1
|
Peljo P, Villevieille C, Girault HH. The redox aspects of lithium-ion batteries. ENERGY & ENVIRONMENTAL SCIENCE 2025; 18:1658-1672. [PMID: 39866363 PMCID: PMC11753199 DOI: 10.1039/d4ee04560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025]
Abstract
This article aims to present the redox aspects of lithium-ion batteries both from a thermodynamic and from a conductivity viewpoint. We first recall the basic definitions of the electrochemical potential of the electron, and of the Fermi level for a redox couple in solutions. The Fermi level of redox solids such as metal oxide particles is then discussed, and a Nernst equation is derived for two ideal systems, namely an ideally homogenous phase where the oxidised and reduced metal ions are homogeneously distributed and two segregated phases where the oxidised and the reduced metal ions are separated in two distinct phases such as observed, for example, in biphasic lithium iron phosphate. The two different Nernst equations are then used to explain the difference in conductivity, the former being more conductive due to redox conductivity.
Collapse
Affiliation(s)
- Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, University of Turku FI-20014 Turun Yliopisto Finland
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 Aalto Espoo 00076 Finland
| | - Claire Villevieille
- LEPMI, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI Grenoble France
| | - Hubert H Girault
- Institute of Chemical Science and Engineering, Station 6, Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland
- Material Science and Nanoengineering (MSN) Department, University Mohammed VI Polytechnic 43 150 Ben Guerir Morocco
| |
Collapse
|
2
|
Zhang Y, Binninger T, Huang J, Eikerling MH. Theory of Electro-Ionic Perturbations at Supported Electrocatalyst Nanoparticles. PHYSICAL REVIEW LETTERS 2025; 134:066201. [PMID: 40021151 DOI: 10.1103/physrevlett.134.066201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/29/2024] [Accepted: 12/13/2024] [Indexed: 03/03/2025]
Abstract
Nanoscopic heterogeneities in composition and structure are quintessential for the properties of electrocatalyst materials. Here, we present a semiclassical model to study the electrochemical properties of supported electrocatalyst nanoparticles (NP). The model captures the correlated electronic and ionic equilibration across NP, support, and electrolyte. It reveals peculiar trends in surface charging of the supported NP, validated by comparison with first-principles calculations. Support-induced perturbations in electronic and ionic charge densities at the NP's active surface manifest as distinct potentials of zero local electronic and ionic charges that could differ by more than 0.5 V in the studied system.
Collapse
Affiliation(s)
- Yufan Zhang
- Forschungszentrum Jülich GmbH, Theory and Computation of Energy Materials (IET-3), Institute of Energy Technologies, 52425 Jülich, Germany
- RWTH Aachen University, Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, 52062 Aachen, Germany
| | - Tobias Binninger
- Forschungszentrum Jülich GmbH, Theory and Computation of Energy Materials (IET-3), Institute of Energy Technologies, 52425 Jülich, Germany
| | - Jun Huang
- Forschungszentrum Jülich GmbH, Theory and Computation of Energy Materials (IET-3), Institute of Energy Technologies, 52425 Jülich, Germany
- RWTH Aachen University, Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, 52062 Aachen, Germany
| | - Michael H Eikerling
- Forschungszentrum Jülich GmbH, Theory and Computation of Energy Materials (IET-3), Institute of Energy Technologies, 52425 Jülich, Germany
- RWTH Aachen University, Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, 52062 Aachen, Germany
| |
Collapse
|
3
|
Xu J, Zhang Z, Wang J, Qi Y, Qi X, Liang Y, Li M, Li H, Zhao Y, Liu Z, Li Y. Natural potential difference induced functional optimization mechanism for Zn-based multimetal bone implants. Bioact Mater 2025; 44:572-588. [PMID: 39717830 PMCID: PMC11664294 DOI: 10.1016/j.bioactmat.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024] Open
Abstract
Zn-based biodegradable metals (BMs) are regarded as revolutionary biomaterials for bone implants. However, their clinical application is limited by insufficient mechanical properties, delayed in vivo degradation, and overdose-induced Zn2+ toxicity. Herein, innovative multi-material additive manufacturing (MMAM) is deployed to construct a Zn/titanium (Ti) hetero-structured composite. The biodegradation and biofunction of Zn exhibited intriguing characteristics in composites. A potential difference of about 300 mV naturally existed between Zn and Ti. This natural potential difference triggered galvanic coupling corrosion, resulting in 2.7 times accelerated degradation of Zn. The excess release of Zn2+ induced by accelerated degradation enhanced the antibacterial function. A voltage signal generated by the natural potential difference also promoted in vitro osteogenic differentiation through activating the PI3K-Akt signaling pathway, and inhibited the toxicity of overdose Zn2+ in vivo, significantly improving bone regeneration. Furthermore, MMAM technology allows for the specific region deployment of components. In the future, Ti and Zn could be respectively deployed in the primary and non-load-bearing regions of bone implants by structural designs, thereby achieving a functionally graded application to overcome the insufficient mechanical properties of Zn-based BMs. This work clarifies the functional optimization mechanism for multimetal bone implants, which possibly breaks the application dilemma of Zn-based BMs.
Collapse
Affiliation(s)
- Jing Xu
- Medical School of Chinese PLA, Beijing, 100039, China
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Zhenbao Zhang
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Jianhui Wang
- Key Laboratory for Advanced Materials Processing, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuhan Qi
- Medical School of Chinese PLA, Beijing, 100039, China
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Xiaohong Qi
- Key Laboratory for Advanced Materials Processing, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Liang
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Manxi Li
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Haixia Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yantao Zhao
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Zhuangzhuang Liu
- Key Laboratory for Advanced Materials Processing, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanfeng Li
- Medical School of Chinese PLA, Beijing, 100039, China
- Department of Stomatology, The Fourth Medical Centre of PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
4
|
Lu W, Zheng T, Zhang X, He T, Sun Y, Li S, Guan B, Zhang D, Wei Z, Jiang H, Fan HJ, Du F. Band Engineering of Mn-P Alloy Enables HER-suppressed Aqueous Manganese Ion Batteries. Angew Chem Int Ed Engl 2025; 64:e202417171. [PMID: 39443294 DOI: 10.1002/anie.202417171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Aqueous manganese ion batteries hold potential for stationary storage applications owing to their merits in cost, energy density, and environmental sustainability. However, the formidable challenge is the instability of metallic manganese (Mn) anodes in aqueous electrolytes due to severe hydrogen evolution reaction (HER), which is more serious than the commonly studied Zn metal anodes. Moreover, the mechanism of HER side reactions has remained unclear. Herein, we design a series of Mn-P alloying anodes by precisely regulating their energy band structures to mitigate the HER issue. It is found that the serious HER primarily originates from the spontaneous Mn-H2O reaction driven by the excessively high HOMO energy level of Mn, rather than electrocatalytic water splitting. Owing to a reduced HOMO energy level and enhanced electron escape work function, the MnP anode achieves an evidently enhanced cycle durability (over 1000 hours at a high current density of 5 mA cm-2). The MnP||AgVO full cell with an N/P ratio of 4 exhibits better rate capability and extended cycle life (7000 cycles) with minimal capacity degradation than the cell using metallic Mn anode (less than 100 cycles). This study provides a practical approach for developing highly durable aqueous Mn ion batteries.
