1
|
Kumar P, Ashique S, Sharma H, Yasmin S, Islam A, Mandal S, Gowda BHJ, Khalid M, Ansari MY, Singh M, Ehsan I, Taj T, Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg Chem 2025; 157:108305. [PMID: 40022847 DOI: 10.1016/j.bioorg.2025.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cancer is a leading cause of death worldwide. While traditional and synthetic medical therapies are in place for cancer treatment, their effectiveness is hindered by various limitations, such as toxic side effects, limited availability, and high costs. In recent years, a promising alternative approach has emerged in the form of green-synthesized metallic nanoparticles (MNPs), which offer targeted cancer therapy. These nanoparticles (NPs) have garnered significant attention from cancer researchers owing to their natural or surface-induced anticancer properties, versatility of metals as agents, and eco-friendly nature. This approach may positively impact healthy cells surrounding the cancerous cells. Green-synthesized MNPs have gained popularity in cancer management because of their ease of handling in the laboratory and the affordability of starting materials compared to synthetic methods. This review analyzes green-synthesized MNPs for targeted cancer therapy, highlighting tumor-targeting strategies, synthesis methods, and clinical challenges. Unlike general reviews, it compares plant-, microbial-, and enzyme-mediated synthesis approaches, emphasizing their impact on nanoparticle stability, functionalization, and interactions with the tumor microenvironment for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM Modinagar College of Pharmacy, SRMIST Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India.
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, (UP), India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Subhajit Mandal
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi-241124 Uttar Pradesh (U.P.) India.
| | - Mansi Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Iman Ehsan
- School of Pharmacy Sister Nivedita University, Kolkata-700156, WB, India
| | - Tahreen Taj
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhao H, Zhu H, Du Y, He M, Ding M, Cheng F. Gold nanoparticles/Cu decorated metal-organic frameworks for synergistic photodynamic/ferroptosis cancer therapy. Biomed Mater 2025; 20:025042. [PMID: 39999568 DOI: 10.1088/1748-605x/adba2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Photodynamic therapy (PDT) holds promise for cancer treatment by generating reactive oxygen species via photosensitizers (PSs) activated by specific wavelengths of light. However, the poor water solubility of PSs and the tumor microenvironment, characterized by high glutathione (GSH) levels and hypoxia, limit its efficacy against hypoxic tumors. To overcome these challenges, we developed a novel nano-reactor, Zr(Cu)-MOF@Au@DHA, to augment PDT-ferroptosis therapy. By incorporating Cu2+into the porphyrin ring of PCN-224 and decorating it with gold nanoparticles, we enhanced the photocatalytic efficiency of the metal-organic framework (MOF). Additionally, dihydroartemisinin (DHA) was loaded onto the nano-reactor to boost the ferroptosis sensitivity of bladder cancer cells. Bothin vitroandin vivostudies confirm that under laser irradiation, Zr(Cu)-MOF@Au@DHA significantly elevates oxidative stress, depletes GSH, and triggers DHA release, sensitizing tumor cells to ferroptosis and enhancing PDT-ferroptosis therapy for bladder cancer. This innovative nano-platform integrates near-infrared light-triggered PDT with chemotherapy to induce ferroptosis, addressing critical limitations in bladder cancer treatment.
Collapse
Affiliation(s)
- Hongchao Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Mu He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Mao Ding
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| |
Collapse
|
3
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024; 35:1639-1686. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
4
|
Jakhmola A, Hornsby TK, Kashkooli FM, Kolios MC, Rod K, Tavakkoli JJ. Green synthesis of anti-cancer drug-loaded gold nanoparticles for low-intensity pulsed ultrasound targeted drug release. Drug Deliv Transl Res 2024; 14:2417-2432. [PMID: 38240946 DOI: 10.1007/s13346-024-01516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 11/01/2024]
Abstract
In the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium. The method is very simple and straightforward and does not require stirring or mechanical shaking. The drug molecules interact with the gold seeds formed during the reduction and growth process and modulate the final morphology into a spherical shape. A black-colored colloidal solution of gold nanowire networks is formed in the absence of these anti-cancer drug molecules in the reaction mixture. We used hyperspectral-enhanced dark field microscopy to examine the uptake of gold nanoparticles by breast cancer cells. Upon exposure to LIPUS, the release of the anti-cancer drug from the particle surface can be quantified by fluorescence measurements. This release of drug molecules along with trisodium citrate from the surface of gold nanoparticles by ultrasound resulted in their destabilization and subsequent aggregation, which could be visually observed through the change in the color of colloidal sol. Cancer cell viability was studied by MTT assay to examine the efficacy of this nanoparticle-based drug delivery system. Ultraviolet-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscope (TEM) analysis were used to characterize the nanoparticles and quantify anti-cancer drug release.
Collapse
Affiliation(s)
- Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Kevin Rod
- Toronto Poly Clinic Inc., Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
5
|
Chavda VP, Balar PC, Bezbaruah R, Vaghela DA, Rynjah D, Bhattacharjee B, Sugandhi VV, Paiva-Santos AC. Nanoemulsions: Summary of a Decade of Research and Recent Advances. Nanomedicine (Lond) 2024; 19:519-536. [PMID: 38293801 DOI: 10.2217/nnm-2023-0199] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Nanoemulsions consist of a combination of several components such as oil, water, emulsifiers, surfactants and cosurfactants. Various techniques for producing nanoemulsions include high-energy and low-energy approaches such as high-pressure homogenization, microfluidization, jet disperser and phase inversion methods. The properties of a formulation can be influenced by elements such as the composition, concentration, size and charge of droplets, which in turn can affect the technique of manufacture. Characterization is conducted by the assessment of several factors such as physical properties, pH analysis, viscosity measurement and refractive index determination. This article offers a thorough examination of the latest developments in nanoemulsion technology, with a focus on their wide-ranging applications and promising future possibilities. It also discusses the administration of nanoemulsions through several methods.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Institute of Pharmacy, Assam Medical College & Hospital, Dibrugarh, Assam, 786002, India
| | - Dixa A Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Damanbhalang Rynjah
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Vrashabh V Sugandhi
- Department of Industrial Pharmacy, College of Pharmacy and Health Sciences St. John's University, New York, 11439, USA
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-370
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-548
| |
Collapse
|
6
|
Ruan R, Chen S, Su J, Liu N, Feng H, Xiao P, Zhang X, Pan G, Hou L, Zhang J. Targeting Nanomotor with Near-Infrared/Ultrasound Triggered-Transformation for Polystage-Propelled Cascade Thrombolysis and Multimodal Imaging Diagnosis. Adv Healthc Mater 2024; 13:e2302591. [PMID: 38085119 DOI: 10.1002/adhm.202302591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/02/2023] [Indexed: 02/20/2024]
Abstract
Nowadays, cardiovascular and cerebrovascular diseases caused by venous thromboembolism become main causes of mortality around the world. The current thrombolytic strategies in clinics are confined primarily due to poor penetration of nanoplatforms, limited thrombolytic efficiency, and extremely-low imaging accuracy. Herein, a novel nanomotor (NM) is engineered by combining iron oxide/perfluorohexane (PFH)/urokinase (UK) into liposome nanovesicle, which exhibits near-infrared/ultrasound (NIR/US) triggered transformation, achieves non-invasive vein thrombolysis, and realizes multimodal imaging diagnosis altogether. Interestingly, a three-step propelled cascade thrombolytic therapy is revealed from such intelligent NM. First, the NM is effectively herded at the thrombus site under guidance of a magnetic field. Afterwards, stimulations of NIR/US propel phase transition of PFH, which intensifies penetration of the NM toward deep thrombus dependent on cavitation effect. Ultimately, UK is released from the collapsed NM and achieves pharmaceutical thrombolysis in a synergistic way. After an intravenous injection of NM in vivo, the whole thrombolytic process is monitored in real-time through multimodal photoacoustic, ultrasonic, and color Doppler ultrasonic imagings. Overall, such advanced nanoplatform provides a brand-new strategy for time-critical vein thrombolytic therapy through efficient thrombolysis and multimodal imaging diagnosis.
