Taichung Tzu Chi Hospital, Taichung 427003, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 404328, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
- School of Medicine, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
2
|
Eldarov C, Starodubtseva N, Shevtsova Y, Goryunov K, Ionov O, Frankevich V, Plotnikov E, Sukhikh G, Zorov D, Silachev D. Dried Blood Spot Metabolome Features of Ischemic-Hypoxic Encephalopathy: A Neonatal Rat Model. Int J Mol Sci 2024; 25:8903. [PMID: 39201589 PMCID: PMC11354919 DOI: 10.3390/ijms25168903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity in neonatal care poses challenges, but omics approaches have made significant contribution to understanding its complex pathophysiology. Our study further explores the impact of HIE on the blood metabolome over time and investigated changes associated with hypothermia's therapeutic effects. Using a rat model of hypoxic-ischemic brain injury, we comprehensively analyzed dried blood spot samples for fat-soluble compounds using HPLC-MS. Our research shows significant changes in the blood metabolome after HIE, with a particularly rapid recovery of lipid metabolism observed. Significant changes in lipid metabolites were observed after 3 h of HIE, including increases in ceramides, carnitines, certain fatty acids, phosphocholines, and phosphoethanolamines, while sphingomyelins and N-acylethanolamines (NAEs) decreased (p < 0.05). Furthermore, NAEs were found to be significant features in the OPLS-DA model for HIE diagnosis, with an area under the curve of 0.812. TH showed a notable association with decreased concentrations of ceramides. Enrichment analysis further corroborated these observations, showing modulation in several key metabolic pathways, including arachidonic acid oxylipin metabolism, eicosanoid metabolism via lipooxygenases, and leukotriene C4 synthesis deficiency. Our study reveals dynamic changes in the blood metabolome after HIE and the therapeutic effects of hypothermia, which improves our understanding of the pathophysiology of HIE and could lead to the development of new rapid diagnostic approaches for neonatal HIE.
Collapse
Affiliation(s)
- Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Dmitry Zorov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
3
|
Huang XX, Li L, Jiang RH, Yu JB, Sun YQ, Shan J, Yang J, Ji J, Cheng SQ, Dong YF, Zhang XY, Shi HB, Liu S, Sun XL. Lipidomic analysis identifies long-chain acylcarnitine as a target for ischemic stroke. J Adv Res 2024; 61:133-149. [PMID: 37572732 PMCID: PMC11258661 DOI: 10.1016/j.jare.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
INTRODUCTION Lipid metabolism dysfunction is widely involved in the pathological process of acute ischemic stroke (AIS). The coordination of lipid metabolism between neurons and astrocytes is of great significance. However, the full scope of lipid dynamic changes and the function of key lipids during AIS remain unknown. Hence, identifying lipid alterations and characterizing their key roles in AIS is of great importance. METHODS Untargeted and targeted lipidomic analyses were applied to profile lipid changes in the ischemic penumbra and peripheral blood of transient middle cerebral artery occlusion (tMCAO) mice as well as the peripheral blood of AIS patients. Infarct volume and neurological deficits were assessed after tMCAO. The cell viability and dendritic complexity of primary neurons were evaluated by CCK8 assay and Sholl analysis. Seahorse, MitoTracker Green, tetramethyl rhodamine methyl ester (TMRM), 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSOX were used as markers of mitochondrial health. Fluorescent and isotopic free fatty acid (FFA) pulse-chase assays were used to track FFA flux in astrocytes. RESULTS Long-chain acylcarnitines (LCACs) were the lipids with the most dramatic changes in the ischemic penumbra and peripheral blood of tMCAO mice. LCACs were significantly elevated on admission in AIS patients and associated with poor outcomes in AIS patients. Increasing LCACs through a bolus administration of palmitoylcarnitine amplified stroke injury, while decreasing LCACs by overexpressing carnitine palmitoyltransferase 2 (CPT2) ameliorated stroke injury. Palmitoylcarnitine aggravated astrocytic mitochondrial damage after OGD/R, while CPT2 overexpression in astrocytes ameliorated cocultured neuron viability. Further study revealed that astrocytes stimulated by OGD/R liberated FFAs from lipid droplets into mitochondria to form LCACs, resulting in mitochondrial damage and lowered astrocytic metabolic support and thereby aggravated neuronal damage. CONCLUSION LCACs could accumulate and damage neurons by inducing astrocytic mitochondrial dysfunction in AIS. LCACs play a crucial role in the pathology of AIS and are novel promising diagnostic and prognostic biomarkers for AIS.
