1
|
Elsayyid M, Tanis JE, Yu Y. Simple In-Cell Processing Enables Deep Proteome Analysis of Low-Input Caenorhabditis elegans. Anal Chem 2025; 97:9159-9167. [PMID: 40258293 PMCID: PMC12060094 DOI: 10.1021/acs.analchem.4c05003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Caenorhabditis elegans is a widely used genetic model organism; however, the worm cuticle complicates extraction of intracellular proteins, a prerequisite for typical bottom-up proteomics. Conventional physical disruption procedures are not only time-consuming but can also cause significant sample loss, making it difficult to perform proteomics with low-input samples. Here, for the first time, we present an on-filter in-cell (OFIC) processing approach that can digest C. elegans proteins directly in the cells of the organism after methanol fixation. With OFIC processing and single-shot LC-MS analysis, we identified over 9400 proteins from a sample of only 200 worms, the largest C. elegans proteome reported to date that did not require fractionation or enrichment. We systematically evaluated the performance of the OFIC approach by comparing it to conventional lysis-based methods. Our data suggest superior performance of OFIC processing for C. elegans proteome identification and quantitation. We further evaluated the OFIC approach with even lower-input samples, including single worms. Then, we used this method to determine how the proteome is impacted by loss of superoxide dismutase sod-1, the ortholog of human SOD1, a gene associated with amyotrophic lateral sclerosis. Analysis of 8800 proteins from only 50 worms as the initial input showed that loss of sod-1 affects the abundance of proteins required for stress response, ribosome biogenesis, and metabolism. In conclusion, our streamlined OFIC approach, which can be broadly applied to other systems, minimizes sample loss while offering the simplest workflow reported to date for C. elegans proteomics.
Collapse
Affiliation(s)
- Malek Elsayyid
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Jessica E. Tanis
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Yanbao Yu
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Suh EM, Reinhardt JK, Weng JK. The emergence and loss of cyclic peptides in Nicotiana illuminate dynamics and mechanisms of plant metabolic evolution. Proc Natl Acad Sci U S A 2025; 122:e2425055122. [PMID: 40228125 PMCID: PMC12037056 DOI: 10.1073/pnas.2425055122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Specialized metabolism plays a central role in how plants cope with both biotic and abiotic stresses in order to survive and reproduce within dynamic and challenging environments. One recently described class of plant-specific, ribosomally synthesized, and posttranslationally modified peptides are the burpitides, which are characterized by the installation of distinct sidechain macrocycles by enzymes known as burpitide cyclases. While they are found across many plant families and exhibit diverse bioactivities, little is known about their evolution or how new variants arise. Here, we present the identification of a burpitide cyclase, resurrected from a defunct pseudogene from the model organism Nicotiana attenuata, the coyote tobacco. By repairing the pseudogene ΨNatBURP2 and expressing it heterologously in Nicotiana benthamiana, we successfully reconstituted its original enzymatic activity. As an autocatalytic peptide cyclase, it installs a unique C-C bond between the tyrosine side chain and a specific backbone α-carbon of a heptapeptide core motif, resulting in burpitides dubbed "nanamins." Despite its pseudogenization in N. attenuata, we found that the closely related species, Nicotiana clevelandii, retains the wild-type gene and produces nanamins. Phylogenetic analyses and targeted mutagenesis experiments reveal that this chemotype must have evolved from the duplication and neofunctionalization of a more promiscuous ancestral gene. This work highlights how novel peptide chemotypes may rapidly emerge and disappear in plants, while expanding the molecular toolkit for engineering novel peptides with applications in agriculture and drug discovery.
Collapse
Affiliation(s)
- Elliot M. Suh
- Institute for Plant-Human Interface, Northeastern University, Boston, MA02115
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115
- Department of Bioengineering, Northeastern University, Boston, MA02115
- Department of Chemical Engineering, Northeastern University, Boston, MA02115
| | - Jakob K. Reinhardt
- Institute for Plant-Human Interface, Northeastern University, Boston, MA02115
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115
- Department of Bioengineering, Northeastern University, Boston, MA02115
- Department of Chemical Engineering, Northeastern University, Boston, MA02115
| | - Jing-Ke Weng
- Institute for Plant-Human Interface, Northeastern University, Boston, MA02115
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115
- Department of Bioengineering, Northeastern University, Boston, MA02115
- Department of Chemical Engineering, Northeastern University, Boston, MA02115
| |
Collapse
|
3
|
Wu F, Zhang C, Chen R, Chu Z, Han B, Zhai R. Research Progress in Isotope Labeling/Tags-Based Protein Quantification and Metrology Technologies. J Proteome Res 2025; 24:13-26. [PMID: 39628444 DOI: 10.1021/acs.jproteome.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Advanced liquid chromatogram-mass spectrometry (LC-MS) and automated large-scale data processing have made MS-based quantitative analysis increasingly useful for research in fields such as biology, medicine, food safety, and beyond. This is because MS-based quantitative analysis can accurately and sensitively analyze thousands of proteins and peptides in a single experiment. However, the precision, coverage, complexity, and resilience of conventional quantification methods vary as a result of the modifications to the analytic environment and the physicochemical characteristics of analytes. Therefore, specially designed approaches are necessary for sample preparation. Dozens of methods have been developed and adapted for these needs based on stable isotopic labeling or isobaric tagging, each with distinct characteristics. In this review, we will summarize the leading strategies and techniques used thus far for MS-based protein quantification as well as analyze the advantages and shortcomings of different approaches. Additionally, we provide an overview of protein metrology development.
Collapse
Affiliation(s)
- Fan Wu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Rui Chen
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| |
Collapse
|
4
|
Muronets VI, Kudryavtseva SS, Kurochkina LP, Leisi EV, Stroylova YY, Schmalhausen EV. Factors Affecting Pathological Amyloid Protein Transformation: From Post-Translational Modifications to Chaperones. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S164-S192. [PMID: 40164158 DOI: 10.1134/s0006297924604003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 04/02/2025]
Abstract
The review discusses the influence of various factors (e.g., post-translational modifications and chaperones) on the pathological transformation of amyloidogenic proteins involved in the onset and development of neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and spongiform encephalopathies of various origin with special focus on the role of α-synuclein, prion protein, and, to a lesser extent, beta-amyloid peptide. The factors investigated by the authors of this review are discussed in more detail, including posttranslational modifications (glycation and S-nitrosylation), cinnamic acid derivatives and dendrimers, and chaperonins (eukaryotic, bacterial, and phage). A special section is devoted to the role of the gastrointestinal microbiota in the pathogenesis of amyloid neurodegenerative diseases, in particular, its involvement in the transformation of infectious prions and possibly other proteins capable of prion-like transmission of amyloidogenic diseases.