Collapse
Affiliation(s)
- Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, P. R. China
| | - Sheng Chen
- Department of Ultrasound, Shengli Clinical Medical College of Fujian Medical University, 134 Dongjie Road, Fuzhou, 350001, P. R. China
| | - Jinyun Su
- Department of Anesthesiology, Fujian Nan'an Hospital, 330 Xinhua Street, Quanzhou, 362300, P. R. China
| | - Ning Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photo-catalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Peijie Xiao
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photo-catalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Gaoxing Pan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photo-catalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Linxi Hou
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, P. R. China
| |
Collapse
|
7
|
Wang H, Zhang H, Wu Q, Zhang B, Zhang Z, Rao X. Pickering Emulsions and Viscoelastic Solutions Constructed by a Rosin-Based CO 2-Responsive Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15653-15664. [PMID: 37856252 DOI: 10.1021/acs.langmuir.3c02085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Designing stimulus-switch viscoelastic solutions and Pickering emulsions with reversible CO2-responsive behavior remains a challenge. A rosin-based CO2-responsive surfactant, N-cetyl-maleimidepimaric acid N,N-dimethylenediamide (C16MPAN), was synthesized and used to prepare CO2-triggered viscoelastic solutions and Pickering emulsions. This surfactant exhibited excellent CO2-responsive performance in water and formed a viscoelastic solution. This viscoelastic system was investigated by dynamic light scattering (DLS), rheology, and cryogenic transmission electron microscopy (Cory-TEM). The shear viscosity of the system increased by 3-4 orders of magnitude after bubbling with CO2 and a large number of elongated, flexible, tubular wormlike micelles were observed. Further, Pickering emulsions were prepared by C16MPAN+ synergistically with cellulose nanocrystals (CNCs), whose stability and switchability were investigated via adsorption isotherm, droplet size, contact angle, and macroscopic photographs. C16MPAN+ was adsorbed with CNCs to form mechanical barriers at the oil-water interface, making the emulsion stable for at least three months, and desorption from CNCs enabled emulsion breaking. The cycle could be switched reversibly multiple times and the particle size distribution of emulsion was basically the same. This work enriches the application of biomass resources in intelligent responsive materials.
Collapse
Affiliation(s)
- Hanwen Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Hangyuan Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Qian Wu
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Boyi Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Zehua Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, Fujian, China
| |
Collapse
|
8
|
Zhao AX, Zhu YI, Chung E, Lee J, Morais S, Yoon H, Emelianov S. Factors Influencing the Repeated Transient Optical Droplet Vaporization Threshold and Lifetimes of Phase Change, Perfluorocarbon Nanodroplets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2238. [PMID: 37570555 PMCID: PMC10421047 DOI: 10.3390/nano13152238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are sub-micrometer emulsions composed of a surfactant-encased perfluorocarbon (PFC) liquid and can be formulated to transiently vaporize through optical stimulation. However, the factors governing repeated optical droplet vaporization (ODV) have not been investigated. In this study, we employ high-frame-rate ultrasound (US) to characterize the ODV thresholds of various formulations and imaging parameters and identify those that exhibit low vaporization thresholds and repeatable vaporization. We observe a phenomenon termed "preconditioning", where initial laser pulses generate reduced US contrast that appears linked with an increase in nanodroplet size. Variation in laser pulse repetition frequency is found not to change the vaporization threshold, suggesting that "preconditioning" is not related to residual heat. Surfactants (bovine serum albumin, lipids, and zonyl) impact the vaporization threshold and imaging lifetime, with lipid shells demonstrating the best performance with relatively low thresholds (21.6 ± 3.7 mJ/cm2) and long lifetimes (t1/2 = 104 ± 21.5 pulses at 75 mJ/cm2). Physiological stiffness does not affect the ODV threshold and may enhance nanodroplet stability. Furthermore, PFC critical temperatures are found to correlate with vaporization thresholds. These observations enhance our understanding of ODV behavior and pave the way for improved nanodroplet performance in biomedical applications.
Collapse
Affiliation(s)
- Andrew X. Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Yiying I. Zhu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Euisuk Chung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Jeehyun Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Samuel Morais
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Heechul Yoon
- School of Electronics and Electrical Engineering, Dankook University, Yongin-si 16890, Republic of Korea;
| | - Stanislav Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| |
Collapse
|
9
|
Ghamkhari A, Tafti HA, Rabbani S, Ghorbani M, Ghiass MA, Akbarzadeh F, Abbasi F. Ultrasound-Triggered Microbubbles: Novel Targeted Core-Shell for the Treatment of Myocardial Infarction Disease. ACS OMEGA 2023; 8:11335-11350. [PMID: 37008126 PMCID: PMC10061684 DOI: 10.1021/acsomega.3c00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
Myocardial infarction (MI) is known as a main cardiovascular disease that leads to extensive cell death by destroying vasculature in the affected cardiac muscle. The development of ultrasound-mediated microbubble destruction has inspired extensive interest in myocardial infarction therapeutics, targeted delivery of drugs, and biomedical imaging. In this work, we describe a novel therapeutic ultrasound system for the targeted delivery of biocompatible microstructures containing basic fibroblast growth factor (bFGF) to the MI region. The microspheres were fabricated using poly(lactic-co-glycolic acid)-heparin-polyethylene glycol- cyclic arginine-glycine-aspartate-platelet (PLGA-HP-PEG-cRGD-platelet). The micrometer-sized core-shell particles consisting of a perfluorohexane (PFH)-core and a PLGA-HP-PEG-cRGD-platelet-shell were prepared using microfluidics. These particles responded adequately to ultrasound irradiation by triggering the vaporization and phase transition of PFH from liquid to gas in order to achieve microbubbles. Ultrasound imaging, encapsulation efficiency cytotoxicity, and cellular uptake of bFGF-MSs were evaluated using human umbilical vein endothelial cells (HUVECs) in vitro. In vivo imaging demonstrated effective accumulation of platelet- microspheres injected into the ischemic myocardium region. The results revealed the potential use of bFGF-loaded microbubbles as a noninvasive and effective carrier for MI therapy.
Collapse
Affiliation(s)
- Aliyeh Ghamkhari
- Institute
of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz 5331817634, Iran
| | - Hossein Ahmadi Tafti
- Research
Center for Advanced Technologies in Cardiovascular Medicine, Tehran
Heart Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Shahram Rabbani
- Research
Center for Advanced Technologies in Cardiovascular Medicine, Tehran
Heart Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Marjan Ghorbani
- Nutrition
Research Center, Tabriz University of Medical Sciences, Tabriz IR 51656-65811, Iran
| | - Mohammad Adel Ghiass
- Tissue
Engineering Department, Tarbiat Modares
University, Tehran 1411713116, Iran
| | - Fariborz Akbarzadeh
- Cardiovascular
Research Center, Tabriz University of Medical
Sciences, Tabriz 5166/15731, Iran
| | - Farhang Abbasi
- Institute
of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz 5331817634, Iran
| |
Collapse
|
10
|
Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release 2023; 355:552-578. [PMID: 36773959 DOI: 10.1016/j.jconrel.2023.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Fernandez-Fernandez A, Manchanda R, Kumari M. Lipid-engineered nanotherapeutics for cancer management. Front Pharmacol 2023; 14:1125093. [PMID: 37033603 PMCID: PMC10076603 DOI: 10.3389/fphar.2023.1125093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes significant mortality and morbidity worldwide, but existing pharmacological treatments are greatly limited by the inherent heterogeneity of cancer as a disease, as well as the unsatisfactory efficacy and specificity of therapeutic drugs. Biopharmaceutical barriers such as low permeability and poor water solubility, along with the absence of active targeting capabilities, often result in suboptimal clinical results. The difficulty of successfully reaching and destroying tumor cells is also often compounded with undesirable impacts on healthy tissue, including off-target effects and high toxicity, which further impair the ability to effectively manage the disease and optimize patient outcomes. However, in the last few decades, the development of nanotherapeutics has allowed for the use of rational design in order to maximize therapeutic success. Advances in the fabrication of nano-sized delivery systems, coupled with a variety of surface engineering strategies to promote customization, have resulted in promising approaches for targeted, site-specific drug delivery with fewer unwanted effects and better therapeutic efficacy. These nano systems have been able to overcome some of the challenges of conventional drug delivery related to pharmacokinetics, biodistribution, and target specificity. In particular, lipid-based nanosystems have been extensively explored due to their high biocompatibility, versatility, and adaptability. Lipid-based approaches to cancer treatment are varied and diverse, including liposomal therapeutics, lipidic nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers, lipid-polymer nanohybrids, and supramolecular nanolipidic structures. This review aims to provide an overview of the use of diverse formulations of lipid-engineered nanotherapeutics for cancer and current challenges in the field, as researchers attempt to successfully translate these approaches from bench to clinic.