Collapse
Affiliation(s)
- Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Run-Hao Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jinjun Shan
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Mondal K, Del Mar NA, Gary AA, Grambergs RC, Yousuf M, Tahia F, Stephenson B, Stephenson DJ, Chalfant CE, Reiner A, Mandal N. Sphingolipid changes in mouse brain and plasma after mild traumatic brain injury at the acute phases. Lipids Health Dis 2024; 23:200. [PMID: 38937745 PMCID: PMC11209960 DOI: 10.1186/s12944-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Molecular Diagnostics Laboratory, Department of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, Kolkata, WB, 700 063, India
| | - Nobel A Del Mar
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Ashlyn A Gary
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard C Grambergs
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Mohd Yousuf
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Faiza Tahia
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Benjamin Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Research Service, Richmond VA Medical Center, Richmond, VA, 23298, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
5
|
Li L, Shi C, Dong F, Xu G, Lei M, Zhang F. Targeting pyroptosis to treat ischemic stroke: From molecular pathways to treatment strategy. Int Immunopharmacol 2024; 133:112168. [PMID: 38688133 DOI: 10.1016/j.intimp.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.
Collapse
Affiliation(s)
- Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Chonglin Shi
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
6
|
Pulliam A, Gier EC, Gaul DA, Moore SG, Fernández FM, LaPlaca MC. Comparing Brain and Blood Lipidome Changes following Single and Repetitive Mild Traumatic Brain Injury in Rats. ACS Chem Neurosci 2024; 15:300-314. [PMID: 38179922 PMCID: PMC10797623 DOI: 10.1021/acschemneuro.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a major health concern in the United States and globally, contributing to disability and long-term neurological problems. Lipid dysregulation after TBI is underexplored, and a better understanding of lipid turnover and degradation could point to novel biomarker candidates and therapeutic targets. Here, we investigated overlapping lipidome changes in the brain and blood using a data-driven discovery approach to understand lipid alterations in the brain and serum compartments acutely following mild TBI (mTBI) and the potential efflux of brain lipids to peripheral blood. The cortices and sera from male and female Sprague-Dawley rats were analyzed via ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) in both positive and negative ion modes following single and repetitive closed head impacts. The overlapping lipids in the data sets were identified with an in-house data dictionary for investigating lipid class changes. MS-based lipid profiling revealed overall increased changes in the serum compartment, while the brain lipids primarily showed decreased changes. Interestingly, there were prominent alterations in the sphingolipid class in the brain and blood compartments after single and repetitive injury, which may suggest efflux of brain sphingolipids into the blood after TBI. Genetic algorithms were used for predictive panel selection to classify injured and control samples with high sensitivity and specificity. These overlapping lipid panels primarily mapped to the glycerophospholipid metabolism pathway with Benjamini-Hochberg adjusted q-values less than 0.05. Collectively, these results detail overlapping lipidome changes following mTBI in the brain and blood compartments, increasing our understanding of TBI-related lipid dysregulation while identifying novel biomarker candidates.
