1
|
Xue Z, Wang L, Pan S, Yan J, You M, Yao C. The nucleic acid reactions on the nanomaterials surface for biomedicine. J Nanobiotechnology 2025; 23:308. [PMID: 40269855 PMCID: PMC12016162 DOI: 10.1186/s12951-025-03374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Integrating nucleic acids (NAs) with nanomaterials has substantially advanced biomedical research, enabling critical applications in biosensing, drug delivery, therapeutics, and the synthesis of nanomaterials. At the core of these advances are the reactions of NAs on nanomaterial surfaces, encompassing conjugation (covalent and non-covalent), detachment (physical and chemical), and signal amplification (enzyme-mediated signal amplification, enzyme-free signal amplification, and DNA Walker). Here, we review the fundamental mechanisms and recent progress in nucleic acid reactions on nanomaterial surfaces, discuss emerging applications for diagnostics, nanomedicine, and gene therapy, and explore persistent challenges in the field. We offer a forward-looking perspective on how future developments could better control, optimize, and harness these reactions for transformative advances in nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Zhenrui Xue
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lu Wang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Shengnan Pan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Jie Yan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Herkert EK, Garcia-Parajo MF. Harnessing the Power of Plasmonics for in Vitro and in Vivo Biosensing. ACS PHOTONICS 2025; 12:1259-1275. [PMID: 40124941 PMCID: PMC11926962 DOI: 10.1021/acsphotonics.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/25/2025]
Abstract
Plasmonic nanostructures exhibit localized surface plasmon resonances due to collective oscillation of conducting electrons that can be tuned by modulating the nanostructure size, shape, material composition, and local dielectric environment. The strong field confinement and enhancement provided by plasmonic nanostructures have been exploited over the years to enhance the sensitivity for analyte detection down to the single-molecule level, rendering these devices as potentially outstanding biosensors. Here, we summarize methods to detect biological analytes in vitro and in living cells, with a focus on plasmon-enhanced fluorescence, Raman scattering, infrared absorption, circular dichroism, and refractive index sensing. Given the tremendous advances in the field, we concentrate on a few recent examples toward biosensing under highly challenging detection conditions, including clinically relevant biomarkers in body fluids and nascent applications in living cells and in vivo. These emerging platforms serve as inspiration for exploring future directions of nanoplasmonics that can be further harnessed to advance real-world biosensing applications.
Collapse
Affiliation(s)
- Ediz Kaan Herkert
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
| | - Maria F. Garcia-Parajo
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
- ICREA-Catalan
Institute for Research and Advanced Studies, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
3
|
Tadi SR, Shenoy AG, Bharadwaj A, C S S, Mukhopadhyay C, Sadani K, Nag P. Recent advances in the design of SERS substrates and sensing systems for (bio)sensing applications: Systems from single cell to single molecule detection. F1000Res 2025; 13:670. [PMID: 40255478 PMCID: PMC12009482 DOI: 10.12688/f1000research.149263.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/22/2025] Open
Abstract
The Raman effect originates from spontaneous inelastic scattering of photons by matter. These photons provide a characteristic fingerprint of this matter, and are extensively utilized for chemical and biological sensing. The inherently lower generation of these Raman scattered photons, do not hold potential for their direct use in sensing applications. Surface enhanced Raman spectroscopy (SERS) overcomes the low sensitivity associated with Raman spectroscopy and assists the sensing of diverse analytes, including ions, small molecules, inorganics, organics, radionucleotides, and cells. Plasmonic nanoparticles exhibit localized surface plasmon resonance (LSPR) and when they are closely spaced, they create hotspots where the electromagnetic field is significantly enhanced. This amplifies the Raman signal and may offer up to a 10 14-fold SERS signal enhancement. The development of SERS active substrates requires further consideration and optimization of several critical features such as surface periodicity, hotspot density, mitigation of sample or surface autofluorescence, tuning of surface hydrophilicities, use of specific (bio) recognition elements with suitable linkers and bioconjugation chemistries, and use of appropriate optics to obtain relevant sensing outcomes in terms of sensitivity, cross-sensitivity, limit of detection, signal-to-noise ratio (SNR), stability, shelf-life, and disposability. This article comprehensively reviews the recent advancements on the use of disposable materials such as commercial grades of paper, textiles, glasses, polymers, and some specific substrates such as blue-ray digital versatile discs (DVDs) for use as SERS-active substrates for point-of-use (POU) sensing applications. The advancements in these technologies have been reviewed and critiqued for analyte detection in resource-limited settings, highlighting the prospects of applications ranging from single-molecule to single-cell detection. We conclude by highlighting the prospects and possible avenues for developing viable field deployable sensors holding immense potential in environmental monitoring, food safety and biomedical diagnostics.