Collapse
Affiliation(s)
- Alicia Fernandez-Fernandez
- College of Healthcare Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
- *Correspondence: Alicia Fernandez-Fernandez,
| | - Romila Manchanda
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Manisha Kumari
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
13
|
Jung U, Ryu J, Choi H. Optical Light Sources and Wavelengths within the Visible and Near-Infrared Range Using Photoacoustic Effects for Biomedical Applications. BIOSENSORS 2022; 12:bios12121154. [PMID: 36551121 PMCID: PMC9775951 DOI: 10.3390/bios12121154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
The photoacoustic (PA) effect occurs when sound waves are generated by light according to the thermodynamic and optical properties of the materials; they are absorption spectroscopic techniques that can be applied to characterize materials that absorb pulse or continuous wave (CW)-modulated electromagnetic radiation. In addition, the wavelengths and properties of the incident light significantly impact the signal-to-ratio and contrast with photoacoustic signals. In this paper, we reviewed how absorption spectroscopic research results have been used in applying actual photoacoustic effects, focusing on light sources of each wavelength. In addition, the characteristics and compositions of the light sources used for the applications were investigated and organized based on the absorption spectrum of the target materials. Therefore, we expect that this study will help researchers (who desire to study photoacoustic effects) to more efficiently approach the appropriate conditions or environments for selecting the target materials and light sources.
Collapse
Affiliation(s)
- Unsang Jung
- Production Technology Research Center, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongsangbuk-do, Republic of Korea
| | - Jaemyung Ryu
- Department of Optical Engineering, Kumoh National Institute of Technology, 350-27 Gumi-daero, Gumi 39253, Gyeongsangbuk-do, Republic of Korea
| | - Hojong Choi
- Department of Electronic Engineering, Gachon University, Seongnam-daero, Sujeong-gu, Seongnam 13420, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Huang X, Zhu Z, Luo Z, Zhao W, Wang Y, Shi Y, Su X. Reversible stability of colloids switched by CO 2 based on polyhexamethylene guanidine. SOFT MATTER 2022; 18:8046-8052. [PMID: 36227104 DOI: 10.1039/d2sm00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The stability of a colloid, including emulsion and polymer latex, can be destroyed irreversibly by the addition of salt. Using the CO2 stimulus, amines can be converted into organic ammonium salts reversibly, which can access the switching of colloids. Polyhexamethylene guanidine (PHMG), was chosen as a switchable amine. The conductivity of PHMG aqueous solution switched by adding and removing CO2. Surface tension measurements verified that, under CO2, the critical micelle concentration of sodium dodecyl benzene sulfonate (SDBS) decreased from 1.0 × 10-3 to 5.0 × 10-4 M with the addition of PHMG. The crude oil emulsion containing SDBS and PHMG was destroyed and restored reversibly by the treatment with CO2 and N2. The polystyrene latex also occurred an obvious stratification after sparging with CO2 and returned a homogeneous phase upon bubbling N2. This study is intended to pave the way for colloids which has reversible stability in response to CO2 stimulation.
Collapse
Affiliation(s)
- Xiaoling Huang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhuoyan Zhu
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 100083, China
| | - Zheng Luo
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Weihang Zhao
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yufeng Wang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yiwen Shi
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
15
|
Guan D, Luan H, Shao H, Que T, Xu C, Liu L, Huang X, Su X. Bio‐based
mixed
CO
2
‐switchable surfactant for reducing viscosity of heavy oil. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Guan
- Research Institute of Exploration and Detection Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
- Xinjiang Laboratory of Petroleum Reserve in Conglomerate Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
| | - Huoxin Luan
- Research Institute of Exploration and Detection Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
- Xinjiang Laboratory of Petroleum Reserve in Conglomerate Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
| | - Hongzhi Shao
- Research Institute of Exploration and Detection Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
- Xinjiang Laboratory of Petroleum Reserve in Conglomerate Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
| | - Tingli Que
- Research Institute of Exploration and Detection Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
- Xinjiang Laboratory of Petroleum Reserve in Conglomerate Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
| | - Congjun Xu
- Research Institute of Exploration and Detection Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
- Xinjiang Laboratory of Petroleum Reserve in Conglomerate Xinjiang Oilfield Branch Company PetroChina Karamay Xinjiang China
| | - Lulu Liu
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Xiaoling Huang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
16
|
Liu K, Yan S, Liu Z, Wang D, Yang Q, Jiang X, Chen L, Tang H. New anti-tumor strategy based on acid-triggered self-destructive and near-infrared laser light responses of nano-biocatalysts integrating starvation–chemo–photothermal therapies. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00117-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Inherent limitations of single cancer therapy are overcome by multi-therapy modality, which integrates characteristics of each therapeutic modality and material chemistry. The multi-modal method has the potential for becoming one of the next generation options for cancer treatments. Photothermal therapy (PTT) is an efficient, non-invasive treatment method that can be used on various cancer types. We propose an acid-triggered self-destructing nano-biocatalyst integrated starvation/chemical/photothermal triple therapy that is based on design principles and biomedical applications of GOx cancer treatment methods.
Methods
Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potentials were used to analyze the physical as well as chemical properties of MoS2@DOX/GOx@MnO2 (M@D/G@M). Further, Fourier transform infra-red (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to assess the compositions of the nanocatalysts. The biological effects of M@D/G@M on cells were studied in vitro by inverted fluorescence microscopy, confocal laser scanning microscopy (CLSM), flow cytometry, CCK-8 test, and hemolysis test. Treatment effects of the nanocatalysts were evaluated in MHCC-97H tumor BALB/c mice, whose body weights, tumor local temperature, tumor volumes, and tumor histological changes were evaluated.
Results
There was a high DOX encapsulation efficiency of M@D/G@M (90.233%). The photothermal conversion efficiency (η) of M@D/G@M is 25.2%, and its oxygen production within 5 min reached 27.5 mg L−1. Cell internalization analysis showed that within 4 h, M@D/G@M was almost completely absorbed by HepG2 cells. Further, the highest red fluorescence and apoptosis effects of dead cells (59.07% apoptosis) as well as the lowest tumor volume index of mice (0.2862%) were observed in the M@D/G@M + pH6.0 + NIR treatment group.
Conclusions
Our findings inform the development and applications of multi-modal methods in tumor therapy.