Collapse
Affiliation(s)
- Alexis
N. Pulliam
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric C. Gier
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A. Gaul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci 2023; 17:1191609. [PMID: 37333888 PMCID: PMC10272456 DOI: 10.3389/fncel.2023.1191609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Ceramide, a bioactive sphingolipid, serves as an important second messenger in cell signal transduction. Under stressful conditions, it can be generated from de novo synthesis, sphingomyelin hydrolysis, and/or the salvage pathway. The brain is rich in lipids, and abnormal lipid levels are associated with a variety of brain disorders. Cerebrovascular diseases, which are mainly caused by abnormal cerebral blood flow and secondary neurological injury, are the leading causes of death and disability worldwide. There is a growing body of evidence for a close connection between elevated ceramide levels and cerebrovascular diseases, especially stroke and cerebral small vessel disease (CSVD). The increased ceramide has broad effects on different types of brain cells, including endothelial cells, microglia, and neurons. Therefore, strategies that reduce ceramide synthesis, such as modifying sphingomyelinase activity or the rate-limiting enzyme of the de novo synthesis pathway, serine palmitoyltransferase, may represent novel and promising therapeutic approaches to prevent or treat cerebrovascular injury-related diseases.
Collapse
|
8
|
Zeng K, Zhou X, Liu W, Nie C, Zhang Y. Determination of endogenous sphingolipid content in stroke rats and HT22 cells subjected to oxygen-glucose deprivation by LC‒MS/MS. Lipids Health Dis 2023; 22:13. [PMID: 36698123 PMCID: PMC9878918 DOI: 10.1186/s12944-022-01762-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Stroke is the leading cause of death in humans worldwide, and its incidence increases every year. It is well documented that lipids are closely related to stroke. Analyzing the changes in lipid content in the stroke model after absolute quantification and investigating whether changes in lipid content can predict stroke severity provides a basis for the combination of clinical stroke and quantitative lipid indicators. METHODS This paper establishes a rapid, sensitive, and reliable LC‒MS/MS analytical method for the detection of endogenous sphingolipids in rat serum and brain tissue and HT22 cells and quantifies the changes in sphingolipid content in the serum and brain tissue of rats from the normal and pMCAO groups and in cells from the normal and OGD/R groups. Using sphingosine (d17:1) as the internal standard, a chloroform: methanol (9:1) mixed system was used for protein precipitation and lipid extraction, followed by analysis by reversed-phase liquid chromatography coupled to triple quadrupole mass spectrometry. RESULTS Based on absolute quantitative analysis of lipids in multiple biological samples, our results show that compared with those in the normal group, the contents of sphinganine (d16:0), sphinganine (d18:0), and phytosphingosine were significantly increased in the model group, except sphingosine-1-phosphate, which was decreased in various biological samples. The levels of each sphingolipid component in serum fluctuate with time. CONCLUSION This isotope-free and derivatization-free LC‒MS/MS method can achieve absolute quantification of sphingolipids in biological samples, which may also help identify lipid biomarkers of cerebral ischemia.
Collapse
Affiliation(s)
- Keqi Zeng
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Xin Zhou
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Wanyi Liu
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Cong Nie
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Yingfeng Zhang
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| |
Collapse
|
9
|
Di Pietro P, Izzo C, Abate AC, Iesu P, Rusciano MR, Venturini E, Visco V, Sommella E, Ciccarelli M, Carrizzo A, Vecchione C. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023; 13:168. [PMID: 36671552 PMCID: PMC9855992 DOI: 10.3390/biom13010168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | | | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
10
|