Collapse
Affiliation(s)
- Vladimir I Muronets
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofiya S Kudryavtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeniia V Leisi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia Yu Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Hoare M, Tan R, Militi I, Welle KA, Swovick K, Hryhorenko JR, Ghaemmaghami S. Enzymatic Synthesis of Isotopically Labeled Hydrogen Peroxide for Mass Spectrometry-Based Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3308-3312. [PMID: 39365639 PMCID: PMC11622373 DOI: 10.1021/jasms.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Methionine oxidation is involved in multiple biological processes including protein misfolding and enzyme regulation. However, it is often challenging to measure levels of methionine oxidation by mass spectrometry, in part due to the prevalence of artifactual oxidation that occurs during the sample preparation and ionization steps of typical proteomic workflows. Isotopically labeled hydrogen peroxide (H218O2) can be used to block unoxidized methionines and enables accurate measurement of in vivo levels of methionine oxidation. However, H218O2 is an expensive reagent that can be difficult to obtain from commercial sources. Here, we report a method for synthesizing H218O2 in-house. Glucose oxidase catalyzes the oxidation of β-d-glucose and produces hydrogen peroxide in the process. We took advantage of this reaction to enzymatically synthesize H218O2 from 18O2 and assessed its concentration, purity, and utility in measuring methionine oxidation levels by mass spectrometry.
Collapse
Affiliation(s)
- Margaret Hoare
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Ruiyue Tan
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Isabella Militi
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- University
of Rochester Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, New York 14627, United States
| | - Kyle Swovick
- University
of Rochester Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- University
of Rochester Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- University
of Rochester Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, New York 14627, United States
| |
Collapse
|
6
|
Tan R, Hoare M, Bellomio P, Broas S, Camacho K, Swovick K, Welle KA, Hryhorenko JR, Ghaemmaghami S. Formylation facilitates the reduction of oxidized initiator methionines. Proc Natl Acad Sci U S A 2024; 121:e2403880121. [PMID: 39499632 PMCID: PMC11572973 DOI: 10.1073/pnas.2403880121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Within a cell, protein-bound methionines can be chemically or enzymatically oxidized, and subsequently reduced by methionine sulfoxide reductases (Msrs). Methionine oxidation can result in structural damage or be the basis of functional regulation of enzymes. In addition to participating in redox reactions, methionines play an important role as the initiator residue of translated proteins where they are commonly modified at their α-amine group by formylation or acetylation. Here, we investigated how formylation and acetylation of initiator methionines impact their propensity for oxidation and reduction. We show that in vitro, N-terminal methionine residues are particularly prone to chemical oxidation and that their modification by formylation or acetylation greatly enhances their subsequent enzymatic reduction by MsrA and MsrB. Concordantly, in vivo ablation of methionyl-tRNA formyltransferase (MTF) in Escherichia coli increases the prevalence of oxidized methionines within synthesized proteins. We show that oxidation of formylated initiator methionines is detrimental in part because it obstructs their ensuing deformylation by peptide deformylase (PDF) and hydrolysis by methionyl aminopeptidase (MAP). Thus, by facilitating their reduction, formylation mitigates the misprocessing of oxidized initiator methionines.
Collapse
Affiliation(s)
- Ruiyue Tan
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Margaret Hoare
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Philip Bellomio
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Sarah Broas
- Department of Biology, University of Rochester, Rochester, NY14627
| | | | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Kevin A. Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Jennifer R. Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY14627
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| |
Collapse
|
7
|
Twigg CI, Perez JM, Ryu J, Hanson BK, Barrera Estrada VJ, Thomas SN. Evaluation of Serum Proteome Sample Preparation Methods to Support Clinical Proteomics Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2659-2669. [PMID: 39263706 PMCID: PMC11546599 DOI: 10.1021/jasms.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Serum contains several proteins that are associated with disease-related processes. Mass spectrometry (MS)-based proteomics approaches greatly facilitate serum protein biomarker development. However, the serum proteome complexity presents a technical challenge for the accurate, sensitive, and reproducible quantification of proteins by MS. Thus, efficient sample preparation methods are of critical importance for serum proteome analyses. In this study, we evaluated the technical performance of two serum proteome sample preparation methods using sera from patients with high-grade serous ovarian cancer and patients with benign nongynecological conditions with a goal of providing insight into their compatibility with clinical proteomics workflows. One method entailed the use of immobilized trypsin (SMART Digest Trypsin) with RapiGest SF, an acid-labile surfactant designed to enhance the in-solution enzymatic digestion of proteins. The other method incorporated a commercially available sample preparation kit, iST-BCT, which contains standardized reagents. Significantly higher protein sequence coverage, albeit with lower digestion efficiency, was obtained with the immobilized trypsin + RapiGest SF workflow, whereas the iST-BCT workflow was quicker and had marginally better reproducibility. Protein relative abundance analysis revealed that the serum proteomes clustered primarily by the sample processing workflow and secondarily by disease state. We conducted a time course study to determine whether differences in the relative abundance of diagnostic high-grade serous ovarian cancer serum protein biomarker candidates were biased according to the duration of enzymatic digestion. Our results highlight the importance of optimizing enzymatic digestion kinetics according to the peptide targets of interest while considering the sensitivity of the downstream analytical method utilized in clinical proteomics workflows designed to measure biomarkers.
Collapse
Affiliation(s)
- Carly
A. I. Twigg
- Department
of Laboratory Medicine and Pathology, University
of Minnesota School of Medicine, Minneapolis, Minnesota 55455, United States
| | - Jesenia M. Perez
- Microbiology,
Immunology, and Cancer Biology Graduate Program, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, United States
| | - Joohyun Ryu
- Department
of Laboratory Medicine and Pathology, University
of Minnesota School of Medicine, Minneapolis, Minnesota 55455, United States
| | - Benjamin K. Hanson
- Department
of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Stefani N. Thomas
- Department
of Laboratory Medicine and Pathology, University
of Minnesota School of Medicine, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Elsayyid M, Tanis JE, Yu Y. In-cell processing enables rapid and in-depth proteome analysis of low-input Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613705. [PMID: 39345438 PMCID: PMC11429863 DOI: 10.1101/2024.09.18.613705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Caenorhabditis elegans is a widely used genetic model organism, however, the worm cuticle complicates extraction of intracellular proteins, a prerequisite for typical bottom-up proteomics. Conventional physical disruption procedures are not only time-consuming, but can also cause significant sample loss, making it difficult to perform proteomics with low-input samples. Here, for the first time, we present an on-filter in-cell (OFIC) processing approach, which can digest C. elegans proteins directly in the cells of the organism after methanol fixation. With OFIC processing and single-shot LCMS analysis, we identified over 9,400 proteins from a sample of only 200 worms, the largest C. elegans proteome reported to date that did not require fractionation or enrichment. We systematically evaluated the performance of the OFIC approach by comparing it with conventional lysis-based methods. Our data suggest equivalent and unbiased performance of OFIC processing for C. elegans proteome identification and quantitation. We further evaluated the OFIC approach with even lower input samples, then used this method to determine how the proteome is impacted by loss of superoxide dismutase sod-1, the ortholog of human SOD-1, a gene associated with amyotrophic lateral sclerosis (ALS). Analysis of 8,800 proteins from only 50 worms as the initial input showed that loss of sod-1 affects the abundance of proteins required for stress response, ribosome biogenesis, and metabolism. In conclusion, our streamlined OFIC approach, which can be broadly applied to other systems, minimizes sample loss while offering the simplest workflow reported to date for C. elegans proteomics analysis.