Collapse
|
17
|
Vermeulen I, Isin EM, Barton P, Cillero-Pastor B, Heeren RM. Multimodal molecular imaging in drug discovery and development. Drug Discov Today 2022; 27:2086-2099. [DOI: 10.1016/j.drudis.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
|
18
|
Fully Customized Photoacoustic System Using Doubly Q-Switched Nd:YAG Laser and Multiple Axes Stages for Laboratory Applications. SENSORS 2022; 22:s22072621. [PMID: 35408235 PMCID: PMC9002370 DOI: 10.3390/s22072621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
We developed a customized doubly Q-switched laser that can control the pulse width to easily find weak acoustic signals for photoacoustic (PA) systems. As the laser was constructed using an acousto-optic Q-switcher, in contrast to the existing commercial laser system, it is easier to control the pulse repetition rate and pulse width. The laser has the following control ranges: 10 Hz–10 kHz for the pulse repetition rate, 40–150 ns for the pulse width, and 50–500 μJ for the pulse energy. Additionally, a custom-made modularized sample stage was used to develop a fully customized PA system. The modularized sample stage has a nine-axis control unit design for the PA system, allowing the sample target and transducer to be freely adjusted. This makes the system suitable for capturing weak PA signals. Images were acquired and processed for widely used sample targets (hair and insulating tape) with the developed fully customized PA system. The customized doubly Q-switched laser-based PA imaging system presented in this paper can be modified for diverse conditions, including the wavelength, frequency, pulse width, and sample target; therefore, we expect that the proposed technique will be helpful in conducting fundamental and applied research for PA imaging system applications.
Collapse
|
19
|
Lu S, Zhao P, Deng Y, Liu Y. Mechanistic Insights and Therapeutic Delivery through Micro/Nanobubble-Assisted Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14030480. [PMID: 35335857 PMCID: PMC8954263 DOI: 10.3390/pharmaceutics14030480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Ultrasound with low frequency (20–100 kHz) assisted drug delivery has been widely investigated as a non-invasive method to enhance the permeability and retention effect of drugs. The functional micro/nanobubble loaded with drugs could provide an unprecedented opportunity for targeted delivery. Then, ultrasound with higher intensity would locally burst bubbles and release agents, thus avoiding side effects associated with systemic administration. Furthermore, ultrasound-mediated destruction of micro/nanobubbles can effectively increase the permeability of vascular membranes and cell membranes, thereby not only increasing the distribution concentration of drugs in the interstitial space of target tissues but also promoting the penetration of drugs through cell membranes into the cytoplasm. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theragnostic tool. In this review, we first discuss the structure and generation of micro/nanobubbles. Second, ultrasound parameters and mechanisms of therapeutic delivery are discussed. Third, potential biomedical applications of micro/nanobubble-assisted ultrasound are summarized. Finally, we discuss the challenges and future directions of ultrasound combined with micro/nanobubbles.
Collapse
|
20
|
Optical sensor arrays designed for guided manufacture of perfluorocarbon nanoemulsions with a non-synthetic stabilizer. Acta Biomater 2021; 136:558-569. [PMID: 34563723 DOI: 10.1016/j.actbio.2021.09.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Hydrophobic drugs are incorporated into oil-in-water nanoemulsions (OIW) either as new formulations or repurposed for intravenous delivery. Typically, these are manufactured through stepwise processes of sonication or high-pressure homogenization (HPH). The guiding criteria for most nanoemulsion manufacture are the size and homogeneity/polydispersity of the drug-laden particles with strict requirements for clinical injectables. To date, most formulation optimization is done through trial and error with stepwise sampling during processing utilizing dynamic light scattering (DLS), light obscuration sensing (LOS) or laser particle tracking (LPT) to assess manufacturing progress. The objective of this work was to develop and implement an in-line optical turbidity/nephelometry sensor array for the longitudinal in-process monitoring of nanoemulsion manufacture. A further objective was the use of this sensor array to rapidly optimize the manufacture of a sub-120 nm oxygen carrying perfluorocarbon nanoemulsion with a non-synthetic stabilizer. During processing, samples were taken for particle size measurement and further characterization. There was a significant correlation and agreement between particle size and sensor signal as well as improved process reproducibility through sensor-guided manufacture. Given the cost associated with nanoemulsion development and scale-up manufacture, our sensor arrays could be an invaluable tool for efficient and cost-effective drug development. Sensor-guided manufacturing was used to optimize oxygen-carrying nanoemulsions. These were tested, in vitro, for their ability to improve the viability of encapsulated endocrine clusters (mouse insulinoma, Min6) and to eliminate hypoxia due to oxygen mass transfer limitations. The nanomulsions significantly improved encapsulated cluster viability and reduced hypoxia within the microcapsule environment. STATEMENT OF SIGNIFICANCE: Nanoemulsions are rapidly becoming vehicles for the controlled release delivery of both hydrophilic and hydrophobic drugs given their large surface area for exchange. As work shifts from bench to large scale manufacturing, there is a critical need for technologies that can monitor and accumulate data during processing, particularly regarding the endpoint criteria of particle size and stability. To date, no such technology has been implemented in nanoemulsion manufacture. In this paper we develop and implement an optical sensor array for in-line nanoemulsion process monitoring and then use the array to optimize the development and manufacture of novel reproducible oxygen carrying nanoemulsions lacking synthetic surfactants.
Collapse
|
21
|
Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CDL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev 2021; 177:113847. [PMID: 34182018 DOI: 10.1016/j.addr.2021.113847] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Successful delivery of drugs and nanomedicine to tumors requires a functional vascular network, extravasation across the capillary wall, penetration through the extracellular matrix, and cellular uptake. Nanomedicine has many merits, but penetration deep into the tumor interstitium remains a challenge. Failure of cancer treatment can be caused by insufficient delivery of the therapeutic agents. After intravenous administration, nanomedicines are often found in off-target organs and the tumor extracellular matrix close to the capillary wall. With circulating microbubbles, ultrasound exposure focused toward the tumor shows great promise in improving the delivery of therapeutic agents. In this review, we address the impact of focused ultrasound and microbubbles to overcome barriers for drug delivery such as perfusion, extravasation, and transport through the extracellular matrix. Furthermore, we discuss the induction of an immune response with ultrasound and delivery of immunotherapeutics. The review discusses mainly preclinical results and ends with a summary of ongoing clinical trials.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Krister Vikedal
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matilde Maardalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Kurbatskaya
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | |
Collapse
|
22
|
Kuriakose M, Borden MA. Microbubbles and Nanodrops for photoacoustic tomography. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
24
|
Zhu Z, Huang X, Hou Q, Sun Z, Su X, Quan H. Low‐Molecular‐Weight
Polymer with
CO
2
‐Switchable
Surface Activity. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuoyan Zhu
- Research Institute of Petroleum Exploration and Development PetroChina Beijing 100083 China
| | - Xiaoling Huang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Qingfeng Hou
- Research Institute of Petroleum Exploration and Development PetroChina Beijing 100083 China
| | - Zhitao Sun
- School of Chemical & Environmental Engineering China University of Mining and Technology Beijing 100083 China
| | - Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hongping Quan
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering Southwest Petroleum University Xindu 610500 China
| |
Collapse
|
25
|
Mokrousov MD, Thompson W, Ermilov SA, Abakumova T, Novoselova MV, Inozemtseva OA, Zatsepin TS, Zharov VP, Galanzha EI, Gorin DA. Indocyanine green dye based bimodal contrast agent tested by photoacoustic/fluorescence tomography setup. BIOMEDICAL OPTICS EXPRESS 2021; 12:3181-3195. [PMID: 34221653 PMCID: PMC8221961 DOI: 10.1364/boe.419461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/08/2023]
Abstract
Multimodal imaging systems are in high demand for preclinical research, experimental medicine, and clinical practice. Combinations of photoacoustic technology with other modalities including fluorescence, ultrasound, MRI, OCT have been already applied in feasibility studies. Nevertheless, only the combination of photoacoustics with ultrasound in a single setup is commercially available now. A combination of photoacoustics and fluorescence is another compelling approach because those two modalities naturally complement each other. Here, we presented a bimodal contrast agent based on the indocyanine green dye (ICG) as a single signalling compound embedded in the biocompatible and biodegradable polymer shell. We demonstrate its remarkable characteristics by imaging using a commercial photoacoustic/fluorescence tomography system (TriTom, PhotoSound Technologies). It was shown that photoacoustic signal of the particles depends on the amount of dye loaded into the shell, while fluorescence signal depends on the total amount of dye per particle. For the first time to our knowledge, a commercial bimodal photoacoustic/fluorescence setup was used for characterization of ICG doped polymer particles. Additionally, we conducted cell toxicity studies for these particles as well as studied biodistribution over time in vivo and ex vivo using fluorescent imaging. The obtained results suggest a potential for the application of biocompatible and biodegradable bimodal contrast agents as well as the integrated photoacoustic/fluorescence imaging system for preclinical and clinical studies.