Collapse
Affiliation(s)
- Wenqiang Lu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Tianfang Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Xinyuan Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tianmin He
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Yuxin Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Shuyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dong Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Zhixuan Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Heng Jiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Lehane RA, Gamero-Quijano A, Manzanares JA, Scanlon MD. Mechanistic Insights into the Potentiodynamic Electrosynthesis of PEDOT Thin Films at a Polarizable Liquid|Liquid Interface. J Am Chem Soc 2024; 146:28941-28951. [PMID: 39380249 PMCID: PMC11505374 DOI: 10.1021/jacs.4c09638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Conducting polymer (CP) thin films find widespread use, for example in bioelectronic, energy harvesting and storage, and drug delivery technology. Electrosynthesis at a polarizable liquid|liquid interface using an aqueous oxidant and organic soluble monomer provides a route to free-standing and scalable CP thin films, such as poly(3,4-ethylenedioxythiophene) (PEDOT), in a single step at ambient conditions. Here, using the potentiodynamic technique of cyclic voltammetry, interfacial electrosynthesis involving ion exchange, electron transfer, and proton adsorption charge transfer processes is shown to be mechanistically distinct from CP electropolymerization at a solid electrode|electrolyte interface. During interfacial electrosynthesis, the applied interfacial Galvani potential difference controls the interfacial concentration of the oxidant, but not the CP redox state. Nevertheless, typical CP electropolymerization electrochemical behaviors, such as steady charge accumulation with each successive cycle and the appearance of a nucleation loop, were observed. By combining (spectro)electrochemical measurements and theoretical models, this work identifies the underlying mechanistic origin of each feature on the cyclic voltammograms (CVs) due to charge accumulated from Faradaic and capacitive processes as the PEDOT thin film grows. To prevent overoxidation during interfacial electrosynthesis with a powerful cerium aqueous oxidant, scan rates in excess 25 mV·s-1 were optimal. The experimental methodology and theoretical models outlined in this article provide a broadly generic framework to understand evolving CVs during interfacial electrosynthesis using any suitable oxidant/monomer combination.
Collapse
Affiliation(s)
- Rob A. Lehane
- The Bernal
Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Alonso Gamero-Quijano
- The Bernal
Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Instituto
de Catálisis y Petroleoquímica − Consejo Superior
de Investigaciones Científicas (ICP − CSIC), Calle de Marie Curie 2, Madrid 28049, Spain
| | - José A. Manzanares
- Department
of Thermodynamics, Faculty of Physics, University
of Valencia, c/Dr. Moliner, 50, Burjasot, Valencia E-46100, Spain
| | - Micheál D. Scanlon
- The Bernal
Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| |
Collapse
|
6
|
Luo K, Liu Z, Yu R, Xu T, Legut D, Yin X, Zhang R. Electrochemical stability of biodegradable Zn-Cu alloys through machine-learning accelerated high-throughput discovery. Phys Chem Chem Phys 2024; 26:23010-23022. [PMID: 39171693 DOI: 10.1039/d4cp02307b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Zn-Cu alloys have attracted great attention as biodegradable alloys owing to their excellent mechanical properties and biocompatibility, with corrosion characteristics being crucial for their suitability for biomedical applications. However, the unresolved identification of intermetallic compounds in Zn-Cu alloys affecting corrosion and the complexity of the application environment hamper the understanding of their electrochemical behavior. Utilizing high-throughput first-principles calculations and machine-learning accelerated evolutionary algorithms for screening the most stable compounds in Zn-Cu systems, a dataset encompassing the formation energy of 2033 compounds is generated. It reveals that most of the experimentally reported Zn-Cu compounds can be replicated, especially the structure of R32 CuZn5 is first discovered which possesses the lowest formation energy of -0.050 eV per atom. Furthermore, the simulated X-ray diffraction pattern matches perfectly with the experimental ones. By formulating 342 potential electrochemical reactions based on the binary compounds, the Pourbaix diagrams for Zn-Cu alloys are constructed to clarify the fundamental competition between different phases and ions. The calculated equilibrium potential of CuZn5 is higher than that of Zn through the forward reaction Zn + CuZn5 ⇌ CuZn5 + Zn2+ + 2e-, resulting in microcell formation owing to the stronger charge density localization in Zn compared to CuZn5. The presence of chlorine accelerates the corrosion of Zn through the reaction Zn + CuZn5 + 6Cl- + 6H2O ⇌ Cu + 6ZnOHCl + 6H+ + 12e-, where the formation of ZnOHCl disrupts the ZnO passive film and expands the corrosion pH range from 9.2 to 8.8. Our findings reveal an accurate quantitative corrosion mechanism for Zn-Cu alloys, providing an effective pathway to investigate the corrosion resistance of biodegradable alloys.
Collapse
Affiliation(s)
- Kun Luo
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Zhaorui Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Rui Yu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Tengfei Xu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, CZ-70800 Ostrava, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Xing Yin
- National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610041, China.
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
- Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
7
|
Yang L, Grzeschik R, Schlücker S, Xie W. Contact Electrification as an Emerging Strategy for Controlling the Performance of Metal Nanoparticle Catalysts. Chemistry 2024; 30:e202401718. [PMID: 38945833 DOI: 10.1002/chem.202401718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Contact electrification (CE) is an emerging strategy for controlling the performance of metal nanoparticle (NP) catalysts. The underlying physical principle of this control is the sensitivity of the Fermi level to metal-metal contacts. This change in electronic structure has a direct impact on surface properties and chemical reactivity. The concept article briefly introduces the basic theory of CE and its relationship to catalytic performance. We then highlight selected recent examples of advances in the preparation of hybrid metal NP assemblies, experimental techniques for characterizing CE, and finally applications of CE for altering catalytic performance.
Collapse
Affiliation(s)
- Ling Yang
- Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Weijin Rd. 94, 300071, Tianjin, China
| | - Roland Grzeschik
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Universitätsstrasse 5, 45141, Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Universitätsstrasse 5, 45141, Essen, Germany
| | - Wei Xie
- Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Weijin Rd. 94, 300071, Tianjin, China
| |
Collapse
|
8
|
Zámbó D, Kovács D, Radnóczi G, Horváth ZE, Sulyok A, Tolnai I, Deák A. Structural Control Enables Catalytic and Electrocatalytic Activity of Porous Tetrametallic Nanorods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400421. [PMID: 38431934 DOI: 10.1002/smll.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Integrating more than one type of metal into a nanoparticle that has a well-defined morphology and composition expands the functionalities of nanocatalysts. For a metal core/porous multimetallic shell nanoparticle, the availability of catalytically active surface sites and molecular mass transport can be enhanced, and the multielemental synergy can facilitate intraparticle charge transport. In this work, a reliable and robust synthesis of such a functional tetrametallic nanoparticle type is presented, where a micro- and mesoporous PdPtIr shell is grown on Au nanorods. The effect of critical synthesis parameters, namely temperature and the addition of HCl are investigated on the hydrodynamic size of the micellar pore template as well as on the stability of the metal chloride complexes and various elemental analysis techniques prove composition of the porous multimetallic shell. Due to the synergistic properties, the tetrametallic nanorods possess extensive negative surface charge making them a promising catalyst in reduction reactions. Dye degradation as well as the conversion of p-nitrophenol to p-aminophenol is catalyzed by the supportless nanorods without light illumination. By depositing the particles onto conductive substrates, the nanostructured electrodes show promising electrocatalytic activity in ethanol oxidation reaction. The nanocatalyst presents excellent morphological stability during all the catalytic test reactions.
Collapse
Affiliation(s)
- Dániel Zámbó
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest, H-1121, Hungary
| | - Dávid Kovács
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest, H-1121, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, H-1111, Hungary
| | - GyörgyZ Radnóczi
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest, H-1121, Hungary
| | - Zsolt E Horváth
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest, H-1121, Hungary
| | - Attila Sulyok
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest, H-1121, Hungary
| | - István Tolnai
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest, H-1121, Hungary
| | - András Deák
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33, Budapest, H-1121, Hungary
| |
Collapse
|
9
|
Qi D, Cao Y, Feng X, Ge J, Yan N, Yuan Y, Zhang J, Song F, Wang K, Liu SF, Feng J. Implementation of a Multi-Functional-Group Strategy for Enhanced Performance of Perovskite Solar Cells through the Incorporation of 3-Amino-4-Phenylbutyric Acid Hydrochloride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401487. [PMID: 38767498 DOI: 10.1002/smll.202401487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Reducing the defect density of perovskite films during the crystallization process is critical in preparing high-performance perovskite solar cells (PSCs). Here, a multi-functional molecule, 3-phenyl-4-aminobutyric acid hydrochloride (APH), with three functional groups including a benzene ring, ─NH3 + and ─COOH, is added into the perovskite precursor solution to improve perovskite crystallization and device performance. The benzene ring increases the hydrophobicity of perovskites, while ─NH3 + and ─COOH passivate defects related to I- and Pb2+, respectively. Consequently, the power conversion efficiency (PCE) of the optimal device increased to 24.65%. Additionally, an effective area of 1 cm2 with a PCE of 22.45% is also prepared using APH as an additive. Furthermore, PSCs prepared with APH exhibit excellent stability by 87% initial PCE without encapsulation after exposure at room temperature under 25% humidity for 5000 h and retaining 70% of initial PCE after aging at 85 °C in an N2 environment for 864 h.