Collapse
Affiliation(s)
- Malek Elsayyid
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E. Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
9
|
Lenzi A, De Cristofaro M, Biagini D, Ghimenti S, Armenia S, Pugliese NR, Masi S, Di Francesco F, Lomonaco T. Development of a high-throughput liquid chromatography-tandem mass spectrometry platform for the determination of intact natriuretic peptides in human plasma. Talanta 2024; 275:126077. [PMID: 38636440 DOI: 10.1016/j.talanta.2024.126077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
We present an innovative, reliable, and antibody-free analytical method to determine multiple intact natriuretic peptides in human plasma. These biomolecules are routinely used to confirm the diagnosis and monitor the evolution of heart failure, so that their determination is essential to improve diagnosis and monitor the efficacy of treatment. However, common immunoassay kits suffer from main limitations due to high cross-reactivity with structurally similar species. In our method, we pre-treated the sample by combining salting-out with ammonium sulfate with microextraction by packed sorbent technique. Analyses were then carried out by ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The use of 3-nitrobenzyl alcohol as a supercharger reagent enhanced the ESI ionization and improved the signal-to-noise ratio. The analytical protocol showed good linearity over one order of magnitude, recovery in the range of 94-105 %, and good intra- and inter-day reproducibility (RSD<20 %), and the presence of a matrix effect. Limits of detection were in the range of pg/mL for all peptides (0.2-20 pg/mL). Stability study in plasma samples demonstrated that proper protease inhibitors need to be included in blood collection tubes to avoid peptide degradation. Preliminary analyses on plasma samples from heart failure patients allow the quantification of ANP 1-28 as the most abundant species and the detection of ANP 5-28, BNP 1-32, and BNP 5-32. The method could be used to investigate how cross-reactivity issues among structurally similar species impact determinations by ELISA kits.
Collapse
Affiliation(s)
- Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | - Mariano De Cristofaro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy.
| | - Nicola R Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy.
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy.
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| |
Collapse
|
10
|
Chahla C, Kovacic H, Ferhat L, Leloup L. Pathological Impact of Redox Post-Translational Modifications. Antioxid Redox Signal 2024; 41:152-180. [PMID: 38504589 DOI: 10.1089/ars.2023.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Oxidative stress is involved in the development of several pathologies. The different reactive oxygen species (ROS) produced during oxidative stress are at the origin of redox post-translational modifications (PTMs) on proteins and impact nucleic acids and lipids. This review provides an overview of recent data on cysteine and methionine oxidation and protein carbonylation following oxidative stress in a pathological context. Oxidation, like nitration, is a selective process and not all proteins are impacted. It depends on multiple factors, including amino acid environment, accessibility, and physical and chemical properties, as well as protein structures. Thiols can undergo reversible oxidations and others that are irreversible. On the contrary, carbonylation represents irreversible PTM. To date, hundreds of proteins were shown to be modified by ROS and reactive nitrogen species (RNS). We reviewed recent advances in the impact of redox-induced PTMs on protein functions and activity, as well as its involvement in disease development or treatment. These data show a complex situation of the involvement of redox PTM on the function of targeted proteins. Many proteins can have their activity decreased by the oxidation of cysteine thiols or methionine S-methyl thioethers, while for other proteins, this oxidation will be activating. This complexity of redox PTM regulation suggests that a global antioxidant therapeutic approach, as often proposed, is unlikely to be effective. However, the specificity of the effect obtained by targeting a cysteine or methionine residue to be able to inactivate or activate a particular protein represents a major interest if it is possible to consider this targeting from a therapeutic point of view with our current pharmacological tools. Antioxid. Redox Signal. 41, 152-180.
Collapse
Affiliation(s)
- Charbel Chahla
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Hervé Kovacic
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Lotfi Ferhat
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Ludovic Leloup
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
11
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
12
|
Kalemba EM, Gevaert K, Impens F, Dufour S, Czerwoniec A. The association of protein-bound methionine sulfoxide with proteomic basis for aging in beech seeds. BMC PLANT BIOLOGY 2024; 24:377. [PMID: 38714916 PMCID: PMC11077735 DOI: 10.1186/s12870-024-05085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
- VIB Proteomics Core, VIB, Ghent, B-9052, Belgium
| | - Sara Dufour
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
- VIB Proteomics Core, VIB, Ghent, B-9052, Belgium
| | | |
Collapse
|
13
|
Voronina MV, Frolova AS, Kolesova EP, Kuldyushev NA, Parodi A, Zamyatnin AA. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. Int J Mol Sci 2024; 25:4087. [PMID: 38612897 PMCID: PMC11012956 DOI: 10.3390/ijms25074087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cellular survival hinges on a delicate balance between accumulating damages and repair mechanisms. In this intricate equilibrium, oxidants, currently considered physiological molecules, can compromise vital cellular components, ultimately triggering cell death. On the other hand, cells possess countermeasures, such as autophagy, which degrades and recycles damaged molecules and organelles, restoring homeostasis. Lysosomes and their enzymatic arsenal, including cathepsins, play critical roles in this balance, influencing the cell's fate toward either apoptosis and other mechanisms of regulated cell death or autophagy. However, the interplay between reactive oxygen species (ROS) and cathepsins in these life-or-death pathways transcends a simple cause-and-effect relationship. These elements directly and indirectly influence each other's activities, creating a complex web of interactions. This review delves into the inner workings of regulated cell death and autophagy, highlighting the pivotal role of ROS and cathepsins in these pathways and their intricate interplay.
Collapse
Affiliation(s)
- Maya V. Voronina
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Anastasia S. Frolova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Nikita A. Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Alessandro Parodi
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Molinelli L, Drula E, Gaillard JC, Navarro D, Armengaud J, Berrin JG, Tron T, Tarrago L. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay. Appl Environ Microbiol 2024; 90:e0193123. [PMID: 38376171 PMCID: PMC10952391 DOI: 10.1128/aem.01931-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.
Collapse
Affiliation(s)
- Lise Molinelli
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
- Centrale Marseille, CNRS, ISM2, Aix Marseille Université, Marseille, France
| | - Elodie Drula
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - David Navarro
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean-Guy Berrin
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| | - Thierry Tron
- Centrale Marseille, CNRS, ISM2, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| |
Collapse
|
15
|
Hoare M, Tan R, Welle KA, Swovick K, Hryhorenko JR, Ghaemmaghami S. Methionine Alkylation as an Approach to Quantify Methionine Oxidation Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:433-440. [PMID: 38324783 PMCID: PMC10921467 DOI: 10.1021/jasms.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.
Collapse
Affiliation(s)
- Margaret Hoare
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Ruiyue Tan
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Kyle Swovick
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| |
Collapse
|
16
|
Wu K, El Zowalaty AE, Sayin VI, Papagiannakopoulos T. The pleiotropic functions of reactive oxygen species in cancer. NATURE CANCER 2024; 5:384-399. [PMID: 38531982 DOI: 10.1038/s43018-024-00738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.