Collapse
Affiliation(s)
- Sai Ratnakar Tadi
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashwini G Shenoy
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anirudh Bharadwaj
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sreelakshmi C S
- Microbiology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Kapil Sadani
- Instrumentation and Control Engineering, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
4
|
Kim N, Bae M, Cho E, Kim KS, Lee JH. Plasmonic Biosensors in Cancer-Associated miRNA Detection. BIOSENSORS 2025; 15:165. [PMID: 40136963 PMCID: PMC11940778 DOI: 10.3390/bios15030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Cancer is one of the most lethal diseases and has distinct variants that affect over 60 organs in the human body. The necessity of advanced methodologies for the early diagnosis of cancer has grown over the past decades. Among various biomarkers, microRNAs (miRNAs) have emerged as highly specific and minimally invasive indicators for cancer detection, prognosis, and treatment monitoring. Their stability in biological fluids and their critical role in gene regulation make them valuable targets for diagnostic applications. Plasmonic biosensors have gained massive attention owing to their unique optical properties, such as surface plasmon resonance, making them promising tools for the sensitive and selective analysis of cancer-associated biomarkers. In contrast to previous reviews, this work offers a comprehensive overview of advancements from approximately the past five years, particularly in the detection of cancer-associated miRNAs. It emphasizes emerging plasmonic sensing strategies, integration with novel nanomaterials, and enhanced signal amplification techniques. By focusing on these recent innovations, this review provides new insights into the potential of plasmonic biosensors to improve cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
| | - Mingyu Bae
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
| | - Euni Cho
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Organic Material Science & Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Ho Lee
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Chen K, Zhao Q, Wei Y, Sun J, Lu Y, Xiao T, Zhang H, Cai W. Design and Engineering of Silver Nanomushroom Arrays as a Universal Solid-State SERS Platform for the Label-Free, Sensitive, and Quantitative Detection of Trace Proteins. ACS APPLIED BIO MATERIALS 2025; 8:1484-1492. [PMID: 39889147 DOI: 10.1021/acsabm.4c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an ultrasensitive optical technique that is critical for protein detection and essential for identifying protein structure and concentrations in various biomedical and diagnostic applications. However, achieving highly sensitive and reproducible SERS signals for label-free proteins remains challenging due to their weak Raman signals and structural complexity. In this study, silver nanomushroom arrays (Ag NMAs) as SERS substrates were readily prepared and surface-engineered using a facile template-assisted micro- and nanofabrication approach. The surface of the substrate exhibits nanoscale roughness, long-range order, and hydrophilicity, enabling rapid and uniform dispersion of protein molecules. These molecules are anchored through Ag-S bonds, resulting in ultrasensitive Raman signals driven by strong electromagnetic enhancement effects. The highly ordered array structure improves signal repeatability, achieving a relative standard deviation of as low as 4.32%. Additionally, utilizing the silicon characteristic peak of the SERS substrate as an internal standard significantly reduces measurement errors, allowing for reliable and precise quantitative detection of protein molecules, with a linear correlation coefficient (R2) exceeding 0.96. Ultrasensitive SERS detection and effective protein discrimination via principal component analysis further validate the Ag NMA substrate's potential for universal trace protein detection. This study presents an advanced SERS platform for the sensitive and rapid detection of trace proteins, showcasing significant potential in pharmaceutical research, metabolic studies, diagnostic medicine, and protein engineering.