Collapse
Affiliation(s)
- Danyang Qi
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yang Cao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiaolong Feng
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jinghao Ge
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Nan Yan
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yin Yuan
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jiafan Zhang
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Fei Song
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Kang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China
| | - Shengzhong Frank Liu
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangshan Feng
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
10
|
Firmanti MI, Ha JW. Elucidating Surface Plasmon Damping and Fano Resonance Induced by Epitaxial Growth of Palladium on Single Gold Nanorods. J Phys Chem Lett 2023; 14:8016-8023. [PMID: 37651173 DOI: 10.1021/acs.jpclett.3c02049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Plasmon damping and Fano resonance induced in the growth of palladium (Pd) on gold nanorods (AuNRs) have been poorly understood. Herein, we investigated the optical properties and morphologies of single AuNRs@Pd (core@shell) synthesized using epitaxial Pd growth at different Pd concentrations. The localized surface plasmon resonance (LSPR) spectra of single AuNRs@Pd showed characteristic subradiant and superradiant peaks as well as Fano resonance as a spectral dip, which was highly influenced by the Pd shell thickness. The occurrence of the Fano resonance during the Pd growth was further verified by in situ real-time observation experiments. We then elucidated time-dependent, real-time variations in LSPR peak wavelength, metal-induced surface damping, and Fano resonance mode of single AuNRs@Pd during Pd shell formation in three successive phases: Pd reduction, nucleation, and growth. Therefore, this study provides new insights into metal interface damping, the Fano resonance, and optical tunability by engineering the Fano resonance energy and Pd shell thickness.
Collapse
Affiliation(s)
- Metya Indah Firmanti
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| |
Collapse
|
11
|
Zhou W, Dong C, Chen D, Wang L, Cheng X, Li X. Exploring the local work function of metallic materials at the nanoscale: the influence of neighboring phases. Phys Chem Chem Phys 2023; 25:23177-23186. [PMID: 37605620 DOI: 10.1039/d3cp01864d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
This paper investigates the local work function distribution of a multi-phase metal material at the nanoscale and examines how it is influenced by its surrounding components. A formula is derived to express the relationship between the local work function and neighboring phases, taking into account the solid angle they form. The study's findings indicate a positive correlation between the local work function and the neighboring phases. Experimental results, DFT calculations, and previous theories are all used to verify the study's conclusions. Additionally, this paper offers predictions for the local work functions of a second phase surrounded by a matrix. These findings have practical implications for materials research at the nanoscale and offer a bridge between DFT calculations and nanoscale experimentation.
Collapse
Affiliation(s)
- Wenjie Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Chaofang Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Dihao Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Li Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
- National and Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Xuequn Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Xiaogang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
12
|
Artemov V, Frank L, Doronin R, Stärk P, Schlaich A, Andreev A, Leisner T, Radenovic A, Kiselev A. The Three-Phase Contact Potential Difference Modulates the Water Surface Charge. J Phys Chem Lett 2023; 14:4796-4802. [PMID: 37191100 DOI: 10.1021/acs.jpclett.3c00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The surface charge of an open water surface is crucial for solvation phenomena and interfacial processes in aqueous systems. However, the magnitude of the charge is controversial, and the physical mechanism of charging remains incompletely understood. Here we identify a previously overlooked physical mechanism determining the surface charge of water. Using accurate charge measurements of water microdrops, we demonstrate that the water surface charge originates from the electrostatic effects in the contact line vicinity of three phases, one of which is water. Our experiments, theory, and simulations provide evidence that a junction of two aqueous interfaces (e.g., liquid-solid and liquid-air) develops a pH-dependent contact potential difference Δϕ due to the longitudinal charge redistribution between two contacting interfaces. This universal static charging mechanism may have implications for the origin of electrical potentials in biological, nanofluidic, and electrochemical systems and helps to predict and control the surface charge of water in various experimental environments.
Collapse
Affiliation(s)
- Vasily Artemov
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laura Frank
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Roman Doronin
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Philipp Stärk
- SC Simtech, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Schlaich
- SC Simtech, University of Stuttgart, 70569 Stuttgart, Germany
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Anton Andreev
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Thomas Leisner
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Aleksandra Radenovic
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexei Kiselev
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| |
Collapse
|
13
|
Zhu J, Huang J, Dai J, Jiang L, Xu Y, Chen R, Li L, Fu X, Wang Z, Liu H, Li G. Synergistic Combination of Fermi Level Equilibrium and Plasmonic Effect for Formic Acid Dehydrogenation. CHEMSUSCHEM 2023; 16:e202202069. [PMID: 36537011 DOI: 10.1002/cssc.202202069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Developing an efficient catalyst for formic acid (FA) dehydrogenation is a promising strategy for safe hydrogen storage and transportation. Herein, we successfully developed trimetallic NiAuPd heterogeneous catalysts through a galvanic replacement reaction and a subsequent chemical reduction process to boost hydrogen generation from FA decomposition at room temperature by coupling Fermi level engineering with plasmonic effect. We demonstrated that Ni worked as an electron reservoir to donate electrons to Au and Pd driven by Fermi level equilibrium whereas plasmonic Au served as an optical absorber to generate energetic hot electrons and a charge-redistribution mediator. Ni and Au worked cooperatively to promote the charge heterogeneity of surface-active Pd sites, leading to enhanced chemisorption of formate-related intermediates and eventually outstanding activity (342 mmol g-1 h-1 ) compared with bimetallic counterpart. This work offers excellent insight into the rational design of efficient catalysts for practical hydrogen energy exploitation.
Collapse
Affiliation(s)
- Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lipei Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaoqi Fu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
14
|
Li Y, Yu J, Wei Y, Wang Y, Feng Z, Cheng L, Huo Z, Lei Y, Sun Q. Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG. SENSORS (BASEL, SWITZERLAND) 2023; 23:1329. [PMID: 36772369 PMCID: PMC9921943 DOI: 10.3390/s23031329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
With the development of 5G, artificial intelligence, and the Internet of Things, diversified sensors (such as the signal acquisition module) have become more and more important in people's daily life. According to the extensive use of various distributed wireless sensors, powering them has become a big problem. Among all the powering methods, the self-powered sensor system based on triboelectric nanogenerators (TENGs) has shown its superiority. This review focuses on four major application areas of wireless sensors based on TENG, including environmental monitoring, human monitoring, industrial production, and daily life. The perspectives and outlook of the future development of self-powered wireless sensors are discussed.