Lee TH, Cheng CN, Lee CW, Kuo CH, Tang SC, Jeng JS. Investigating sphingolipids as biomarkers for the outcomes of acute ischemic stroke patients receiving endovascular treatment. J Formos Med Assoc 2023; 122:19-28. [PMID: 36184387 DOI: 10.1016/j.jfma.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Long-chain ceramides are associated with the mechanisms and clinical outcomes of acute ischemic stroke (AIS). This study aimed to investigate the plasma ceramides and sphingosine-1-phosphate in AIS patients undergoing endovascular thrombectomy (EVT) and their associations with outcomes. METHODS Plasma samples were collected from 75 AIS patients who underwent EVT before (T1), immediately after (T2), and 24 h after (T3) the procedures and 19 controls that were matched with age, sex, and co-morbidities. The levels of ceramides with different fatty acyl chain lengths and sphingosine-1-phosphate were measured by UHPLC-ESI-MS/MS. A poor outcome was defined as a modified Rankin Scale score of 3-6 at 3 months after stroke. RESULTS The plasma levels of long-chain ceramides Cer (d18:1/16:0) at all three time points, Cer (d18:1/18:0) at T1 and T3, and Cer (d18:1/20:0) at T1 and very-long-chain ceramide Cer (d18:1/24:1) at T1 were significantly higher in AIS patients than those in the controls. In contrast, the plasma levels of sphingosine-1-phosphate in AIS patients were significantly lower than those in the controls at all three time points. Among the AIS patients, 34 (45.3%) had poor functional outcomes at 3 months poststroke. Multivariable analysis showed that higher levels of Cer (d18:1/16:0) and Cer (d18:1/18:0) at all three time points, Cer (d18:1/20:0) at T1 and T2, and Cer (d18:1/24:0) at T2 remained significantly associated with poor functional outcomes after adjustment for potential confounding factors. CONCLUSION Plasma ceramides were elevated early in AIS patients with acute large artery occlusion. Furthermore, Cer (d18:1/16:0) and Cer (d18:1/18:0) could be early prognostic indicators for AIS patients undergoing EVT.
Collapse
Affiliation(s)
- Tsung-Heng Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Wei Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Wang T, Zhang J, Yang M, Guo J, Li D, Li Y. Lipidomics Analysis Reveals a Protective Effect of Myriocin on Cerebral Ischemia/Reperfusion Model Rats. J Mol Neurosci 2022; 72:1846-1858. [PMID: 35776315 DOI: 10.1007/s12031-022-02014-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
Ceramide accumulation has been associated with ischemic stroke. Myriocin is an effective serine palmitoyltransferase (SPT) inhibitor that reduces ceramide levels by inhibiting the de novo synthesis pathway. However, the role of myriocin in cerebral ischemia/reperfusion (I/R) injury and its underlying mechanism remain unknown. The present study established an experimental rat model of middle cerebral artery occlusion (MCAO). We employed ultra-performance liquid chromatograph quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based lipidomic analysis to identify the disordered lipid metabolites and the effects of myriocin in cerebral cortical tissues of rats. In this study, we found 15 characterized lipid metabolites involved in sphingolipid and glycerophospholipid metabolism in cerebral I/R-injured rats, and these alterations were significantly alleviated by myriocin. Specifically, the mRNA expression of metabolism-related enzyme genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR). We demonstrated that myriocin could regulate the mRNA expression of ASMase, NSMase, SGMS1, SGMS2, ASAH1, ACER2, and ACER3, which are involved in sphingolipid metabolism and PLA2, which is involved in glycerophospholipid metabolism. Moreover, TUNEL and Western blot assays showed that myriocin plays a key role in regulating neuronal cell apoptosis. In summary, the present work provides a new perspective for the systematic study of metabolic changes in ischemic stroke and the therapeutic applications of myriocin.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Meng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Jinxiu Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
12
|
Ouro A, Correa-Paz C, Maqueda E, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Posado-Fernández A, Candamo-Lourido M, Alonso-Alonso ML, Hervella P, Iglesias-Rey R, Castillo J, Campos F, Sobrino T. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front Mol Biosci 2022; 9:864618. [PMID: 35531465 PMCID: PMC9067562 DOI: 10.3389/fmolb.2022.864618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in worldwide. Although reperfusion therapies have shown efficacy in a limited number of patients with acute ischemic stroke, neuroprotective drugs and recovery strategies have been widely assessed, but none of them have been successful in clinical practice. Therefore, the search for new therapeutic approaches is still necessary. Sphingolipids consist of a family of lipidic molecules with both structural and cell signaling functions. Regulation of sphingolipid metabolism is crucial for cell fate and homeostasis in the body. Different works have emphasized the implication of its metabolism in different pathologies, such as diabetes, cancer, neurodegeneration, or atherosclerosis. Other studies have shown its implication in the risk of suffering a stroke and its progression. This review will highlight the implications of sphingolipid metabolism enzymes in acute ischemic stroke.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elena Maqueda