Collapse
Affiliation(s)
- Katherine Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed Ezat El Zowalaty
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Carter R, Alanazi F, Sharp A, Roman J, Luchini A, Liotta L, Paige M, Brown AM, Haymond A. Identification of the functional PD-L1 interface region responsible for PD-1 binding and initiation of PD-1 signaling. J Biol Chem 2023; 299:105353. [PMID: 37858677 PMCID: PMC10663846 DOI: 10.1016/j.jbc.2023.105353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The PD-1/PD-L1 checkpoint pathway is important for regulating immune responses and can be targeted by immunomodulatory drugs to treat a variety of immune disorders. However, the precise protein-protein interactions required for the initiation of PD-1/PD-L1 signaling are currently unknown. Previously, we designed a series of first-generation PD-1 targeting peptides based on the native interface region of programmed death ligand 1 (PD-L1) that effectively reduced PD-1/PD-L1 binding. In this work, we further characterized the previously identified lead peptide, MN1.1, to identify key PD-1 binding residues and design an optimized peptide, MN1.4. We show MN1.4 is significantly more stable than MN1.1 in serum and retains the ability to block PD-1/PD-L1 complex formation. We further characterized the immunomodulatory effects of MN1.4 treatment by measuring markers of T cell activation in a co-culture model with ovarian cancer cells and peripheral blood mononuclear cells. We found MN1.4 treatment reduced cytokine secretion and suppressed T cell responses in a similar manner as recombinant PD-L1. Therefore, the PD-L1 interface region used to design MN1.4 appeared sufficient to initiate PD-1 signaling and likely represents the minimum necessary region of PD-L1 required for PD-1 recognition. We propose a peptide agonist for PD-1, such as MN1.4, could have several applications for treating autoimmune disorders caused by PD-1 deficiencies such as type 1 diabetes, inflammatory arthritis, or autoimmune side effects arising from monoclonal antibody-based cancer immunotherapies.
Collapse
Affiliation(s)
- Rachel Carter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA.
| | - Fatimah Alanazi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Amanda Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jessica Roman
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA; Data Services, University Libraries, Virginia Tech, Blacksburg, Virginia, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
18
|
Chen CW, Tsai CF, Lin MH, Lin SY, Hsu CC. Suspension Trapping-Based Sample Preparation Workflow for In-Depth Plant Phosphoproteomics. Anal Chem 2023; 95:12232-12239. [PMID: 37552764 DOI: 10.1021/acs.analchem.3c00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Plant phosphoproteomics provides a global view of phosphorylation-mediated signaling in plants; however, it demands high-throughput methods with sensitive detection and accurate quantification. Despite the widespread use of protein precipitation for removing contaminants and improving sample purity, it limits the sensitivity and throughput of plant phosphoproteomic analysis. The multiple handling steps involved in protein precipitation lead to sample loss and process variability. Herein, we developed an approach based on suspension trapping (S-Trap), termed tandem S-Trap-IMAC (immobilized metal ion affinity chromatography), by integrating an S-Trap micro-column with a Fe-IMAC tip. Compared with a precipitation-based workflow, the tandem S-Trap-IMAC method deepened the coverage of the Arabidopsis (Arabidopsis thaliana) phosphoproteome by more than 30%, with improved number of multiply phosphorylated peptides, quantification accuracy, and short sample processing time. We applied the tandem S-Trap-IMAC method for studying abscisic acid (ABA) signaling in Arabidopsis seedlings. We thus discovered that a significant proportion of the phosphopeptides induced by ABA are multiply phosphorylated peptides, indicating their importance in early ABA signaling and quantified several key phosphorylation sites on core ABA signaling components across four time points. Our results show that the optimized workflow aids high-throughput phosphoproteome profiling of low-input plant samples.
Collapse
Affiliation(s)
- Chin-Wen Chen
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Miao-Hsia Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Shu-Yu Lin
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Academia Sinica, Taipei 115201, Taiwan
| | - Chuan-Chih Hsu
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
19
|
Tan R, Hoare M, Welle KA, Swovick K, Hryhorenko JR, Ghaemmaghami S. Folding stabilities of ribosome-bound nascent polypeptides probed by mass spectrometry. Proc Natl Acad Sci U S A 2023; 120:e2303167120. [PMID: 37552756 PMCID: PMC10438377 DOI: 10.1073/pnas.2303167120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
The folding of most proteins occurs during the course of their translation while their tRNA-bound C termini are embedded in the ribosome. How the close proximity of nascent proteins to the ribosome influences their folding thermodynamics remains poorly understood. Here, we have developed a mass spectrometry-based approach for determining the stabilities of nascent polypeptide chains using methionine oxidation as a folding probe. This approach enables quantitative measurement subglobal folding stabilities of ribosome nascent chains within complex protein mixtures and extracts. To validate the methodology, we analyzed the folding thermodynamics of three model proteins (dihydrofolate reductase, chemotaxis protein Y, and DNA polymerase IV) in soluble and ribosome-bound states. The data indicate that the ribosome can significantly alter the stability of nascent polypeptides. Ribosome-induced stability modulations were highly variable among different folding domains and were dependent on localized charge distributions within nascent polypeptides. The results implicated electrostatic interactions between the ribosome surface and nascent polypeptides as the cause of ribosome-induced stability modulations. The study establishes a robust proteomic methodology for analyzing localized stabilities within ribosome-bound nascent polypeptides and sheds light on how the ribosome influences the thermodynamics of protein folding.
Collapse
Affiliation(s)
- Ruiyue Tan
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Margaret Hoare
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Kevin A. Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Jennifer R. Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY14627
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| |
Collapse
|
20
|
Hasman M, Mayr M, Theofilatos K. Uncovering Protein Networks in Cardiovascular Proteomics. Mol Cell Proteomics 2023; 22:100607. [PMID: 37356494 PMCID: PMC10460687 DOI: 10.1016/j.mcpro.2023.100607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
Biological networks have been widely used in many different diseases to identify potential biomarkers and design drug targets. In the present review, we describe the main computational techniques for reconstructing and analyzing different types of protein networks and summarize the previous applications of such techniques in cardiovascular diseases. Existing tools are critically compared, discussing when each method is preferred such as the use of co-expression networks for functional annotation of protein clusters and the use of directed networks for inferring regulatory associations. Finally, we are presenting examples of reconstructing protein networks of different types (regulatory, co-expression, and protein-protein interaction networks). We demonstrate the necessity to reconstruct networks separately for each cardiovascular tissue type and disease entity and provide illustrative examples of the importance of taking into consideration relevant post-translational modifications. Finally, we demonstrate and discuss how the findings of protein networks could be interpreted using single-cell RNA-sequencing data.
Collapse
Affiliation(s)
- Maria Hasman
- King's British Heart Foundation Centre, Kings College London, London, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, Kings College London, London, United Kingdom
| | | |
Collapse
|
21
|
Huo Y, Huang X, Wang Y, Zhao C, Zheng T, Du W. Inhibitory effects of sesquiterpene lactones on the aggregation and cytotoxicity of prion neuropeptide. Biochimie 2023; 211:131-140. [PMID: 36963557 DOI: 10.1016/j.biochi.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
The misfolding and conformational transformation of prion protein (PrP) are crucial to the progression of prion diseases. Screening for available natural inhibitors against prion proteins can contribute to the rational design and development of new anti-prion drugs and therapeutic strategies. The prion neuropeptide, PrP106-126 is commonly used as a model peptide of the abnormal PrPSc, and a number of potential inhibitors were explored against the amyloid fibril formation of PrP106-126. The well-known sesquiterpene lactone, artemisinin, shows diverse biological functions in anti-malarial, anti-cancer and lowering glucose. However, its inhibitory effect on PrP106-126 fibrillation is unclear. In this work, we selected two sesquiterpene lactones, artemisinin (1) and artesunate (2), to explore their roles in PrP106-126 aggregation by a series of physicochemical and biochemical methods. The results demonstrated that 1 and 2 could effectively impede the formation of amyloid fibrils and remodel the preformed fibrils. The binding of the small molecules to PrP106-126 was dominated by electrostatic, hydrophobic and hydrogen bonding interactions. In addition, both compounds exhibited neuroprotective effects by reducing peptide oligomerization. 2 showed better inhibition and regulation on peptide aggregation and cellular viability than 1 due to its specific succinate modification. Our study provides the information of sesquiterpene lactones to prevent PrP fibril formation and other related amyloidosis.