Collapse
Affiliation(s)
- Yonghai Li
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Wei
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Feng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Liuqi Cheng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiang Lei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qijun Sun
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Yang R, He Z, Lin S, Dou W, Wang ZL, Wang H, Liu J. Tunable Tribovoltaic Effect via Metal-Insulator Transition. NANO LETTERS 2022; 22:9084-9091. [PMID: 36342419 DOI: 10.1021/acs.nanolett.2c03481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tribovoltaic direct-current (DC) nanogenerator made of dynamic semiconductor heterojunction is emerging as a promising mechanical energy harvesting technology. However, fundamental understanding of the mechano-electronic carrier excitation and transport at dynamic semiconductor interfaces remains to be investigated. Here, we demonstrated for the first time, that tribovoltaic DC effect can be tuned with metal-insulator transition (MIT). In a representative MIT material (vanadium dioxide, VO2), we found that the short-circuit current (ISC) can be enhanced by >20 times when the material is transformed from insulating to metallic state upon static or dynamic heating, while the open-circuit voltage (VOC) turns out to be unaffected. Such phenomenon may be understood by the Hubbard model for Mott insulator: orders' magnitude increase in conductivity is induced when the nearest hopping changes dramatically and overcomes the Coulomb repulsion, while the Coulomb repulsion giving rise to the quasi-particle excitation energy remains relatively stable.
Collapse
Affiliation(s)
- Ruizhe Yang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Wenjie Dou
- School of Science, Westlake University, Hangzhou, Zhejiang310024, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang310024, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States
| | - Haiyan Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
- RENEW (Research and Education in Energy, Environment and Water) Institute, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| |
Collapse
|
16
|
Sarkar T, Stein E, Vinokur J, Frey GL. Universal electrode for ambipolar charge injection in organic electronic devices. MATERIALS HORIZONS 2022; 9:2138-2146. [PMID: 35621068 DOI: 10.1039/d1mh01845k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ambipolar transistors, i.e. transistors with symmetrical n- and p-type performances, open new avenues for the design and integration of high-density, efficient and versatile circuits for advanced technologies. Their performance requires two processes: efficient injection of holes and electrons from the metal electrodes into the semiconductor; and transport of both carriers through the semiconductor. Organic semiconductors (OSCs) support ambipolar transport, but charge injection is strongly asymmetric due to inherent misalignment of the electrode work function with both conducting levels of the OSC. Here we introduce a new electrode concept capable of efficiently injecting both types of charge carriers into OSCs. The electrode has a mosaic-like structure composed of islands of two metals with high and low work functions, in this case Al and Au, respectively. Under suitable applied bias the Au (Al) domains in direct contact with the OSC allow efficient hole (electron) injection into the HOMO (LUMO) level. Implementing this electrode as both the source and drain in an organic field effect transistor (OFET) led to fully balanced ambipolar performance while maintaining high ON/OFF ratios. We then used the ambipolar OFETs to significantly simplify the circuit design and fabricate digital and analogue elements, i.e. a digital inverter and an analogue phase shifter using one type of transistor only. Finally, we demonstrate that a single ambipolar OFET can replace several unipolar transistors to fabricate digital transmission gate circuits. The new electrode design concept can include other metal combinations and compositions to balance ambipolar injection, and the use of the mosaic electrodes can be extended to other electronic devices that require ambipolar charge injection such as light emitting transistors, memory devices etc.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Eyal Stein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Jane Vinokur
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Gitti L Frey
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
17
|
Ghomian T, Kizilkaya O, Domulevicz LK, Hihath J. Molecular quantum interference effects on thermopower in hybrid 2-dimensional monolayers. NANOSCALE 2022; 14:6248-6257. [PMID: 35411364 DOI: 10.1039/d2nr01731h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantum interference effects in single-molecule devices can significantly enhance the thermoelectric properties of these devices. However, single-molecule systems have limited utility for power conversion. In this work, we study the effects of destructive quantum interference in molecular junctions on the thermoelectric properties of hybrid, 2-dimensional molecule-nanoparticle monolayers. We study two isomers of benzenedithiol molecules, with either a para or meta configuration for the thiol groups, as molecular interlinkers between gold nanoparticles in the structure. The asymmetrical structure in the meta configuration significantly improves the Seebeck coefficient and power factor over the para configuration. These results suggest that thermoelectric performance of engineered, nanostructured material can be enhanced by harnessing quantum interference effects in the substituent components.
Collapse
Affiliation(s)
- Taher Ghomian
- Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA.
- Department of Computer Science and Electrical Engineering, Marshall University, Huntington, WV 25755, USA
| | - Orhan Kizilkaya
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lucas Kyle Domulevicz
- Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA.
| | - Joshua Hihath
- Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
18
|
He Y, Jia L, Lu X, Wang C, Liu X, Chen G, Wu D, Wen Z, Zhang N, Yamauchi Y, Sasaki T, Ma R. Molecular-Scale Manipulation of Layer Sequence in Heteroassembled Nanosheet Films toward Oxygen Evolution Electrocatalysts. ACS NANO 2022; 16:4028-4040. [PMID: 35188374 DOI: 10.1021/acsnano.1c09615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flocculation or restacking of different kinds of two-dimensional (2D) nanosheets into heterostructure nanocomposites is of interest for the development of high-performance electrode materials and catalysts. However, lacking a molecular-scale control on the layer sequence hinders enhancement of electrochemical activity. Herein, we conducted electrostatic layer-by-layer (LbL) assembly, employing oxide nanosheets (e.g., MnO2, RuO2.1, reduced graphene oxide (rGO)) and layered double hydroxide (LDH) nanosheets (e.g., NiFe-based LDH) to explore a series of mono- and bilayer films with various combinations of nanosheets and sequences toward oxygen evolution reaction (OER). The highest OER activity was attained in bilayer films of electrically conductive RuO2.1 nanosheets underlying catalytically active NiFe LDH nanosheets with mixed octahedral/tetrahedral coordination (NiFe LDHTd/Oh). At an overpotential of 300 mV, the RuO2.1/NiFe LDHTd/Oh film exhibited an electrochemical surface area (ECSA) normalized current density of 2.51 mA cm-2ECSA and a mass activity of 3610 A g-1, which was, respectively, 2 and 5 times higher than that of flocculated RuO2.1/NiFe LDHTd/Oh aggregates with a random appearance of a surface layer. First-principles density functional theory calculations and COMSOL Multiphysics simulations further revealed that the improved catalytic performance was ascribed to a substantial electronic coupling effect in the heterostructure, in which electrons are transferred from exposed NiFe LDHTd/Oh nanosheets to underneath RuO2.1. The study provides insight into the rational control and manipulation of redox-active surface layers and conductive underlying layers in heteroassembled nanosheet films at molecular-scale precision for efficient electrocatalysis.
Collapse
Affiliation(s)
- Yuanqing He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Lulu Jia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Xueyi Lu
- School of Materials, Sun Yat-sen University, Gongchang Road 66, Shenzhen 518107, China
| | - Chenhui Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaohe Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Dan Wu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Zuxin Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Takayoshi Sasaki
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| |
Collapse
|
19
|
Chung K, Bang J, Thacharon A, Song HY, Kang SH, Jang WS, Dhull N, Thapa D, Ajmal CM, Song B, Lee SG, Wang Z, Jetybayeva A, Hong S, Lee KH, Cho EJ, Baik S, Oh SH, Kim YM, Lee YH, Kim SG, Kim SW. Non-oxidized bare copper nanoparticles with surface excess electrons in air. NATURE NANOTECHNOLOGY 2022; 17:285-291. [PMID: 35145286 PMCID: PMC8930766 DOI: 10.1038/s41565-021-01070-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Copper (Cu) nanoparticles (NPs) have received extensive interest owing to their advantageous properties compared with their bulk counterparts. Although the natural oxidation of Cu NPs can be alleviated by passivating the surfaces with additional moieties, obtaining non-oxidized bare Cu NPs in air remains challenging. Here we report that bare Cu NPs with surface excess electrons retain their non-oxidized state over several months in ambient air. Cu NPs grown on an electride support with excellent electron transfer ability are encapsulated by the surface-accumulated excess electrons, exhibiting an ultralow work function of ~3.2 eV. Atomic-scale structural and chemical analyses confirm the absence of Cu oxide moiety at the outermost surface of air-exposed bare Cu NPs. Theoretical energetics clarify that the surface-accumulated excess electrons suppress the oxygen adsorption and consequently prohibit the infiltration of oxygen into the Cu lattice, provoking the endothermic reaction for oxidation process. Our results will further stimulate the practical use of metal NPs in versatile applications.