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adrián Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
13
|
Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. Int J Mol Sci 2022; 23:ijms23052719. [PMID: 35269861 PMCID: PMC8911014 DOI: 10.3390/ijms23052719] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Ceramides, composed of a sphingosine and a fatty acid, are bioactive lipid molecules involved in many key cellular pathways (e.g., apoptosis, oxidative stress and inflammation). There is much evidence on the relationship between ceramide species and cardiometabolic disease, especially in relationship with the onset and development of diabetes and acute and chronic coronary artery disease. This review reports available evidence on ceramide structure and generation, and discusses their role in cardiometabolic disease, as well as current translational chances and difficulties for ceramide application in the cardiometabolic clinical settings.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3153525
| |
Collapse
|
14
|
Acid sphingomyelinase deactivation post-ischemia promotes brain angiogenesis and remodeling by small extracellular vesicles. Basic Res Cardiol 2022; 117:43. [PMID: 36038749 PMCID: PMC9424180 DOI: 10.1007/s00395-022-00950-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 01/31/2023]
Abstract
Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.
Collapse
|
15
|
Lipidomic Profiling of Ipsilateral Brain and Plasma after Celastrol Post-Treatment in Transient Middle Cerebral Artery Occlusion Mice Model. Molecules 2021; 26:molecules26144124. [PMID: 34299399 PMCID: PMC8306490 DOI: 10.3390/molecules26144124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Celastrol, a pentacyclic triterpene isolated from the traditional Chinese medicine Tripterygium wilfordii Hook. F., exhibits effectiveness in protection against multiple central nervous system (CNS) diseases such as cerebral ischemia, but its influence on lipidomics still remains unclear. Therefore, in the present study, the efficacy and potential mechanism of celastrol against cerebral ischemia/reperfusion (I/R) injury were investigated based on lipidomics. Middle cerebral artery occlusion (MCAO) followed by reperfusion was operated in mice to set up a cerebral I/R model. TTC staining and TUNEL staining were used to evaluate the therapeutic effect of celastrol. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS) was employed for lipidomics analysis in ipsilateral hemisphere and plasma. Celastrol remarkably reduced cerebral infarct volume and apoptosis positive cells in tMCAO mice. Furthermore, lipidomics analysis showed that 14 common differentially expressed lipids (DELs) were identified in brain and five common DELs were identified in plasma between the Sham, tMCAO and Celastrol-treated tMCAO groups. Through enrichment analysis, sphingolipid metabolism and glycerophospholipid metabolism were demonstrated to be significantly enriched in all the comparison groups. Among the DELs, celastrol could reverse cerebral I/R injury-induced alteration of phosphatidylcholine, phosphatidylethanolamine and sulfatide, which may be responsible for the neuroprotective effect of celastrol. Our findings suggested the neuroprotection of celastrol on cerebral I/R injury may be partially associated with its regulation of lipid metabolism.
Collapse
|
16
|
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021; 11:945. [PMID: 34202192 PMCID: PMC8301871 DOI: 10.3390/biom11070945] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a bioactive sphingolipid involved in numerous cellular processes. In addition to being the precursor of complex sphingolipids, ceramides can act as second messengers, especially when they are generated at the plasma membrane of cells. Its metabolic dysfunction may lead to or be a consequence of an underlying disease. Recent reports on transcriptomics and electrospray ionization mass spectrometry analysis have demonstrated the variation of specific levels of sphingolipids and enzymes involved in their metabolism in different neurodegenerative diseases. In the present review, we highlight the most relevant discoveries related to ceramide and neurodegeneration, with a special focus on Parkinson's disease.