Collapse
Affiliation(s)
- Yan Huo
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Cong Zhao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
22
|
Buchko GW, Zhou M, Vesely CH, Tao J, Shaw WJ, Mehl RA, Cooley RB. High-yield recombinant bacterial expression of 13 C-, 15 N-labeled, serine-16 phosphorylated, murine amelogenin using a modified third generation genetic code expansion protocol. Protein Sci 2023; 32:e4560. [PMID: 36585836 PMCID: PMC9850436 DOI: 10.1002/pro.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Amelogenin constitutes ~90% of the enamel matrix in the secretory stage of amelogenesis, a still poorly understood process that results in the formation of the hardest and most mineralized tissue in vertebrates-enamel. Most biophysical research with amelogenin uses recombinant protein expressed in Escherichia coli. In addition to providing copious amounts of protein, recombinant expression allows 13 C- and 15 N-labeling for detailed structural studies using NMR spectroscopy. However, native amelogenin is phosphorylated at one position, Ser-16 in murine amelogenin, and there is mounting evidence that Ser-16 phosphorylation is important. Using a modified genetic code expansion protocol we have expressed and purified uniformly 13 C-, 15 N-labeled murine amelogenin (pS16M179) with ~95% of the protein being correctly phosphorylated. Homogeneous phosphorylation was achieved using commercially available, enriched, 13 C-, 15 N-labeled media, and protein expression was induced with isopropyl β-D-1-thiogalactopyranoside at 310 K. Phosphoserine incorporation was verified from one-dimensional 31 P NMR spectra, comparison of 1 H-15 N HSQC spectra, Phos-tag SDS PAGE, and mass spectrometry. Phosphorus-31 NMR spectra for pS16M179 under conditions known to trigger amelogenin self-assembly into nanospheres confirm nanosphere models with buried N-termini. Lambda phosphatase treatment of these nanospheres results in the dephosphorylation of pS16M179, confirming that smaller oligomers and monomers with exposed N-termini are in equilibrium with nanospheres. Such 13 C-, 15 N-labeling of amelogenin with accurately encoded phosphoserine incorporation will accelerate biomineralization research to understand amelogenesis and stimulate the expanded use of genetic code expansion protocols to introduce phosphorylated amino acids into proteins.
Collapse
Affiliation(s)
- Garry W. Buchko
- Earth and Biological Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA,School of Molecular BiosciencesWashington State UniversityPullmanWashingtonUSA
| | - Mowei Zhou
- Earth and Biological Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Cat Hoang Vesely
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Jinhui Tao
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Wendy J. Shaw
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Ryan A. Mehl
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Richard B. Cooley
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
23
|
Vincent MS, Ezraty B. Methionine oxidation in bacteria: A reversible post-translational modification. Mol Microbiol 2023; 119:143-150. [PMID: 36350090 DOI: 10.1111/mmi.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Methionine is a sulfur-containing residue found in most proteins which are particularly susceptible to oxidation. Although methionine oxidation causes protein damage, it can in some cases activate protein function. Enzymatic systems reducing oxidized methionine have evolved in most bacterial species and methionine oxidation proves to be a reversible post-translational modification regulating protein activity. In this review, we inspect recent examples of methionine oxidation provoking protein loss and gain of function. We further speculate on the role of methionine oxidation as a multilayer endogenous antioxidant system and consider its potential consequences for bacterial virulence.
Collapse
Affiliation(s)
- Maxence S Vincent
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| | - Benjamin Ezraty
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| |
Collapse
|
24
|
Theoretical Evaluation of Sulfur-Based Reactions as a Model for Biological Antioxidant Defense. Int J Mol Sci 2022; 23:ijms232314515. [PMID: 36498842 PMCID: PMC9741100 DOI: 10.3390/ijms232314515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Sulfur-containing amino acids, Methionine (Met) and Cysteine (Cys), are very susceptible to Reactive Oxygen Species (ROS). Therefore, sulfur-based reactions regulate many biological processes, playing a key role in maintaining cellular redox homeostasis and modulating intracellular signaling cascades. In oxidative conditions, Met acts as a ROS scavenger, through Met sulfoxide formation, while thiol/disulfide interchange reactions take place between Cys residues as a response to many environmental stimuli. In this work, we apply a QM/MM theoretical-computational approach, which combines quantum-mechanical calculations with classical molecular dynamics simulations to estimate the free energy profile for the above-mentioned reactions in solution. The results obtained, in good agreement with experimental data, show the validity of our approach in modeling sulfur-based reactions, enabling us to study these mechanisms in more complex biological systems.
Collapse
|
25
|
Tarrago L, Kaya A, Kim HY, Manta B, Lee BC, Gladyshev VN. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic Biol Med 2022; 191:228-240. [PMID: 36084791 DOI: 10.1016/j.freeradbiomed.2022.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein.
Collapse
Affiliation(s)
- Lionel Tarrago
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France.
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Bruno Manta
- Laboratorio de Genomica Microbiana, Institut Pasteur de Montevideo, Mataojo 2020, 11440, Montevideo, Uruguay; Catedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Las Heras 1925, 11600, Montevideo, Uruguay
| | - Byung-Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
26
|
Spero MA, Jones J, Lomenick B, Chou TF, Newman DK. Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa. Mol Microbiol 2022; 118:321-335. [PMID: 36271736 PMCID: PMC9589919 DOI: 10.1111/mmi.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations. While chlorate itself is relatively nontoxic, it is enzymatically reduced to the toxic oxidizing agent, chlorite, by hypoxically induced nitrate reductase. To better assess chlorate's therapeutic potential, we investigated mechanisms of chlorate toxicity and resistance in P. aeruginosa. We used transposon mutagenesis to identify genes that alter P. aeruginosa fitness during chlorate treatment, finding that methionine sulfoxide reductases (Msr), which repair oxidized methionine residues, support survival during chlorate stress. Chlorate treatment leads to proteome-wide methionine oxidation, which is exacerbated in a ∆msrA∆msrB strain. In response to chlorate, P. aeruginosa upregulates proteins involved in a wide range of functions, including metabolism, DNA replication/repair, protein repair, transcription, and translation, and these newly synthesized proteins are particularly vulnerable to methionine oxidation. The addition of exogenous methionine partially rescues P. aeruginosa survival during chlorate treatment, suggesting that widespread methionine oxidation contributes to death. Finally, we found that mutations that decrease nitrate reductase activity are a common mechanism of chlorate resistance.