Collapse
Affiliation(s)
- Kyungwha Chung
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Joonho Bang
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Athira Thacharon
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyun Yong Song
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Se Hwang Kang
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
- Research Institute of Industrial Science and Technology, Pohang, Republic of Korea
| | - Woo-Sung Jang
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Neha Dhull
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Dinesh Thapa
- Department of Physics and Astronomy and Center for Computational Sciences, Mississippi State University, Mississippi State, MS, USA
| | - C Muhammed Ajmal
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bumsub Song
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung-Gyu Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Zhen Wang
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Albina Jetybayeva
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Seunghyun Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Ho Oh
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Young Hee Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Seong-Gon Kim
- Department of Physics and Astronomy and Center for Computational Sciences, Mississippi State University, Mississippi State, MS, USA.
| | - Sung Wng Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea.
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
20
|
Ezendam S, Herran M, Nan L, Gruber C, Kang Y, Gröbmeyer F, Lin R, Gargiulo J, Sousa-Castillo A, Cortés E. Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS ENERGY LETTERS 2022; 7:778-815. [PMID: 35178471 PMCID: PMC8845048 DOI: 10.1021/acsenergylett.1c02241] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
The successful development of artificial photosynthesis requires finding new materials able to efficiently harvest sunlight and catalyze hydrogen generation and carbon dioxide reduction reactions. Plasmonic nanoparticles are promising candidates for these tasks, due to their ability to confine solar energy into molecular regions. Here, we review recent developments in hybrid plasmonic photocatalysis, including the combination of plasmonic nanomaterials with catalytic metals, semiconductors, perovskites, 2D materials, metal-organic frameworks, and electrochemical cells. We perform a quantitative comparison of the demonstrated activity and selectivity of these materials for solar fuel generation in the liquid phase. In this way, we critically assess the state-of-the-art of hybrid plasmonic photocatalysts for solar fuel production, allowing its benchmarking against other existing heterogeneous catalysts. Our analysis allows the identification of the best performing plasmonic systems, useful to design a new generation of plasmonic catalysts.
Collapse
Affiliation(s)
- Simone Ezendam
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Matias Herran
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Lin Nan
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Christoph Gruber
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Yicui Kang
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Franz Gröbmeyer
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Rui Lin
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Julian Gargiulo
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Ana Sousa-Castillo
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Emiliano Cortés
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
21
|
Lu SM, Chen JF, Peng YY, Ma W, Ma H, Wang HF, Hu P, Long YT. Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry. J Am Chem Soc 2021; 143:12428-12432. [PMID: 34347459 DOI: 10.1021/jacs.1c02588] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The potential distribution at the electrode interface is a core factor in electrochemistry, and it is usually treated by the classic Gouy-Chapman-Stern (G-C-S) model. Yet the G-C-S model is not applicable to nanosized particles collision electrochemistry as it describes steady-state electrode potential distribution. Additionally, the effect of single nanoparticles (NPs) on potential should not be neglected because the size of a NP is comparable to that of an electrode. Herein, a theoretical model termed as Metal-Solution-Metal Nanoparticle (M-S-MNP) is proposed to reveal the dynamic electrode potential distribution at the single-nanoparticle level. An explicit equation is provided to describe the size/distance-dependent potential distribution in single NPs stochastic collision electrochemistry, showing the potential distribution is influenced by the NPs. Agreement between experiments and simulations indicates the potential roles of the M-S-MNP model in understanding the charge transfer process at the nanoscale.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian-Fu Chen
- State Key Laboratory of Chemical Engineering, Centre for Computational Chemistry & Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Ma
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hai-Feng Wang
- State Key Laboratory of Chemical Engineering, Centre for Computational Chemistry & Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peijun Hu
- State Key Laboratory of Chemical Engineering, Centre for Computational Chemistry & Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China.,School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
22
|
Anderson ID, Riskowski RA, Ackerson CJ. Observable but Not Isolable: The RhAu 24 (PET) 181+ Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004078. [PMID: 33174675 DOI: 10.1002/smll.202004078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The synthesis and characterization of RhAu24 (PET)18 (PET = 2-phenylethanethiol) is described. The cluster is cosynthesized with Au25 (PET)18 and rhodium thiolates in a coreduction of RhCl3 , HAuCl4 , and PET. Rapid decomposition of RhAu24 (PET)18 occurs when purified from the other reaction products, precluding the study of isolated cluster. Mixtures containing RhAu24 (PET)18 , Au25 (PET)18 , and rhodium thiolates are therefore characterized. Mass spectrometry, X-ray photoelectron spectroscopy, and chromatography methods suggest a combination of charge-charge and metallophilic interactions among Au25 (PET)181- , rhodium thiolates and RhAu24 (PET)18 resulting in stabilization of RhAu24 (PET)18 . The charge of RhAu24 (PET)18 is assigned as 1+ on the basis of its stoichiometric 1:1 presence with anionic Au25 (PET)18 , and its stability is contextualized within the superatom electron counting rules. This analysis concludes that the Rh atom absorbs one superatomic electron to close its d-shell, giving RhAu24 (PET)181+ a superatomic electron configuration of 1S2 1P4 . Overall, an updated framework for rationalizing open d-shell heterometal dopant electronics in thiolated gold nanoclusters emerges.
Collapse
Affiliation(s)
- Ian D Anderson
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ryan A Riskowski
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
23
|
Moghaddam M, Sepp S, Wiberg C, Bertei A, Rucci A, Peljo P. Thermodynamics, Charge Transfer and Practical Considerations of Solid Boosters in Redox Flow Batteries. Molecules 2021; 26:2111. [PMID: 33917004 PMCID: PMC8067695 DOI: 10.3390/molecules26082111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
Solid boosters are an emerging concept for improving the performance and especially the energy storage density of the redox flow batteries, but thermodynamical and practical considerations of these systems are missing, scarce or scattered in the literature. In this paper we will formulate how these systems work from the point of view of thermodynamics. We describe possible pathways for charge transfer, estimate the overpotentials required for these reactions in realistic conditions, and illustrate the range of energy storage densities achievable considering different redox electrolyte concentrations, solid volume fractions and solid charge storage densities. Approximately 80% of charge storage capacity of the solid can be accessed if redox electrolyte and redox solid have matching redox potentials. 100 times higher active areas are required from the solid boosters in the tank to reach overpotentials of <10 mV.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
| | - Silver Sepp
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Cedrik Wiberg
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
| | - Antonio Bertei
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa, Italy;
| | - Alexis Rucci
- Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden;
| | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
| |
Collapse
|
24
|
Cortés E, Besteiro LV, Alabastri A, Baldi A, Tagliabue G, Demetriadou A, Narang P. Challenges in Plasmonic Catalysis. ACS NANO 2020; 14:16202-16219. [PMID: 33314905 DOI: 10.1021/acsnano.0c08773] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of nanoplasmonics to control light and heat close to the thermodynamic limit enables exciting opportunities in the field of plasmonic catalysis. The decay of plasmonic excitations creates highly nonequilibrium distributions of hot carriers that can initiate or catalyze reactions through both thermal and nonthermal pathways. In this Perspective, we present the current understanding in the field of plasmonic catalysis, capturing vibrant debates in the literature, and discuss future avenues of exploration to overcome critical bottlenecks. Our Perspective spans first-principles theory and computation of correlated and far-from-equilibrium light-matter interactions, synthesis of new nanoplasmonic hybrids, and new steady-state and ultrafast spectroscopic probes of interactions in plasmonic catalysis, recognizing the key contributions of each discipline in realizing the promise of plasmonic catalysis. We conclude with our vision for fundamental and technological advances in the field of plasmon-driven chemical reactions in the coming years.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | | | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street MS-378, Houston, Texas 77005, United States
| | - Andrea Baldi
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), EPFL, 1015 Lausanne, Switzerland
| | - Angela Demetriadou
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
25
|
Panaritis C, Hajar YM, Treps L, Michel C, Baranova EA, Steinmann SN. Demystifying the Atomistic Origin of the Electric Field Effect on Methane Oxidation. J Phys Chem Lett 2020; 11:6976-6981. [PMID: 32787193 DOI: 10.1021/acs.jpclett.0c01485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the role of an electric field on the surface of a catalyst is crucial in tuning and promoting the catalytic activity of metals. Herein, we evaluate the oxidation of methane over a Pt surface with varying oxygen coverage using density functional theory. The latter is controlled by the electrode polarization, giving rise to the non-Faradaic modification of catalytic activity phenomenon. At -1 V, the Pt(111) surface is present, while at 1 V, α-PtO2 on Pt(111) takes over. Our results demonstrate that the alteration of the platinum oxide surface under the influence of an electrochemical potential promotes the catalytic activity of the metal oxides by lowering the activation energy barrier of the reaction.