Collapse
Affiliation(s)
- Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Marta Aramburu-Núñez
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Adrián Posado-Fernández
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Ana Gómez-Larrauri
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
- Respiratory Department, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| |
Collapse
|
17
|
Carmona-Salazar L, Cahoon RE, Gasca-Pineda J, González-Solís A, Vera-Estrella R, Treviño V, Cahoon EB, Gavilanes-Ruiz M. Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species. PLANT PHYSIOLOGY 2021; 186:624-639. [PMID: 33570616 PMCID: PMC8154057 DOI: 10.1093/plphys/kiab064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
| | - Rebecca E Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Jaime Gasca-Pineda
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, UNAM, 54090, Estado de México, México
| | - Ariadna González-Solís
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Cuernavaca, Morelos, México
| | - Victor Treviño
- Tecnológico de Monterrey, Escuela de Medicina, 64710 Monterrey, Nuevo León, México
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Marina Gavilanes-Ruiz
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
- Author for communication:
| |
Collapse
|
18
|
Chao HC, McLuckey SA. In-Depth Structural Characterization and Quantification of Cerebrosides and Glycosphingosines with Gas-Phase Ion Chemistry. Anal Chem 2021; 93:7332-7340. [PMID: 33957046 DOI: 10.1021/acs.analchem.1c01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebrosides (n-HexCer) and glycosphingosines (n-HexSph) constitute two sphingolipid subclasses. Both are comprised of a monosaccharide headgroup (glucose or galactose in mammalian cells) linked via either an α- or β-glycosidic linkage to the sphingoid backbone (n = α or β, depending upon the nature of the linkage to the anomeric carbon of the sugar). Cerebrosides have an additional amide-bonded fatty acyl chain linked to the sphingoid backbone. While differentiating the multiple isomers (i.e. glucose vs galactose, α- vs β-linkage) is difficult, it is crucial for understanding their specific biological roles in health and disease states. Shotgun tandem mass spectrometry has been a powerful tool in both lipidomics and glycomics analysis but is often limited in its ability to distinguish isomeric species. This work describes a new strategy combining shotgun tandem mass spectrometry with gas-phase ion chemistry to achieve both differentiation and quantification of isomeric cerebrosides and glycosphingosines. Briefly, deprotonated cerebrosides, [n-HexCer-H]-, or glycosphingosines, [n-HexSph-H]-, are reacted with terpyridine (Terpy) magnesium complex dications, [Mg(Terpy)2]2+, in the gas phase to produce a charge-inverted complex cation, [n-HexCer-H+MgTerpy]+ or [n-HexSph-H+MgTerpy]+. The collision-induced dissociation (CID) of the charge-inverted complex cations leads to significant spectral differences between the two groups of isomers, α-GalCer, β-GlcCer, and β-GalCer for cerebrosides and α-GlcSph, α-GalSph, β-GlcSph, and β-GalSph for glycosphingosines, which allows for isomer distinction. Moreover, we describe a quantification strategy with the normalized percent area extracted from selected diagnostic ions that quantify either three isomeric cerebroside or four isomeric glycosphingosine mixtures. The analytical performance was also evaluated in terms of accuracy, repeatability, and interday precision. Furthermore, CID of the product ions resulting from 443 Da loss from the charge-inverted complex cations ([n-HexCer-H+MgTerpy]+) has been performed and demonstrated for localization of the double-bond position on the amide-bonded monounsaturated fatty acyl chain in the cerebroside structure. The proposed strategy was successfully applied to the analysis of total cerebroside extracts from the porcine brain, providing in-depth structural information on cerebrosides from a biological mixture.