Collapse
Affiliation(s)
- Melanie A. Spero
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Jeff Jones
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
27
|
Rouyère C, Serrano T, Frémont S, Echard A. Oxidation and reduction of actin: Origin, impact in vitro and functional consequences in vivo. Eur J Cell Biol 2022; 101:151249. [PMID: 35716426 DOI: 10.1016/j.ejcb.2022.151249] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.
Collapse
Affiliation(s)
- Clémentine Rouyère
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Thomas Serrano
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
28
|
Bettinger JQ, Simon M, Korotkov A, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse Brains. J Proteome Res 2022; 21:1495-1509. [PMID: 35584362 PMCID: PMC9171897 DOI: 10.1021/acs.jproteome.2c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/28/2022]
Abstract
The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.
Collapse
Affiliation(s)
- John Q. Bettinger
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Simon
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Anatoly Korotkov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Andrei Seluanov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Vera Gorbunova
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| |
Collapse
|
29
|
Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues. J Biol Chem 2022; 298:101872. [PMID: 35346688 PMCID: PMC9062257 DOI: 10.1016/j.jbc.2022.101872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.
Collapse
|
30
|
Kuldyushev N, Schönherr R, Coburger I, Ahmed M, Hussein RA, Wiesel E, Godbole A, Pfirrmann T, Hoshi T, Heinemann SH. A GFP-based ratiometric sensor for cellular methionine oxidation. Talanta 2022; 243:123332. [PMID: 35276500 DOI: 10.1016/j.talanta.2022.123332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.
Collapse
Affiliation(s)
- Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Ina Coburger
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Eric Wiesel
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Amod Godbole
- Center for Molecular Biomedicine, Institute for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Thorsten Pfirrmann
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystr. 1, 06144, Halle/Saale, Germany; Department of Medicine, Health and Medical University, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104-6085, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
31
|
Kalemba EM, Valot B, Job D, Bailly C, Meimoun P. Are Methionine Sulfoxide-Containing Proteins Related to Seed Longevity? A Case Study of Arabidopsisthaliana Dry Mature Seeds Using Cyanogen Bromide Attack and Two-Dimensional-Diagonal Electrophoresis. PLANTS (BASEL, SWITZERLAND) 2022; 11:569. [PMID: 35214905 PMCID: PMC8875303 DOI: 10.3390/plants11040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In recent years, several reports pointed out the role of protein oxidation in seed longevity, notably regarding the oxidation of methionine (Met) residues to methionine sulfoxide (MetO) in proteins. To further consider this question, we present a handy proteomic method based on the use of two-dimensional diagonal electrophoresis (2Dd) and cyanogen bromide (CNBr) cleavage, which we refer to as 2Dd-CNBr. CNBr treatment of proteins causes the non-enzymatic hydrolysis of peptide bonds on the carboxyl side of reduced Met residues. However, Met oxidation causes a lack of cleavage, thus modifying the electrophoretic mobility of CNBr-induced peptides. This approach was first validated using bovine serum albumin as a model protein, which confirmed the possibility of distinguishing between oxidized and non-oxidized forms of Met-containing peptides in gels. Then, the 2Dd-CNBr method was applied to the Arabidopsis thaliana seed protein extract in a control (non-oxidized) condition and in an oxidized one (as obtained following hypochlorous acid treatment). Twenty-four oxidized Met residues in 19 proteins identified by mass spectrometry were found to be surface exposed in these proteins. In the three-dimensional environment of the oxidized Met, we detected amino acid residues that could be converted by oxidation (carbonylation) or by phosphorylation, suggesting a possible interplay between Met oxidation and the other protein modifications. The identification of the proteins oxidatively modified in Met residues revealed the finding that MetO-containing proteins are related to seed longevity. Based on these results, we suggest that the method presently described also has the potential for wider applications.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Benoît Valot
- PAPPSO, INRA, CNRS, AgroParisTech, Université Paris-Saclay, GQE-Le Moulon, 91190 Gif-sur-Yvette, France;
- UMR CNRS 6249 Chrono-Environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Dominique Job
- UMR5240, CNRS, Université Claude Bernarnard Lyon 1, INSA, Bayer CropScience, 69622 Lyon, France;
| | - Christophe Bailly
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Patrice Meimoun
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| |
Collapse
|
32
|
Lee HM, Choi DW, Kim S, Lee A, Kim M, Roh YJ, Jo YH, Cho HY, Lee HJ, Lee SR, Tarrago L, Gladyshev VN, Kim JH, Lee BC. Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins. ACS Sens 2022; 7:131-141. [PMID: 34936330 DOI: 10.1021/acssensors.1c01819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methionine oxidation is involved in regulating the protein activity and often leads to protein malfunction. However, tools for quantitative analyses of protein-specific methionine oxidation are currently unavailable. In this work, we developed a biological sensor that quantifies oxidized methionine in the form of methionine-R-sulfoxide in target proteins. The biosensor "tpMetROG" consists of methionine sulfoxide reductase B (MsrB), circularly permuted yellow fluorescent protein (cpYFP), thioredoxin, and protein G. Protein G binds to the constant region of antibodies against target proteins, specifically capturing them. Then, MsrB reduces the oxidized methionine in these proteins, leading to cpYFP fluorescence changes. We assessed this biosensor for quantitative analysis of methionine-R-sulfoxide in various proteins, such as calmodulin, IDLO, LegP, Sacde, and actin. We further developed an immunosorbent assay using the biosensor to quantify methionine oxidation in specific proteins such as calmodulin in animal tissues. The biosensor-linked immunosorbent assay proves to be an indispensable tool for detecting methionine oxidation in a protein-specific manner. This is a versatile tool for studying the redox biology of methionine oxidation in proteins.
Collapse
Affiliation(s)
- Hae Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong Wook Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seahyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Aro Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Minseo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Jin Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Ho Jo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hwa Yeon Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ho-Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Research Center for Aging and Geriatrics, Chonnam National University Medical School, Gwangju 61186, Republic of Korea
| | - Lionel Tarrago
- INRAE, Aix Marseille University, BBF, Marseille F13108, France
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byung Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
33
|
Chung WM, Molony RD, Lee YF. Non-stem bladder cancer cell-derived extracellular vesicles promote cancer stem cell survival in response to chemotherapy. Stem Cell Res Ther 2021; 12:533. [PMID: 34627375 PMCID: PMC8502272 DOI: 10.1186/s13287-021-02600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemosenstive non-stem cancer cells (NSCCs) constitute the bulk of tumors and are considered as part of the cancer stem cell (CSC) niche in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (EVs) mediate the communication between tumors and the TME. In this study, we sought to investigate the impacts of EVs released by NSCCs on the maintenance of CSC properties and chemoresistance. METHODS We employed murine MB49 bladder cancer (BC) sub-lines representing CSCs and NSCCs as a model system. Chemotherapy drugs were used to treat NSCCs in order to collect conditioned EVs. The impacts of NSCC-derived EVs on CSC progression were evaluated through sphere formation, cytotoxicity, migration, and invasion assays, and by analyzing surface marker expression on these BC cells. Differential proteomic analyses were conducted to identify cargo protein candidates involved in the EV-mediated communication between NSCCs and CSCs. RESULTS NSCC-derived EVs contained cargo proteins enriched in proteostasis-related functions, and significantly altered the development of CSCs such that they were more intrinsically chemoresistant, aggressive, and better able to undergo self-renewal. CONCLUSIONS We thus identified a novel communication mechanism whereby NSCC-EVs can alter the relative fitness of CSCs to promote disease progression and the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Wei-Min Chung
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Ryan D Molony
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Yi-Fen Lee
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA.