Collapse
Affiliation(s)
- Christopher Panaritis
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Yasmine M Hajar
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Laureline Treps
- Université Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Carine Michel
- Université Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Elena A Baranova
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Stephan N Steinmann
- Université Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| |
Collapse
|
26
|
Electric field assisted alignment of monoatomic carbon chains. Sci Rep 2020; 10:9709. [PMID: 32546798 PMCID: PMC7297712 DOI: 10.1038/s41598-020-65356-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/30/2020] [Indexed: 11/26/2022] Open
Abstract
We stabilize monoatomic carbon chains in water by attaching them to gold nanoparticles (NPs) by means of the laser ablation process. Resulting nanoobjects represent pairs of NPs connected by multiple straight carbon chains of several nanometer lengths. If NPs at the opposite ends of a chain differ in size, the structure acquires a dipole moment due to the difference in work functions of the two NPs. We take advantage of the dipole polarisation of carbon chains for ordering them by the external electric field. We deposit them on a glass substrate by the sputtering method in the presence of static electric fields of magnitudes up to 105 V/m. The formation of one-dimensional carbyne quasi-crystals deposited on a substrate is evidenced by high-resolution TEM and X-ray diffraction measurements. The original kinetic model describing the dynamics of ballistically flowing nano-dipoles reproduces the experimental diagram of orientation of the deposited chains.
Collapse
|
27
|
Wang Y, Gordon E, Ren H. Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal-Electrolyte Interface via a Grain-by-Grain Approach. Anal Chem 2020; 92:2859-2865. [PMID: 31941268 DOI: 10.1021/acs.analchem.9b05502] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode-electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode-electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Emma Gordon
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Hang Ren
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
28
|
Volk S, Yazdani N, Yarema O, Yarema M, Bozyigit D, Wood V. In Situ Measurement and Control of the Fermi Level in Colloidal Nanocrystal Thin Films during Their Fabrication. J Phys Chem Lett 2018; 9:7165-7172. [PMID: 30525647 DOI: 10.1021/acs.jpclett.8b03283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In engineering a high-performance semiconductor device, understanding of the Fermi level position is critical. Here, we demonstrate that open-circuit potential (OCP) measurements can be used to quantify the Fermi level in nanocrystal thin films in situ during their solution-based fabrication. We use this method to study the influence of (1) a metal contact and (2) nanocrystal surface termination on the Fermi level of the nanocrystal film, and find that oxidization or reduction of the nanocrystals as well as surface terminations with dipoles can be used to tune the Fermi level over large energy ranges. Finally, to emphasize the compatibility of the technique with device fabrication, we show that we can use blends of ligands to design the Fermi level landscape in a nanocrystal film. Our work highlights that OCP measurements can be used to gain insight into existing device operation and direct further optimization of optoelectronic devices.
Collapse
Affiliation(s)
- Sebastian Volk
- Department of Information Technology and Electrical Engineering , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Nuri Yazdani
- Department of Information Technology and Electrical Engineering , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Olesya Yarema
- Department of Information Technology and Electrical Engineering , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Maksym Yarema
- Department of Information Technology and Electrical Engineering , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Deniz Bozyigit
- Department of Information Technology and Electrical Engineering , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| |
Collapse
|
29
|
Salvatierra RV, López-Silva GA, Jalilov AS, Yoon J, Wu G, Tsai AL, Tour JM. Suppressing Li Metal Dendrites Through a Solid Li-Ion Backup Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803869. [PMID: 30368916 DOI: 10.1002/adma.201803869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The growing demand for sustainable and off-grid energy storage is reviving the attempts to use Li metal as the anode in the next generation of batteries. However, the use of Li anodes is hampered due to the growth of Li dendrites upon charging and discharging, which compromises the life and safety of the battery. Here, it is shown that lithiated multiwall carbon nanotubes (Li-MWCNTs) act as a controlled Li diffusion interface that suppresses the growth of Li dendrites by regulating the Li+ ion flux during charge/discharge cycling at current densities between 2 and 4 mA cm-2 . A full Li-S cell is fabricated to showcase the versatility of the protected Li anode with the Li-MWCNT interface, where the full cells could support pulse discharges at high currents and over 450 cycles at different rates with coulombic efficiencies close to 99.9%. This work indicates that carbon materials in lithiated forms can be an effective and simple approach to the stabilization of Li metal anodes.
Collapse
Affiliation(s)
| | - Gladys A López-Silva
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Almaz S Jalilov
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jongwon Yoon
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Gang Wu
- Department of Hematology, Internal Medicine, University of Texas Houston Medical School, Houston, TX, 77030, USA
| | - Ah-Lim Tsai
- Department of Hematology, Internal Medicine, University of Texas Houston Medical School, Houston, TX, 77030, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute and the NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
30
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. Revealing Factors Influencing the Fluorine-Centered Non-Covalent Interactions in Some Fluorine-Substituted Molecular Complexes: Insights from First-Principles Studies. Chemphyschem 2018; 19:1486-1499. [PMID: 29569853 DOI: 10.1002/cphc.201800023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 01/13/2023]
Abstract
We examine the equilibrium structure and properties of six fully or partially fluorinated hydrocarbons and several of their binary complexes using computational methods. In the monomers, the electrostatic surface of the fluorine is predicted to be either entirely negative or weakly positive. However, its lateral sites are always negative. This enables the fluorine to display an anisotropic distribution of charge density on its electrostatic surface. While this is the electrostatic surface scenario of the fluorine atom, its negative sites in some of these monomers are shown to have the potential to engage in attractive engagements with the negative site(s) on the same atom in another molecule of the same type, or a molecule of a different type, to form bimolecular complexes. This is revealed by analyzing the results of current state-of-the-art computational approaches such as DFT, together with those obtained from the quantum theory of atoms in molecules, molecular electrostatic surface potential and symmetry adapted perturbation theories. We demonstrate that the intermolecular interaction energy arising in part from the universal London dispersion, which has been underappreciated for decades, is an essential factor in explaining the attraction between the negative sites, although energy arising from polarization strengthens the extent of the intermolecular interactions in these complexes.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Japan 113-8656, and CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Japan 113-8656, and CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Japan 113-8656, and CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076
| |
Collapse
|
31
|
Smirnov E, Peljo P, Girault HH. Gold Raspberry-Like Colloidosomes Prepared at the Water-Nitromethane Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2758-2763. [PMID: 29376386 DOI: 10.1021/acs.langmuir.7b03532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we propose a simple shake-flask method to produce micron-size colloidosomes from a liquid-liquid interface functionalized with a gold nanoparticle (AuNP) film. A step-by-step extraction process of an organic phase partially miscible with water led to the formation of raspberry-like structures covered and protected by a gold nanofilm. The distinctive feature of the prepared colloidosomes is a very thin shell consisting of small AuNPs of 12 or 38 nm in diameter instead of several hundred nanometers reported previously. The interesting and remarkable property of the proposed approach is their reversibility: the colloidosomes may be easily transformed back to a nanofilm state simply by adding pure organic solvent. The obtained colloidosomes have a broadband absorbance spectrum, which makes them of great interest in applications such as photothermal therapy, surface-enhanced Raman spectroscopy studies, and microreactor vesicles for interfacial electrocatalysis.