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Pepe G, Cotugno M, Marracino F, Giova S, Capocci L, Forte M, Stanzione R, Bianchi F, Marchitti S, Di Pardo A, Sciarretta S, Rubattu S, Maglione V. Differential Expression of Sphingolipid Metabolizing Enzymes in Spontaneously Hypertensive Rats: A Possible Substrate for Susceptibility to Brain and Kidney Damage. Int J Mol Sci 2021; 22:ijms22073796. [PMID: 33917593 PMCID: PMC8038804 DOI: 10.3390/ijms22073796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Alterations in the metabolism of sphingolipids, a class of biologically active molecules in cell membranes with direct effect on vascular homeostasis, are increasingly recognized as important determinant in different vascular disorders. However, it is not clear whether sphingolipids are implicated in the pathogenesis of hypertension-related cerebrovascular and renal damage. In this study, we evaluated the existence of possible abnormalities related to the sphingolipid metabolism in the brain and kidneys of two well validated spontaneously hypertensive rat strains, the stroke-prone (SHRSP) and the stroke-resistant (SHRSR) models, as compared to the normotensive Wistar Kyoto (WKY) rat strain. Our results showed a global alteration in the metabolism of sphingolipids in both cerebral and renal tissues of both hypertensive strains as compared to the normotensive rat. However, few defects, such as reduced expression of enzymes involved in the metabolism/catabolism of sphingosine-1-phosphate and in the de novo biosynthetic pathways, were exclusively detected in the SHRSP. Although further studies are necessary to fully understand the significance of these findings, they suggest that defects in specific lipid molecules and/or their related metabolic pathways may likely contribute to the pathogenesis of hypertensive target organ damage and may eventually serve as future therapeutic targets to reduce the vascular consequences of hypertension.
Collapse
Affiliation(s)
- Giuseppe Pepe
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Maria Cotugno
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Federico Marracino
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Susy Giova
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Luca Capocci
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Maurizio Forte
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Rosita Stanzione
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Franca Bianchi
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Simona Marchitti
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
| | - Alba Di Pardo
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
- Correspondence: (A.D.P.); (S.R.); (V.M.)
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina 04100, Italy;
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome 00185, Italy
- Correspondence: (A.D.P.); (S.R.); (V.M.)
| | - Vittorio Maglione
- IRCCS Neuromed, Pozzilli 86077, Italy; (G.P.); (M.C.); (F.M.); (S.G.); (L.C.); (M.F.); (R.S.); (F.B.); (S.M.)
- Correspondence: (A.D.P.); (S.R.); (V.M.)
| |
Collapse
|
20
|
Lee TH, Cheng CN, Chao HC, Lee CH, Kuo CH, Tang SC, Jeng JS. Plasma ceramides are associated with outcomes in acute ischemic stroke patients. J Formos Med Assoc 2021; 121:43-50. [PMID: 33504464 DOI: 10.1016/j.jfma.2021.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/PURPOSE Sphingolipids are major constituents of eukaryotic cell membranes and play key roles in cellular regulatory processes. Our recent results in an experimental stroke animal model demonstrated changes in sphingolipids in response to acute ischemic brain injury. This study aimed to investigate the plasma levels of sphingosine-1-phosphate (S1P) and ceramides in acute ischemic stroke (AIS) patients and their associations with functional outcomes. METHODS Plasma samples were collected from patients with AIS at <48 and 48-72 h post stroke and from nonstroke controls. The levels of S1P and ceramides with different fatty acyl chain lengths were measured by the ultra-high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). A poor functional outcome was defined as a modified Rankin Scale (mRS) score ≥2 at 3 months after AIS. RESULTS The results showed that S1P and very-long-chain ceramides were significantly decreased in AIS patients (n = 87; poor outcome, 56.3%) compared to nonstroke controls (n = 30). In contrast, long-chain ceramides were significantly increased in AIS patients. More importantly, higher levels of Cer(d18:1/18:0), Cer(d18:1/20:0), and Cer(d18:1/22:0) at 48-72 h were significantly associated with poor functional outcomes after adjusting for potential clinical confounders, including age, sex, hypertension, and National Institutes of Health Stroke Scale score at admission. CONCLUSION Our study supported the dynamic metabolism of sphingolipids after the occurrence of AIS. Ceramides could be potential prognostic markers for patients with AIS.