Collapse
Affiliation(s)
- Maksim D. Mokrousov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Weylan Thompson
- PhotoSound Technologies, 9511 Town Park Dr, Houston, TX 77036, USA
| | | | - Tatiana Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Marina V. Novoselova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | | | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1/3, Moscow, 119991, Russia
| | - Vladimir P. Zharov
- University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, USA
| | - Ekaterina I. Galanzha
- University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, USA
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| |
Collapse
|
26
|
Sun N, Li Q, Zhang Z, Ge S, Chang X, Yu M, Li A, Ma Y. Construction, modulation and transition of light responsive oil-in-water novel emulsions stabilized by similarly charged nanoparticles and dye molecules. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Fernandes DA, Fernandes DD, Malik A, Gomes GNW, Appak-Baskoy S, Berndl E, Gradinaru CC, Kolios MC. Multifunctional nanoparticles as theranostic agents for therapy and imaging of breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 218:112110. [PMID: 33865007 DOI: 10.1016/j.jphotobiol.2020.112110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022]
Abstract
Over the last decade, there has been significant developments in nanotechnology, in particular for combined imaging and therapeutic applications (theranostics). The core or shell of nanoemulsions (NEs) can be loaded with various therapeutic agents, including drugs with low solubility for effective treatment, or various imaging agents for specific imaging modalities (e.g., MRI, fluorescence). In this work, perfluorohexane (PFH) NEs were synthesized for theranostic applications and were coupled to silica coated gold nanoparticles (scAuNPs) to increase the generation of PFH bubbles upon laser induced vaporization (i.e., optical droplet vaporization). The localized heat generated from the absorption properties of these nanoparticles (used to provide photoacoustic signals) can also be used to treat cancer without significantly damaging nearby healthy tissues. The theranostic potential of these PFH-NEs for contrast imaging of tumors and as a drug-delivery vehicle for therapeutic purposes were demonstrated for both in vitro and in vivo systems using a combination of photoacoustic, ultrasound and fluorescence imaging modalities. The ability of PFH-NEs to couple with scAuNPs, attach to the membranes of cancer cells and internalize within cancer cells, are encouraging for targeted chemotherapeutic applications for directly inducing cancer cell death via vaporization in clinical settings.
Collapse
Affiliation(s)
- Donald A Fernandes
- Department of Chemistry & Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada.
| | - Dennis D Fernandes
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Aimen Malik
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Sila Appak-Baskoy
- Department of Chemistry & Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Elizabeth Berndl
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada; Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada; Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
28
|
Snipstad S, Hanstad S, Bjørkøy A, Mørch Ý, de Lange Davies C. Sonoporation Using Nanoparticle-Loaded Microbubbles Increases Cellular Uptake of Nanoparticles Compared to Co-Incubation of Nanoparticles and Microbubbles. Pharmaceutics 2021; 13:640. [PMID: 33946327 PMCID: PMC8146007 DOI: 10.3390/pharmaceutics13050640] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Therapeutic agents can benefit from encapsulation in nanoparticles, due to improved pharmacokinetics and biodistribution, protection from degradation, increased cellular uptake and sustained release. Microbubbles in combination with ultrasound have been shown to improve the delivery of nanoparticles and drugs to tumors and across the blood-brain barrier. Here, we evaluate two different microbubbles for enhancing the delivery of polymeric nanoparticles to cells in vitro: a commercially available lipid microbubble (Sonazoid) and a microbubble with a shell composed of protein and nanoparticles. Various ultrasound parameters are applied and confocal microscopy is employed to image cellular uptake. Ultrasound enhanced cellular uptake depending on the pressure and duty cycle. The responsible mechanisms are probably sonoporation and sonoprinting, followed by uptake, and to a smaller degree enhanced endocytosis. The use of commercial Sonazoid microbubbles leads to significantly lower uptake than when using nanoparticle-loaded microbubbles, suggesting that proximity between cells, nanoparticles and microbubbles is important, and that mainly nanoparticles in the shell are taken up, rather than free nanoparticles in solution.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Sem Sælandsvei 2A, 7034 Trondheim, Norway;
- Cancer Clinic, St. Olav’s Hospital, Prinsesse Kristinas Gate 1, 7030 Trondheim, Norway
| | - Sigurd Hanstad
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
| | - Astrid Bjørkøy
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Sem Sælandsvei 2A, 7034 Trondheim, Norway;
| | - Catharina de Lange Davies
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
| |
Collapse
|
29
|
Intra-System Reliability Assessment of 2-Dimensional Shear Wave Elastography. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The availability of 2-Dimensional Shear Wave Elastography (2D-SWE) technology on modern medical ultrasound systems is becoming increasingly common. The technology is now being used to investigate a range of soft tissues and related pathological conditions. This work investigated the reliability of a single commercial 2D-SWE system using a tissue-mimicking elastography phantom to understand the major causes of intra-system variability. Sources of shear wave velocity (SWV) measurement variability relates to imaging depth, target stiffness, sampling technique and the operator. Higher SWV measurement variability was evident with increasing depth and stiffness of the phantom targets. The influence of the operator was minimal, and variations in sampling technique had little impact on the SWV.
Collapse
|
30
|
Modo M. 19F Magnetic Resonance Imaging and Spectroscopy in Neuroscience. Neuroscience 2021; 474:37-50. [PMID: 33766776 DOI: 10.1016/j.neuroscience.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
1H magnetic resonance imaging (MRI) has established itself as a key diagnostic technique, affording the visualization of brain anatomy, blood flow, activity and connectivity. The detection of other atoms (e.g. 19F, 23Na, 31P), so called hetero-nuclear MRI and spectroscopy (MRS), provides investigative avenues that complement and extend the richness of information that can be gained from 1H MRI. Especially 19F MRI is increasingly emerging as a multi-nuclear (1H/19F) technique that can be exploited to visualize cell migration and trafficking. The lack of a 19F background signal in the brain affords an unequivocal detection suitable for quantification. Fluorine-based contrast material can be engineered as nanoemulsions, nanocapsules, or nanoparticles to label cells in vitro or in vivo. Fluorinated blood substitutes, typically nanoemulsions, can also carry oxygen and serve as a theranostic in poorly perfused brain regions. Brain tissue concentrations of fluorinated pharmaceuticals, including inhalation anesthetics (e.g. isoflurane) and anti-depressants (e.g. fluoxetine), can also be measured using MRS. However, the low signal from these compounds provides a challenge for imaging. Further methodological advances that accelerate signal acquisition (e.g. compressed sensing, cryogenic coils) are required to expand the applications of 19F MR imaging to, for instance, determine the regional pharmacokinetics of novel fluorine-based drugs. Improvements in 19F signal detection and localization, combined with the development of novel sensitive probes, will increase the utility of these multi-nuclear studies. These advances will provide new insights into cellular and molecular processes involved in neurodegenerative disease, as well as the mode of action of pharmaceutical compounds.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Trout CJ, Clapp JA, Griepenburg JC. Plasmonic carriers responsive to pulsed laser irradiation: a review of mechanisms, design, and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02062e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on interactions which govern release from plasmonic carrier systems including liposomes, polymersomes, and nanodroplets under pulsed irradiation.