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
34
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|
35
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:biom11081248. [PMID: 34439914 PMCID: PMC8394241 DOI: 10.3390/biom11081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
37
|
Baumans F, Hanozin E, Baiwir D, Decroo C, Wattiez R, De Pauw E, Eppe G, Mazzucchelli G. Liquid chromatography setup-dependent artefactual methionine oxidation of peptides: The importance of an adapted quality control process. J Chromatogr A 2021; 1654:462449. [PMID: 34399143 DOI: 10.1016/j.chroma.2021.462449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022]
Abstract
In both biologics quality control experiments and protein post-translational modification studies, the analytical system used is not supposed to bring any artefactual modifications which could impair the results. In this work, we investigated oxidation of methionine-containing peptides during reversed-phase (RP) chromatographic separation. We first used a synthetic methionine-containing peptide to evaluate this artefactual phenomenon and then considered more complex samples (i.e., plasma and HeLa protein digests). The methionine oxidation levels of the peptides were systematically assessed and compared for the long-term use of the analytical column, the sample trapping time, the gradient length, the sample load and the nature of the stationary phase (HSS T3 from Waters, YMC Triart C18 from YMC Europe GmbH and BEH130 C18 from Waters). In addition to the oxidation of methionine in solution, we observed on the HSS T3 and the BEH130 stationary phases an additional broad peak corresponding to an on-column oxidized species. Considering the HSS T3 phase, our results highlight that the on-column oxidation level significantly increases with the age of the analytical column and the gradient length and reaches 56 % when a 1-year-old column set is used with a 180 min-long LC method. These levels go to 0 % and 18 % for the YMC Triart C18 and the BEH130 C18 phases respectively. Interestingly, the on-column oxidation proportion decreases as the injected sample load increases suggesting the presence of a discrete number of oxidation sites within the stationary phase of the analytical column. Those findings observed in different laboratories using distinct set of columns, albeit to varying degrees, strengthen the need for a standard of methionine-containing peptide that could be used as a quality control to appraise the status of the liquid chromatographic columns.
Collapse
Affiliation(s)
- France Baumans
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, Liege 4000, Belgium
| | - Corentin Decroo
- Proteomics and Microbiology Laboratory, University of Mons, Mons 7000, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, University of Mons, Mons 7000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium.
| |
Collapse
|
38
|
Gaither C, Popp R, Borchers SP, Skarphedinsson K, Eiriksson FF, Thorsteinsdóttir M, Mohammed Y, Borchers CH. Performance Assessment of a 125 Human Plasma Peptide Mixture Stored at Room Temperature for Multiple Reaction Monitoring-Mass Spectrometry. J Proteome Res 2021; 20:4292-4302. [PMID: 34270269 DOI: 10.1021/acs.jproteome.1c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic peptides are a critical requirement for the development and application of targeted mass spectrometry (MS)-based assays for the quantitation of proteins from biological matrices. Transporting synthetic peptides on dry ice from one laboratory to another is costly and often difficult because of country-specific import and export regulations. Therefore, in this study, we assessed the impact of leaving a lyophilized mixture consisting of 125 peptides at room temperature for up to 20 days, and we assessed the effect on the quantitative performance of multiple reaction monitoring-MS (MRM-MS) assays. The findings suggest that there are no significant differences in the MRM-MS results for the time points assessed in this study (up to 20 days). All the calibration curves and quality control (QC) samples met the acceptance criteria for precision and accuracy (raw data are available via the public MS data repository PanoramaWeb, identifier: /MRM Proteomics/2020_BAK125_RT). The number of endogenous proteins quantifiable across five plasma samples was consistently between 87 and 99 out of 125 for all time points. Moreover, the coefficients of variation (CVs) calculated for the majority of peptide concentrations across all samples and time points were <5%. In addition, a lyophilized peptide mixture was transported from Canada to Iceland without dry ice. The results showed that there was no significant difference in the quantitative performance, with the determined concentrations of most proteins in the samples falling within 30% between the analyses performed on the same three plasma samples in Iceland and those in Canada. Overall, a comparison of the results obtained in Canada and in Iceland indicated that the peptides were stable under the conditions tested and also indicated that shipping lyophilized peptide mixtures without dry ice, but in the presence of sufficient desiccant material, could be a feasible option in cases where transport difficulties may arise or dry-ice sublimation may occur.
Collapse
Affiliation(s)
| | - Robert Popp
- MRM Proteomics Inc., Montreal, Quebec H2X 3X8, Canada
| | | | - Kjartan Skarphedinsson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland.,ArcticMass Ltd., 102 Reykjavik, Iceland
| | - Finnur F Eiriksson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland.,ArcticMass Ltd., 102 Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland.,ArcticMass Ltd., 102 Reykjavik, Iceland
| | - Yassene Mohammed
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
39
|
Demus D, Naber A, Dotz V, Jansen BC, Bladergroen MR, Nouta J, Sijbrands EJG, Van Hoek M, Nicolardi S, Wuhrer M. Large-Scale Analysis of Apolipoprotein CIII Glycosylation by Ultrahigh Resolution Mass Spectrometry. Front Chem 2021; 9:678883. [PMID: 34026735 PMCID: PMC8138127 DOI: 10.3389/fchem.2021.678883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
Apolipoprotein-CIII (apo-CIII) is a glycoprotein involved in lipid metabolism and its levels are associated with cardiovascular disease risk. Apo-CIII sialylation is associated with improved plasma triglyceride levels and its glycosylation may have an effect on the clearance of triglyceride-rich lipoproteins by directing these particles to different metabolic pathways. Large-scale sample cohort studies are required to fully elucidate the role of apo-CIII glycosylation in lipid metabolism and associated cardiovascular disease. In this study, we revisited a high-throughput workflow for the analysis of intact apo-CIII by ultrahigh-resolution MALDI FT-ICR MS. The workflow includes a chemical oxidation step to reduce methionine oxidation heterogeneity and spectrum complexity. Sinapinic acid matrix was used to minimize the loss of sialic acids upon MALDI. MassyTools software was used to standardize and automate MS data processing and quality control. This method was applied on 771 plasma samples from individuals without diabetes allowing for an evaluation of the expression levels of apo-CIII glycoforms against a panel of lipid biomarkers demonstrating the validity of the method. Our study supports the hypothesis that triglyceride clearance may be regulated, or at least strongly influenced by apo-CIII sialylation. Interestingly, the association of apo-CIII glycoforms with triglyceride levels was found to be largely independent of body mass index. Due to its precision and throughput, the new workflow will allow studying the role of apo-CIII in the regulation of lipid metabolism in various disease settings.