Collapse
Affiliation(s)
- Evgeny Smirnov
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
32
|
Navarrete J, Siefe C, Alcantar S, Belt M, Stucky GD, Moskovits M. Merely Measuring the UV-Visible Spectrum of Gold Nanoparticles Can Change Their Charge State. NANO LETTERS 2018; 18:669-674. [PMID: 29341615 DOI: 10.1021/acs.nanolett.7b02592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ωp, the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ωp for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ωp is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the chemical potential due to the entropy increase resulting from the conversion of the plasmon's energy to heat. We conclude that even the act of registering the spectrum of nanoparticles is at times sufficient to alter their charge densities and hence their UV-visible spectra.
Collapse
Affiliation(s)
- Jose Navarrete
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University , 496 Lomita Hall, Stanford, California 94305, United States
| | - Samuel Alcantar
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Michael Belt
- Department of Electrical and Computer Engineering, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Galen D Stucky
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States
- Materials Department, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Martin Moskovits
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
33
|
The Effect of Annealing Treatment and Atom Layer Deposition to Au/Pt Nanoparticles-Decorated TiO₂ Nanorods as Photocatalysts. Molecules 2018; 23:molecules23030525. [PMID: 29485620 PMCID: PMC6017365 DOI: 10.3390/molecules23030525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
The wide band gap of TiO2 hinders the utilization of visible light in high-performance photocatalysis. Herein, vertically aligned Ti nanopillar arrays (NPAs) were grown by the glancing angle deposition method (GLAD) and then thermally oxidized into TiO2 NPAs. The metallic nanoparticles (NPs) were fabricated by successive ion layer adsorption and reaction (SILAR) method. And we covered ultrathin TiO2 layer on Au/Pt NPs decorated NPA using atomic layer deposition (ALD) method and did annealing process in the end. The photoelectrochemical (PEC) performance and dye degradation have been studied. We find the dye degradation efficiency of best combination reaches up to 1.5 times higher than that of original Au/Pt-TiO2 sample under visible light irradiation. The TiO2 ALD layer effectively protects the nanostructure from corrosion and helps the transmission of electrons to the electrolyte. By controlling the annealing temperature we could achieve a matched band gap due to change in noble metal particle size. Our work demonstrates that rational design of composite nanostructures enhances the usage of broader wavelength range light and optimizes photocatalytic degradation of organic pollutants in practical applications.
Collapse
|
34
|
Scanlon MD, Smirnov E, Stockmann TJ, Peljo P. Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chem Rev 2018; 118:3722-3751. [DOI: 10.1021/acs.chemrev.7b00595] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Evgeny Smirnov
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - T. Jane Stockmann
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, Sorbonne Paris Cité, Paris Diderot University, 15 Rue J.A. Baïf, 75013 Paris, France
| | - Pekka Peljo
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
35
|
Chen L, Tanner EEL, Lin C, Compton RG. Impact electrochemistry reveals that graphene nanoplatelets catalyse the oxidation of dopamine via adsorption. Chem Sci 2018; 9:152-159. [PMID: 29629083 PMCID: PMC5869317 DOI: 10.1039/c7sc03672h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/30/2017] [Indexed: 01/04/2023] Open
Abstract
Graphene nanoplatelets are shown to electrocatalyse the oxidation of dopamine. Single entity measurements ('nano-impacts') coupled with microdisc voltammetry and UV-visible spectroscopy reveal that adsorption of dopamine and its oxidised product on the graphene nanoplatelets is the key factor causing the observed catalysis. Genetic implications are drawn both for the study of catalysts in general and for graphene nanoplatelets in particular.
Collapse
Affiliation(s)
- Lifu Chen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Eden E L Tanner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Chuhong Lin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| |
Collapse
|
36
|
Sun T, Wang D, Mirkin M. Electrochemistry at a single nanoparticle: from bipolar regime to tunnelling. Faraday Discuss 2018; 210:173-188. [DOI: 10.1039/c8fd00041g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper is concerned with long-distance interactions between an unbiased metal nanoparticle (NP) and a nanoelectrode employed as a tip in the scanning electrochemical microscope (SECM).
Collapse
Affiliation(s)
- Tong Sun
- Department of Chemistry and Biochemistry
- Queens College-CUNY
- Flushing
- USA
- The Graduate Center of CUNY
| | - Dengchao Wang
- Department of Chemistry and Biochemistry
- Queens College-CUNY
- Flushing
- USA
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry
- Queens College-CUNY
- Flushing
- USA
- The Graduate Center of CUNY
| |
Collapse
|
37
|
Abstract
Light-assisted surface reaction can lower reaction temperature, potentially reducing the energy use by providing light together with heat.
Collapse
Affiliation(s)
- Chanyeon Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon 34141
- South Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon 34141
- South Korea
| |
Collapse
|
38
|
Singh AN, Devnani H, Jha S, Ingole PP. Fermi level equilibration of Ag and Au plasmonic metal nanoparticles supported on graphene oxide. Phys Chem Chem Phys 2018; 20:26719-26733. [DOI: 10.1039/c8cp05170d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For the first time, the process of Fermi level equilibration has been studied and compared for plasmonic metal nanoparticles (PMNPs) supported on conducting substrates i.e. graphene oxide (GO) sheets.
Collapse
Affiliation(s)
- Abhay N. Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Harsha Devnani
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Shwetambara Jha
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Pravin P. Ingole
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| |
Collapse
|
39
|
Varadwaj A, Varadwaj PR, Yamashita K. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like! J Comput Chem 2017; 39:343-350. [PMID: 29226338 DOI: 10.1002/jcc.25125] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023]
Abstract
Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r-6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
40
|
Sun B, Barnard AS. The impact of size and shape distributions on the electron charge transfer properties of silver nanoparticles. NANOSCALE 2017; 9:12698-12708. [PMID: 28828432 DOI: 10.1039/c7nr03472e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many applications of silver nanoparticles are moderated by the electron charge transfer properties, such as the ionization potential, electron affinity and Fermi energy, which may be tuned by controlling the size and shape of individual particles. However, since producing samples of silver nanoparticles that are perfectly monodispersed in terms of both size and shape can be prohibitive, it is important to understand how these properties are impacted by polydispersivity, and ideally be able to predict the tolerance for variation of different geometric features. In this study, we use straightforward statistical methods, together with electronic structure simulations, to predict the electron charge transfer properties of different types of ensembles of silver nanoparticles and how restricting the structural diversity in different ways can improve or retard performance. In agreement with previous reports, we confirm that restricting the shape distribution will tune the charge transfer properties toward specific reactions, but by including the quality factors for each case we go beyond this assessment and show how targeting specific classes of morphologies and restricting the distribution of size can impact sensitivity.
Collapse
Affiliation(s)
- Baichuan Sun
- Molecular & Materials Modelling, DATA61 CSIRO, Door 34 Goods Shed, Village St, Docklands VIC, Australia 3008, Australia.
| | | |
Collapse
|
41
|
Abstract
A poor interface or defected interfacial segment may trigger interfacial cracking, loss of physical and mechanical functions, and eventual failure of entire material system. Here we show a novel method to diagnose local interphase boundary based on interfacial electron work function (EWF) and its gradient across the interface, which can be analyzed using a nano-Kelvin probe with atomic force microscope. It is demonstrated that a strong interface has its electron work function gradually changed across the interface, while a weaker one shows a steeper change in EWF across the interface. Both experimental and theoretical analyses show that the interfacial work function gradient is a measure of the interaction between two sides of the interface. The effectiveness of this method is demonstrated by analyzing sample metal-metal and metal-ceramic interfaces.