Collapse
Affiliation(s)
- Cory J. Trout
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Department of Applied Physics, Rutgers University-Newark, 101 Warren St., Newark, NJ 07102, USA
| | - Jamie A. Clapp
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| | - Julianne C. Griepenburg
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| |
Collapse
|
32
|
Fernandes DA, Appak-Baskoy S, Berndl E, Kolios MC. Laser activatable perfluorocarbon bubbles for imaging and therapy through enhanced absorption from coupled silica coated gold nanoparticles. RSC Adv 2021; 11:4906-4920. [PMID: 35424456 PMCID: PMC8694477 DOI: 10.1039/d0ra08009h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
Nanoparticles have extensively been used for cancer therapy and imaging (i.e., theranostics) using various imaging modalities. Due to their physical and chemical properties (e.g., absorption, fluorescence, and magnetic properties) they have been used for image guided therapy for cancer treatment monitoring. There are various limitations that make many theranostic agents unable to be used for the extended periods of time required for enhancing theranostic capabilities. Some of these are due to inherent characteristics (e.g., change and/or breakdown of structure) present upon continuous irradiation and others are due to environmental (i.e., physiological) conditions that can lead to physical instability (i.e., in terms of size) affecting the amount of particles that can accumulate at the target site and the overall contrast that can be achieved. In this study, perfluorohexane (PFH) nanoemulsions (NEs) were synthesized with silica coated gold nanoparticles (PFH-NEs-scAuNPs) in order to give both stable and enhanced signals for cancer imaging by increasing vaporization of the emulsions into bubbles through the process of optical droplet vaporization (ODV). The resulting perfluorohexane bubbles could be imaged using nonlinear ultrasound (NL US) which significantly increases the signal to noise ratio due to the nonlinear scattering properties of oscillating bubbles. The NL US signals from PFH bubbles were found to be more stable compared to conventional bubbles used for contrast imaging. In addition, the vaporization of PFH NEs into bubbles was shown to cause significant cancer cell death reflecting the theranostic capabilities of the formed PFH bubbles. Since cell death is initiated with laser excitation of PFH-NEs-scAuNPs, these nanoparticles can specifically target cancer cells once they have accumulated at the tumor region. Due to the type of theranostic agent and imaging modality used, the PFH-NEs-scAuNPs can be used to provide higher specificity compared to other agents for locating the tumor region by minimizing tissue specific signals while at the same time being used to treat cancer. PFH-NEs from PFH-NEs-scAuNPs can vaporize upon laser excitation leading to formation of PFH bubbles that can be used for contrast enhanced US imaging and therapy.![]()
Collapse
Affiliation(s)
- Donald A. Fernandes
- Department of Chemistry & Biology
- Ryerson University
- Toronto
- Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital
| | - Sila Appak-Baskoy
- Department of Chemistry & Biology
- Ryerson University
- Toronto
- Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital
| | - Elizabeth Berndl
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital
- Toronto
- Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital
- Toronto
| | - Michael C. Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital
- Toronto
- Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital
- Toronto
| |
Collapse
|
33
|
Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP, Wang J. Light‐Responsive, Reversible Emulsification and Demulsification of Oil‐in‐Water Pickering Emulsions for Catalysis. Angew Chem Int Ed Engl 2020; 60:3928-3933. [DOI: 10.1002/anie.202010750] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | | | - Jianji Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
34
|
Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP, Wang J. Light‐Responsive, Reversible Emulsification and Demulsification of Oil‐in‐Water Pickering Emulsions for Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | | | - Jianji Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
35
|
Huang H, Zhang W, Liu Z, Guo H, Zhang P. Smart responsive-calcium carbonate nanoparticles for dual-model cancer imaging and treatment. ULTRASONICS 2020; 108:106198. [PMID: 32590261 DOI: 10.1016/j.ultras.2020.106198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is widely applied in cancer diagnosis clinically. However, the gas-filled contrast agents are unstable in the blood and exhibit shorter imaging time, which limit their clinical use. In this study, a diagnostic nanoparticle system was developed for dual-mode imaging (ultrasound and fluorescence), which after encapsulation with doxorubicin (DOX) demonstrated simultaneous therapeutic function towards cancer treatment. Thus, calcium carbonate (CaCO3) nanoparticles were encapsulated with doxorubicin (DOX) to obtain CaCO3-DOX. Under acidic conditions, it produced carbon dioxide (CO2) to enhance ultrasound imaging and increase the release of DOX. After intravenously injecting CaCO3-DOX to tumor-bearing mice, in the presence of an ultrasound field, CO2bubbles were sufficiently generated at the tumor tissues for echogenic reflectivity. Also, the indocyanine green (ICG) was encapsulated into CaCO3 nanoparticles, to further detect the tumor with fluorescence. The resultant theranostic nanoparticle system exhibited therapeutic efficacy towards tumour-bearing mice. Overall, this investigation provides an attractive strategy for dual-mode cancer diagnostics.
Collapse
Affiliation(s)
- Haifeng Huang
- Department of Urology, Nanajing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Wenjing Zhang
- School of Pharmacy, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China
| | - Zhe Liu
- School of Pharmacy, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China
| | - Hongqian Guo
- Department of Urology, Nanajing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu 210008, PR China.
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China.
| |
Collapse
|
36
|
Shi Y, Xiong D, Li Z, Wang H, Qiu J, Zhang H, Wang J. Ambient CO 2/N 2 Switchable Pickering Emulsion Emulsified by TETA-Functionalized Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53385-53393. [PMID: 33170635 DOI: 10.1021/acsami.0c13157] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, metal-organic frameworks (MOFs) have been explored as emulsifiers for the fabrication of Pickering emulsions and then used for hybrid material synthesis and interface catalysis. Nevertheless, stimuli-responsive Pickering emulsions stabilized by MOFs have been rarely reported so far, although they are of great importance for fundamental research studies and practical applications. Herein, for the first time, triethylenetetramine (TETA)-functionalized MOFs (ZIF-90/TETA) have been designed, synthesized, and used for fabricating CO2-/N2-response Pickering emulsions. It is shown that even at the ZIF-90/TETA content of 0.25 wt %, the functional MOF can still efficiently emulsify n-hexane and water to form a high internal phase Pickering emulsion. Importantly, the Pickering emulsion can be easily and reversibly switched between emulsification and demulsification by bubbling of CO2 and N2 alternatively at atmospheric pressure. The possible mechanism of the CO2/N2 switchable emulsion is investigated by zeta potential, water contact angle, interfacial tension, 13C NMR spectroscopy, and an optical microscope. It is found that the acid-base reaction of CO2 with TETA anchored on the surface of ZIF-90 leads to the production of hydrophilic ammonium bicarbonate and carbamate, which results in the emulsification of the Pickering emulsion. However, when N2 is bubbled to remove CO2, the reverse reaction takes place to cause the demulsification of the Pickering emulsion. Moreover, the CO2/N2 switchable Pickering emulsion has been successfully used as a microreactor for Knoevenagel reactions to demonstrate a highly efficient integration of chemical reaction, product separation, and ZIF-90/TETA recycling for a sustainable chemical process.