Collapse
Affiliation(s)
- Daniel Demus
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands.,Ludger Ltd., Culham Science Centre, Abingdon, United Kingdom
| | - Annemieke Naber
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Viktoria Dotz
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Bas C Jansen
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands.,Ludger Ltd., Culham Science Centre, Abingdon, United Kingdom
| | - Marco R Bladergroen
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Jan Nouta
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mandy Van Hoek
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Simone Nicolardi
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| |
Collapse
|
40
|
Steele JR, Strange N, Rodgers KJ, Padula MP. A Novel Method for Creating a Synthetic L-DOPA Proteome and In Vitro Evidence of Incorporation. Proteomes 2021; 9:24. [PMID: 34073856 PMCID: PMC8162537 DOI: 10.3390/proteomes9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Proteinopathies are protein misfolding diseases that have an underlying factor that affects the conformation of proteoforms. A factor hypothesised to play a role in these diseases is the incorporation of non-protein amino acids into proteins, with a key example being the therapeutic drug levodopa. The presence of levodopa as a protein constituent has been explored in several studies, but it has not been examined in a global proteomic manner. This paper provides a proof-of-concept method for enzymatically creating levodopa-containing proteins using the enzyme tyrosinase and provides spectral evidence of in vitro incorporation in addition to the induction of the unfolded protein response due to levodopa.
Collapse
Affiliation(s)
- Joel Ricky Steele
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Natalie Strange
- School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Kenneth J. Rodgers
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
41
|
Steele JR, Italiano CJ, Phillips CR, Violi JP, Pu L, Rodgers KJ, Padula MP. Misincorporation Proteomics Technologies: A Review. Proteomes 2021; 9:2. [PMID: 33494504 PMCID: PMC7924376 DOI: 10.3390/proteomes9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Proteinopathies are diseases caused by factors that affect proteoform conformation. As such, a prevalent hypothesis is that the misincorporation of noncanonical amino acids into a proteoform results in detrimental structures. However, this hypothesis is missing proteomic evidence, specifically the detection of a noncanonical amino acid in a peptide sequence. This review aims to outline the current state of technology that can be used to investigate mistranslations and misincorporations whilst framing the pursuit as Misincorporation Proteomics (MiP). The current availability of technologies explored herein is mass spectrometry, sample enrichment/preparation, data analysis techniques, and the hyphenation of approaches. While many of these technologies show potential, our review reveals a need for further development and refinement of approaches is still required.
Collapse
Affiliation(s)
- Joel R. Steele
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.R.S.); (J.P.V.)
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Carly J. Italiano
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Connor R. Phillips
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Jake P. Violi
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.R.S.); (J.P.V.)
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Lisa Pu
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Kenneth J. Rodgers
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Matthew P. Padula
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.R.S.); (J.P.V.)
| |
Collapse
|
42
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Bettinger J, Ghaemmaghami S. Methionine oxidation within the prion protein. Prion 2020; 14:193-205. [PMID: 32744136 PMCID: PMC7518762 DOI: 10.1080/19336896.2020.1796898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/01/2022] Open
Abstract
Prion diseases are characterized by the self-templated misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc). The detailed molecular basis of the misfolding and aggregation of PrPC remains incompletely understood. It is believed that the transient misfolding of PrPC into partially structured intermediates precedes the formation of insoluble protein aggregates and is a critical component of the prion misfolding pathway. A number of environmental factors have been shown to induce the destabilization of PrPC and promote its initial misfolding. Recently, oxidative stress and reactive oxygen species (ROS) have emerged as one possible mechanism by which the destabilization of PrPC can be induced under physiological conditions. Methionine residues are uniquely vulnerable to oxidation by ROS and the formation of methionine sulfoxides leads to the misfolding and subsequent aggregation of PrPC. Here, we provide a review of the evidence for the oxidation of methionine residues in PrPC and its potential role in the formation of pathogenic prion aggregates.
Collapse
Affiliation(s)
- John Bettinger
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
44
|
Aledo JC, Aledo P. Susceptibility of Protein Methionine Oxidation in Response to Hydrogen Peroxide Treatment-Ex Vivo Versus In Vitro: A Computational Insight. Antioxidants (Basel) 2020; 9:antiox9100987. [PMID: 33066324 PMCID: PMC7602125 DOI: 10.3390/antiox9100987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Methionine oxidation plays a relevant role in cell signaling. Recently, we built a database containing thousands of proteins identified as sulfoxidation targets. Using this resource, we have now developed a computational approach aimed at characterizing the oxidation of human methionyl residues. We found that proteins oxidized in both cell-free preparations (in vitro) and inside living cells (ex vivo) were enriched in methionines and intrinsically disordered regions. However, proteins oxidized ex vivo tended to be larger and less abundant than those oxidized in vitro. Another distinctive feature was their subcellular localizations. Thus, nuclear and mitochondrial proteins were preferentially oxidized ex vivo but not in vitro. The nodes corresponding with ex vivo and in vitro oxidized proteins in a network based on gene ontology terms showed an assortative mixing suggesting that ex vivo oxidized proteins shared among them molecular functions and biological processes. This was further supported by the observation that proteins from the ex vivo set were co-regulated more often than expected by chance. We also investigated the sequence environment of oxidation sites. Glutamate and aspartate were overrepresented in these environments regardless the group. In contrast, tyrosine, tryptophan and histidine were clearly avoided but only in the environments of the ex vivo sites. A hypothetical mechanism of methionine oxidation accounts for these observations presented.
Collapse
|
45
|
Shah AK, Wali G, Sue CM, Mackay-Sim A, Hill MM. Antibody-Free Targeted Proteomics Assay for Absolute Measurement of α-Tubulin Acetylation. Anal Chem 2020; 92:11204-11212. [PMID: 32639142 DOI: 10.1021/acs.analchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylation of α-tubulin at conserved lysine 40 (K40) amino acid residue regulates microtubule dynamics and controls a wide range of cellular activities. Dysregulated microtubule dynamics characterized by differential α-tubulin acetylation is a hallmark of cancer, neurodegeneration, and other complex disorders. Hence, accurate quantitation of α-tubulin acetylation is required in human disease and animal model studies. We developed a novel antibody-free proteomics assay to measure α-tubulin acetylation targeting protease AspN-generated peptides harboring K40 site. Using the synthetic unmodified and acetylated stable isotope labeled peptides DKTIGGG and DKTIGGGD, we demonstrate assay linearity across 4 log magnitude and reproducibility of <10% coefficient of variation. The assay accuracy was validated by titration of 10-80% mixture of acetylated/nonacetylated α-tubulin peptides in the background of human olfactory neurosphere-derived stem (ONS) cell matrix. Furthermore, in agreement with antibody-based high content microscopy analysis, the targeted proteomics assay reported an induction of α-tubulin K40 acetylation upon Trichostatin A stimulation of ONS cells. Independently, we found 35.99% and 16.11% α-tubulin acetylation for mouse spinal cord and brain homogenate tissue, respectively, as measured by our assay. In conclusion, this simple, antibody-free proteomics assay enables quantitation of α-tubulin acetylation, and is applicable across various fields of biology and medicine.
Collapse
Affiliation(s)
- Alok K Shah
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Gautam Wali
- Department of Neurogenetics, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Alan Mackay-Sim
- Department of Neurogenetics, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia.,Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland 4111, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|