Collapse
Affiliation(s)
- Tsung-Heng Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsi-Chun Chao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
You Q, Peng Q, Yu Z, Jin H, Zhang J, Sun W, Huang Y. Plasma lipidomic analysis of sphingolipids in patients with large artery atherosclerosis cerebrovascular disease and cerebral small vessel disease. Biosci Rep 2020; 40:BSR20201519. [PMID: 32830858 PMCID: PMC7502657 DOI: 10.1042/bsr20201519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sphingolipids mainly consist of ceramides (Cer), sphingomyelins (SM) and glycosphingolipids. Sphingolipids are related with coronary heart disease and metabolic disease, but there're few studies about cerebrovascular disease. The purpose was to detect sphingolipids in plasma of patients with large artery atherosclerosis (LAA) cerebrovascular disease and cerebral small vessel disease (CSVD) to explore the similarities and differences of pathogenesis of the two subtypes. METHODS 20 patients with LAA cerebrovascular disease, 20 patients with age-related CSVD, 10 patients with Fabry disease and 14 controls were enrolled from October 2017 to January 2019. Ultra-high performance liquid chromatography-quadruple-time-of-flight mass spectrometry/mass spectrometry was used to determine sphingolipids. Univariate combined with multivariate analysis was used for comparison. Receiver operating characteristic curves were used to determine sensitivities and specificities. RESULTS 276 sphingolipids were detected, including 39 Cer, 3 ceramide phosphates, 72 glycosphingolipids and 162 SM. (1) Cer (d36:3), Cer (d34:2), Cer (d38:6), Cer (d36:4) and Cer (d16:0/18:1) were increased in LAA; SM (d34:1), Cer (d34:2), Cer (d36:4), Cer (d16:0/18:1), Cer (d38:6), Cer (d36:3) and Cer (d32:0) were increased in age-related CSVD. (2) Cer (d36:4) and SM (d34:1) were increased in age-related CSVD compared with LAA. (3) Total trihexosyl ceramides were increased in Fabry group compared with control (P<0.05); SM (d34:1) was increased in Fabry group. CONCLUSIONS Ceramides are increased in both LAA and age-related CSVD, which may be related to similar risk factors and pathophysiological process of arteriosclerosis; SM is increased in both age-related CSVD and Fabry disease, suggesting that increased SM may be associated with CSVD. Glycosphingolipids, trihexosylceramides in particular, are increased in Fabry disease.
Collapse
Affiliation(s)
- Qian You
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Qing Peng
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Jing Zhang
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital 100034, Beijing, China
| |
Collapse
|
22
|
A Sphingosine 1-Phosphate Gradient Is Linked to the Cerebral Recruitment of T Helper and Regulatory T Helper Cells during Acute Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21176242. [PMID: 32872326 PMCID: PMC7503682 DOI: 10.3390/ijms21176242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests a complex relationship between sphingosine 1-phosphate (S1P) signaling and stroke. Here, we show the kinetics of S1P in the acute phase of ischemic stroke and highlight accompanying changes in immune cells and S1P receptors (S1PR). Using a C57BL/6 mouse model of middle cerebral artery occlusion (MCAO), we assessed S1P concentrations in the brain, plasma, and spleen. We found a steep S1P gradient from the spleen towards the brain. Results obtained by qPCR suggested that cells expressing the S1PR type 1 (S1P1+) were the predominant population deserting the spleen. Here, we report the cerebral recruitment of T helper (TH) and regulatory T (TREG) cells to the ipsilateral hemisphere, which was associated with differential regulation of cerebral S1PR expression patterns in the brain after MCAO. This study provides insight that the S1P-S1PR axis facilitates splenic T cell egress and is linked to the cerebral recruitment of S1PR+ TH and TREG cells. Further insights by which means the S1P-S1PR-axis orchestrates neuronal positioning may offer new therapeutic perspectives after ischemic stroke.
Collapse
|