Collapse
Affiliation(s)
- Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Dazhen Xiong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hucheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
37
|
Kim Y, Ding H, Zheng Y. Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. NANO LETTERS 2020; 20:7020-7027. [PMID: 32667815 PMCID: PMC7572762 DOI: 10.1021/acs.nanolett.0c01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Molecular binding in surface-based biosensing is inherently governed by diffusional transport of molecules in solution to surface-immobilized counterparts. Optothermally generated surface microbubbles can quickly accumulate solutes at the bubble-liquid-substrate interface due to high-velocity fluid flows. Despite its potential as a concentrator, however, the incorporation of bubbles into protein-based sensing is limited by high temperatures. Here, we report a biphasic liquid system, capable of generating microbubbles at a low optical power/temperature by formulating PFP as a volatile, water-immiscible component in the aqueous host. We further exploited zwitterionic surface modification to prevent unwanted printing during bubble generation. In a single protein-protein interaction model, surface binding of dispersed proteins to capture proteins was enhanced by 1 order of magnitude within 1 min by bubbles, compared to that from static incubation for 30 min. Our proof-of-concept study exploiting fluid formulation and optothermal add-on paves an effective way toward improving the performances of sensors and spectroscopies.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
38
|
|
39
|
Huang XM, Luo ZJ, Guo J, Ruan QJ, Wang JM, Yang XQ. Enzyme-Adsorbed Chitosan Nanogel Particles as Edible Pickering Interfacial Biocatalysts and Lipase-Responsive Phase Inversion of Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8890-8899. [PMID: 32687343 DOI: 10.1021/acs.jafc.0c00116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, a simple food-grade Pickering emulsion system is prepared and adopted for biphasic biocatalytic reactions. The chitosan nanogels were prepared with strong dispersion of chitosan aggregates approaching neutral pH and then used as the particle emulsifiers to produce oil-in-water Pickering emulsions. The chitosan nanogel exhibited high affinity to negatively charged lipase. As a result of increasing the biphasic interfacial area and loading amount on the oil-water interface, the catalysis activity of lipase and recycling and pH stability were highly enhanced through colorimetric determination of p-nitrophenol (the hydrolysis product of p-nitrophenyl palmitate). A general strategy was proposed to obtain stimulus-responsive Pickering emulsions that can undergo phase inversion. The in situ modification of the wettability of chitosan nanogel could be attributed to the interaction between nanogel and free fatty acids, which was triggered by lipase hydrolysis. This would permit a rapid and controlled release of hydrophobic active components in response to enzymatic triggers.
Collapse
Affiliation(s)
- Xiao-Mei Huang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhao-Jiao Luo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Jian Guo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Qi-Jun Ruan
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, People's Republic of China
- Guangdong Engineering and Technology Research Center for Effective Component Testing and Risk Material Rapid Screening of Functional Food, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Jin-Mei Wang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiao-Quan Yang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
40
|
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lutz AM. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Control Release 2020; 326:75-90. [PMID: 32554041 DOI: 10.1016/j.jconrel.2020.06.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Beyond the emerging field of oncological ultrasound molecular imaging, the recent significant advancements in ultrasound and contrast agent technology have paved the way for therapeutic ultrasound mediated microbubble oscillation and has shown that this approach is capable of increasing the permeability of microvessel walls while also initiating enhanced extravasation and drug delivery into target tissues. In addition, a large number of preclinical studies have demonstrated that ultrasound alone or combined with microbubbles can efficiently increase cell membrane permeability resulting in enhanced tissue distribution and intracellular drug delivery of molecules, nanoparticles, and other therapeutic agents. The mechanism behind the enhanced permeability is the temporary creation of pores in cell membranes through a phenomenon called sonoporation by high-intensity ultrasound and microbubbles or cavitation agents. At low ultrasound intensities (0.3-3 W/cm2), sonoporation may be caused by microbubbles oscillating in a stable motion, also known as stable cavitation. In contrast, at higher ultrasound intensities (greater than 3 W/cm2), sonoporation usually occurs through inertial cavitation that accompanies explosive growth and collapse of the microbubbles. Sonoporation has been shown to be a highly effective method to improve drug uptake through microbubble potentiated enhancement of microvascular permeability. In this review, the therapeutic strategy of using ultrasound for improved drug delivery are summarized with the special focus on cancer therapy. Additionally, we discuss the progress, challenges, and future of ultrasound-mediated drug delivery towards clinical translation.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Taehwa Lee
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Dahl
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Amelie M Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Murphy EM, Centner CS, Bates PJ, Malik MT, Kopechek JA. Delivery of thymoquinone to cancer cells with as1411-conjugated nanodroplets. PLoS One 2020; 15:e0233466. [PMID: 32437399 PMCID: PMC7241745 DOI: 10.1371/journal.pone.0233466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Systemic delivery of conventional chemotherapies can cause negative systemic toxicity, including reduced immunity and damage to organs such as the heart and kidneys-limiting the maximum dose that can be administered. Targeted therapies appear to address this problem by having a specific target while mitigating off-target effects. Biocompatible perfluorocarbon-based nanodroplet emulsions encapsulated by a phospholipid shell are in development for delivery of molecular compounds and hold promise as vehicles for targeted delivery of chemotherapeutics to tumors. When ultrasound is applied, perfluorocarbon will undergo a phase change-ultimately inducing transient perforation of the cell membrane when in close proximity, which is more commonly known as "sonoporation." Sonoporation allows enhanced intracellular delivery of molecular compounds and will reseal to encapsulate the molecular compound intracellularly. In this study, we investigated delivery of thymoquinone (TQ), a natural hydrophobic phytochemical compound with bioactivity in cancer cells. In addition, we conjugated a G-quadruplex aptamer, 'AS1411', to TQ-loaded nanodroplets and explored their effects on multiple human cancer cell lines. AS1411 binds nucleolin, which is over-expressed on the surface of cancer cells, and in addition to its tumor-targeting properties AS1411 has also been shown to induce anti-cancer effects. Thymoquinone was loaded onto AS1411-conjugated nanodroplet emulsion to assess activity against cancer cells. Confocal microscopy indicated uptake of AS1411-conjugated nanodroplets by cancer cells. Furthermore, AS1411-conjugated nanoemulsions loaded with TQ significantly enhanced cytotoxicity in cancer cells compared to free compound. These results demonstrate that AS1411 can be conjugated onto nanodroplet emulsions for targeted delivery to human cancer cells. This novel formulation offers significant potential for targeted delivery of hydrophobic chemotherapeutics to tumors for cancer treatment.
Collapse
Affiliation(s)
- Emily M. Murphy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Connor S. Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States of America
| | - Paula J. Bates
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Molecular Targets Program of the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Mohammad T. Malik
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Molecular Targets Program of the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| | - Jonathan A. Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
42
|
Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25:1174-1188. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
43
|
Ren X, He S, Liu D, Zhang Y. Multistimuli-Responsive Pickering Emulsion Stabilized by Se-Containing Surfactant-Modified Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3986-3994. [PMID: 32186870 DOI: 10.1021/acs.jafc.0c00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particle-stabilized emulsions that can respond to external stimuli have attracted significant concerns due to their intelligent-controlled stability, whereas particle-stabilized Pickering emulsions responding to multistimuli but based on biomass have been rarely reported. Here, a multistimuli-responsive Pickering emulsion was developed using the modified chitosan as stabilizer. Due to electrostatic attraction, Se-containing anionic surfactant, sodium 11-(butylselenyl)undecylsulfate (C4SeC11S), can bind with CS at an acidic pH and form CS-C4SeC11S complexes which can further self-associate to form micrometer-sized particles with the character of partially hydrophobicity. Therefore, at pH < pKa, an oil-in-water Pickering emulsion can be formed using CS-C4SeC11S particles as stabilizers and can spontaneously respond to redox, ion, and pH. First, with the addition of oxidation, the hydrophilicity of C4SeC11S was enhanced, and thus, hydrophobic association of CS-C4SeC11S decreased, leading to the disruption of CS-C4SeC11S particles. Hence, the emulsion destabilized. The demulsification process is closely related with the dosage of oxidant and the oxidation time. Second, introduction of a competitive ion (e.g., CTAB) could break the binding between C4SeC11S and CS, leading to the disruption of particle emulsifier. Thereby, demulsification occurred. Third, with sequentially increasing/decreasing pH, the emulsion can be switched from stable to unstable and then to stable again accordingly. Such a unique pH-responsive behavior has never been discovered in other pH-responsive Pickering emulsions. All of the stimuli-responsive behaviors were reversible. Upon alternately adding oxidant/reductant, CTAB/C4SeC11S, or base/acid, the current emulsion can be reversibly switched off (destabilization) and on (stabilization). Such a Pickering emulsion may be a good candidate as a vehicle of functional ingredient.