Collapse
|
42
|
Peljo P, Scanlon MD, Olaya AJ, Rivier L, Smirnov E, Girault HH. Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties without the Influence of Solid Supports. J Phys Chem Lett 2017; 8:3564-3575. [PMID: 28707892 DOI: 10.1021/acs.jpclett.7b00685] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
Collapse
Affiliation(s)
- Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Micheál D Scanlon
- Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL) , Limerick V94 T9PX, Ireland
| | - Astrid J Olaya
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Lucie Rivier
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Evgeny Smirnov
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
43
|
Xu F, Lu Q, Ye L, Tsang SCE. Intermix of metal nanoparticles-single wall carbon nanotubes. Chem Commun (Camb) 2017. [PMID: 28642951 DOI: 10.1039/c7cc03696e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using physical mixtures of Pd/SWNTs (Pd nanoparticles on single-walled carbon nanotubes) and Pt/SWNTs, the composites show electro-catalytic properties comparable to the corresponding alloys: electron exchange readily occurs between the two metal nanoparticles via SWNT support at long ranges without direct atomic contact, which is responsible for the tunable alloy-like properties.
Collapse
Affiliation(s)
- Feng Xu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | | | | | | |
Collapse
|
44
|
Peljo P, Manzanares JA, Girault HH. Variation of the Fermi level and the electrostatic force of a metallic nanoparticle upon colliding with an electrode. Chem Sci 2017; 8:4795-4803. [PMID: 28959401 PMCID: PMC5602143 DOI: 10.1039/c7sc00848a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
When a metallic nanoparticle (NP) comes in close contact with an electrode, its Fermi level equilibrates with that of the electrode if their separation is less than the cut-off distance for electron tunnelling. In the absence of chemical reactions in solution, the charge on the metallic nanoparticle is constant outside this range before or after the collision. However, the double layer capacitances of both the electrode and the NP are influenced by each other, varying as the function of distance. Because the charge on the nanoparticle is constant, the outer potential of the metallic NP and hence its Fermi level varies as the capacitance changes. This effect is more pronounced for small particles (<10 nm) in diluted supporting electrolyte solutions, especially if the metallic nanoparticle and the electrode have different potentials of zero charge. Nanoparticles were found to be more electrochemically active in the vicinity of the electrode. For example, the outer potential of a positively-polarized 2 nm radius NP was predicted to decrease by 35 mV or 100 mV (depending on the electrostatic model used to describe the electric double layer), when the NP moved from an electrode at 1 V (vs. its pzc) to the bulk. The force between the equilibrated NP and the electrode is always repulsive when they have the same pzc. Otherwise there can be an attraction even when the NP and the electrode carry charges of the same sign, due to the redistibution of surface charge density at both the NP and electrode surface.
Collapse
Affiliation(s)
- Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique (LEPA) , École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
| | - José A Manzanares
- Department of Thermodynamics , Faculty of Physics , University of Valencia , c/Dr. Moliner, 50 , E-46100 Burjasot , Spain
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique (LEPA) , École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
| |
Collapse
|
45
|
Sachdev S, Maugi R, Woolley J, Kirk C, Zhou Z, Christie SDR, Platt M. Synthesis of Gold Nanoparticles Using the Interface of an Emulsion Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5464-5472. [PMID: 28514172 DOI: 10.1021/acs.langmuir.7b00564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A facile and rapid method for synthesizing single crystal gold spherical or platelet (nonspherical) particles is reported. The reaction takes place at the interface of two immiscible liquids where the reducing agent decamethylferrocene (DmFc) was initially added to hexane and gold chloride (AuCl4-) to an aqueous phase. The reaction is spontaneous at room temperature, leading to the creation of Au nanoparticles (AuNP). A flow focusing microfluidic chip was used to create emulsion droplets, allowing the same reaction to take place within a series of microreactors. The technique allows the number of droplets, their diameter, and even the concentration of reactants in both phases to be controlled. The size and shape of the AuNP are dependent upon the concentration of the reactants and the size of the droplets. By tuning the reaction parameters, the synthesized nanoparticles vary from nanometer to micrometer sized spheres or platelets. The surfactant used to stabilize the emulsion was also shown to influence the particle shape. Finally, the addition of other nanoparticles within the droplet allows for core@shell particles to be readily formed, and we believe this could be a versatile platform for the large scale production of core@shell particles.
Collapse
Affiliation(s)
| | | | | | - Caroline Kirk
- School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | | | | | | |
Collapse
|
46
|
Zhang J, Zhang L, Wang W, Han L, Jia JC, Tian ZW, Tian ZQ, Zhan D. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer. Chem Sci 2017; 8:2407-2412. [PMID: 28451347 PMCID: PMC5369340 DOI: 10.1039/c6sc04091h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/16/2016] [Indexed: 11/21/2022] Open
Abstract
Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e., the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels (EF) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO4- anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Lin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Lianhuan Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Jing-Chun Jia
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Zhao-Wu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| |
Collapse
|
47
|
Wang L, Sagaguchi T, Okuhata T, Tsuboi M, Tamai N. Electron and Phonon Dynamics in Hexagonal Pd Nanosheets and Ag/Pd/Ag Sandwich Nanoplates. ACS NANO 2017; 11:1180-1188. [PMID: 28036162 DOI: 10.1021/acsnano.6b07082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pd and its hybrid nanostructures have attracted considerable attention over the past decade, with both catalytic and plasmonic properties. The electron and phonon properties directly govern conversion efficiencies in applications such as energy collectors and photocatalysts. We report the dynamic processes of electron-phonon coupling and coherent acoustic phonon vibration in hexagonal Pd nanosheets and Ag/Pd/Ag sandwich nanoplates using transient absorption spectroscopy. The electron-phonon coupling constant of Pd nanosheets, GPd-nanosheet (8.7 × 1017 W/(m3·K)) is larger than that of the bulk GPd (5.0 × 1017 W/(m3·K)). The effective coupling constant Geff of Ag/Pd/Ag nanoplates decreases with increasing Ag shell thickness, finally approaching the bulk GAg. The variation of Geff is explained in terms of reduced density of states near Fermi level of Pd nanosheets with 1.8 nm ultrathin thickness. Coherent acoustic phonon vibration in Pd nanosheets is assigned to a fundamental breathing mode, similar to the vibration of benzene. The period increases with increasing Ag shell thickness. For Ag/Pd/Ag nanoplates with 20 nm thick Ag shells, the vibrational mode is ascribed to a quasi-extensional mode. The results show that the modes of the coherent acoustic phonon vibration transform with the geometric variation of Pd nanosheets and Ag/Pd/Ag nanoplates. Our results represent an understanding of quantum-confinement related electron dynamics and bulk-like phonon kinetics in the ultrathin Pd nanosheets and their hybrid nanostructures.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Takuya Sagaguchi
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Tomoki Okuhata
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Motohiro Tsuboi
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| | - Naoto Tamai
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda 669-1337, Japan
| |
Collapse
|
48
|
Kim C, Suh BL, Yun H, Kim J, Lee H. Surface Plasmon Aided Ethanol Dehydrogenation Using Ag–Ni Binary Nanoparticles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chanyeon Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bong Lim Suh
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hongseok Yun
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyunjoo Lee
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
49
|
Zhan D, Han L, Zhang J, He Q, Tian ZW, Tian ZQ. Electrochemical micro/nano-machining: principles and practices. Chem Soc Rev 2017; 46:1526-1544. [DOI: 10.1039/c6cs00735j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the ever increasing industrial demands for super smooth surfaces and functional three-dimensional micro/nano-structures in miniaturized and integrate devices, and electrochemistry plays an irreplaceable role in MNM.
Collapse
Affiliation(s)
- Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Lianhuan Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jie Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Quanfeng He
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhao-Wu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
50
|
Muench F, Hussein L, Stohr T, Kunz U, Ayata S, Gärtner I, Kleebe HJ, Ensinger W. Templated synthesis of pure and bimetallic gold/platinum nanotubes using complementary seeding and plating reactions. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|