Collapse
Affiliation(s)
- Xiaofei Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Deqiong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
44
|
Switching Pickering emulsion stabilized by Chitosan-SDS complexes through ion competition. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124316] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Detampel P, Ganguly A, Tehranian S, Green F, Singha S, Santamaria P, Jeje AA, Cho CS, Petri B, Amrein MW. In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. PLoS One 2019; 14:e0223339. [PMID: 31568513 PMCID: PMC6768543 DOI: 10.1371/journal.pone.0223339] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles in polluted air or aerosolized drug nanoparticles predominantly settle in the alveolar lung. Here, we describe a novel, highly effective pathway for the particles to cross the alveolar epithelium and reach the lymph and bloodstream. Amorphous silica nanoparticles, suspended in perfluorocarbon, were instilled into the lungs of mice for intravital microscopy. Particles formed agglomerates that settled on the alveolar wall, half of which were removed from the lung within 30 minutes. TEM histology showed agglomerates in stages of crossing the alveolar epithelium, in large compartments inside the epithelial cells and crossing the basal membrane into the interstitium. This pathway is consistent with published kinetic studies in rats and mice, using a host of (negatively) charged and polar nanoparticles.
Collapse
Affiliation(s)
- Pascal Detampel
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Anutosh Ganguly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Surgery, University of Michigan at Ann Arbor, Ann Arbor, Michigan, United States of America
- * E-mail: (MWA); (AG)
| | - Sara Tehranian
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| | - Francis Green
- Department Pathology & Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Santiswarup Singha
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Pere Santamaria
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Ayodeji A. Jeje
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| | - Clifford S. Cho
- Department of Surgery, University of Michigan at Ann Arbor, Ann Arbor, Michigan, United States of America
| | - Björn Petri
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Matthias W. Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
- * E-mail: (MWA); (AG)
| |
Collapse
|
46
|
Hou W, Lou JWH, Bu J, Chang E, Ding L, Valic M, Jeon HH, Charron DM, Coolens C, Cui D, Chen J, Zheng G. A Nanoemulsion with A Porphyrin Shell for Cancer Theranostics. Angew Chem Int Ed Engl 2019; 58:14974-14978. [PMID: 31410962 DOI: 10.1002/anie.201908664] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 11/08/2022]
Abstract
A nanoemulsion with a porphyrin shell (NewPS) was created by the self-assembly of porphyrin salt around an oil core. The NewPS system has excellent colloidal stability, is amenable to different porphyrin salts and oils, and is capable of co-loading with chemotherapeutics. The porphyrin salt shell enables porphyrin-dependent optical tunability. The NewPS consisting of pyropheophorbide a mono-salt has a porphyrin shell of ordered J-aggregates, which produced a narrow, red-shifted Q-band with increased absorbance. Upon nanostructure dissociation, the fluorescence and photodynamic reactivity of the porphyrin monomers are restored. The spectrally distinct photoacoustic imaging (at 715 nm by intact NewPS) and fluorescence increase (at 671 nm by disrupted NewPS) allow the monitoring of NewPS accumulation and disruption in mice bearing KB tumors to guide effective photodynamic therapy. Substituting the oil core with Lipiodol affords additional CT contrast, whereas loading paclitaxel into NewPS facilitates drug delivery.
Collapse
Affiliation(s)
- Wenxiu Hou
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada.,Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jenny W H Lou
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jiachuan Bu
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada
| | - Enling Chang
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada
| | - Lili Ding
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada
| | - Michael Valic
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada
| | - Han Ho Jeon
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada
| | - Danielle M Charron
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Catherine Coolens
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada
| | - Daxiang Cui
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College St., PMCRT 5-354, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Hou W, Lou JWH, Bu J, Chang E, Ding L, Valic M, Jeon HH, Charron DM, Coolens C, Cui D, Chen J, Zheng G. A Nanoemulsion with A Porphyrin Shell for Cancer Theranostics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenxiu Hou
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Department of Instrument Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Jenny W. H. Lou
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Department of Medical Biophysics University of Toronto Toronto ON Canada
| | - Jiachuan Bu
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Enling Chang
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Lili Ding
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Michael Valic
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Han Ho Jeon
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Danielle M. Charron
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON Canada
| | - Catherine Coolens
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Daxiang Cui
- Department of Instrument Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Juan Chen
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network 101 College St., PMCRT 5-354 Toronto ON Canada
- Department of Medical Biophysics University of Toronto Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON Canada
| |
Collapse
|
48
|
Xie Y, Wang J, Wang J, Hu Z, Hariri A, Tu N, Krug KA, Burkart MD, Gianneschi NC, Jokerst JV, Rinehart JD. Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. J Mater Chem B 2019; 7:4833-4842. [PMID: 31389967 PMCID: PMC6690494 DOI: 10.1039/c9tb00928k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) offers the exciting prospect of retaining the ease of ultrasound imaging while enhancing imaging clarity, diagnostic specificity, and theranostic capability. To advance the capabilities of CEUS, the synthesis and understanding of new ultrasound contrast agents (UCAs) is a necessity. Many UCAs are nano- or micro-scale materials composed of a perfluorocarbon (PFC) and stabilizer that synergistically induce an ultrasound response that is both information-rich and easily differentiated from natural tissue. In this work, we probe the extent to which CEUS is modulated through variation in a PFC stabilized with fluorine-modified polydopamine nanoparticles (PDA NPs). The high level of synthetic tunability in this system allows us to study signal as a function of particle aggregation and PFC volatility in a systematic manner. Separation of aggregated and non-aggregated nanoparticles lead to a fundamentally different signal response, and for this system, PFC volatility has little effect on CEUS intensity despite a range of over 50 °C in boiling point. To further explore the imaging tunability and multimodality, Fe3+-chelation was employed to generate an enhanced photoacoustic (PA) signal in addition to the US signal. In vitro and in vivo results demonstrate that PFC-loaded PDA NPs show stronger PA signal than the non-PFC ones, indicating that the PA signal can be used for in situ differentiation between PFC-loading levels. In sum, these data evince the rich role synthetic chemistry can play in guiding new directions of development for UCAs.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, Espina M, Camins A, Garcia ML, Souto EB. Current Applications of Nanoemulsions in Cancer Therapeutics. NANOMATERIALS 2019; 9:nano9060821. [PMID: 31159219 PMCID: PMC6632105 DOI: 10.3390/nano9060821] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Nanoemulsions are pharmaceutical formulations composed of particles within a nanometer range. They possess the capacity to encapsulate drugs that are poorly water soluble due to their hydrophobic core nature. Additionally, they are also composed of safe gradient excipients, which makes them a stable and safe option to deliver drugs. Cancer therapy has been an issue for several decades. Drugs developed to treat this disease are not always successful or end up failing, mainly due to low solubility, multidrug resistance (MDR), and unspecific toxicity. Nanoemulsions might be the solution to achieve efficient and safe tumor treatment. These formulations not only solve water-solubility problems but also provide specific targeting to cancer cells and might even be designed to overcome MDR. Nanoemulsions can be modified using ligands of different natures to target components present in tumor cells surface or to escape MDR mechanisms. Multifunctional nanoemulsions are being studied by a wide variety of researchers in different research areas mainly for the treatment of different types of cancer. All of these studies demonstrate that nanoemulsions are efficiently taken by the tumoral cells, reduce tumor growth, eliminate toxicity to healthy cells, and decrease migration of cancer cells to other organs.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Mariana Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Ana Lopez-Machado
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Miren Ettcheto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Amanda Cano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
| | - Antoni Camins
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Maria Luisa Garcia
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| | - Eliana B Souto
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|