Collapse
Affiliation(s)
- Kang Chen
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Qian Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yi Wei
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jingtao Sun
- School of Food Science and Technology, Shihezi University, Shihezi 832003, P. R. China
| | - Yanyan Lu
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Tingting Xiao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Hongwen Zhang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Key Laboratory of Toxic and Harmful Gas Monitoring and Early Warning, Ministry of Emergency Management, Baoding 065201, P. R. China
| | - Weiping Cai
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
6
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
7
|
Shao J, Zhang W, Huang Y, Zheng J, Chi Y. Au Nanoparticles-Trisbipyridine Ruthenium(II) Nanoaggregates as Signal-Amplifying SERS Tags for Immunoassay of cTnI. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61703-61713. [PMID: 39481089 DOI: 10.1021/acsami.4c13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of human mortality worldwide. In the early stages of AMI, the patient's electrocardiogram (ECG) may not change, so the fast, sensitive, and accurate detection of the specific biomarker of cardiac troponin I (cTnI) is of great importance in the early diagnosis of AMI. In this work, for the first time, electrostatic nanoaggregates of negatively charged Au nanoparticles and positively charged trisbipyridine ruthenium(II) ions (i.e., (-)AuNPs|[Ru(bpy)3]2+ ENAs) as novel and signal-amplifying surface-enhanced Raman scattering (SERS) tags were synthesized in an easy and rapid (<3 min) way and applied in the highly sensitive, rapid detection of cTnI in human serum by being combined with an immunochromatographic test strip (ICTS). The synthesized (-)AuNPs|[Ru(bpy)3]2+ ENAs exhibited strong SERS activity due to the multiple Raman-active units (three bpy ligands) carried by each [Ru(bpy)3]2+ complex ion and abundant hotspots in each SERS tag. The developed (-)AuNPs|[Ru(bpy)3]2+ ENAs-based SERS-ICTS has been validated to be applicable in detection of cTnI in human serum with excellent sensing performances, such as fast testing (5 min) and a low detection limit (60 pg/mL). It is envisioned that the developed (-)AuNPs|[Ru(bpy)3]2+ ENAs-based SERS-ICTS sensor may have promising applications in point of care testing of various biomarkers in clinic. Additionally, this work may inspire the finding and the application of new types of Raman reporter molecules based on high valent metal-multi ligand coordination compounds like [Ru(bpy)3]2+.
Collapse
Affiliation(s)
- Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
8
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
9
|
Li R, Hu Y, Sun X, Zhang Z, Chen K, Liu Q, Chen X. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides. Talanta 2024; 273:125899. [PMID: 38484502 DOI: 10.1016/j.talanta.2024.125899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Sensing and characterizing water-soluble polypeptides are essential in various biological applications. However, detecting polypeptides using Surface-Enhanced Raman Scattering (SERS) remains a challenge due to the dominance of aromatic amino acid residues and backbones in the signal, which hinders the detection of non-aromatic amino acid residues. Herein, intra-nanoparticle plasmonic nanogap were designed by etching the Ag shell in Au@AgNPs (i.e., obtaining AuAg cores) with chlorauric acid under mild conditions, at the same time forming the outermost Au shell and the void between the AuAg cores and the Au shell (AuAg@void@Au). By varying the Ag to added chloroauric acid molar ratios, we pioneered a simple, controllable, and general synthetic strategy to form interlayer-free nanoparticles with tunable Au shell thickness, achieving precise regulation of electric field enhancement within the intra-nanogap. As validation, two polypeptide molecules, bacitracin and insulin B, were successfully synchronously encapsulated and spatial-confined in the intra-nanogap for sensing. Compared with concentrated 50 nm AuNPs and Au@AgNPs as SERS substrates, our simultaneous detection method improved the sensitivity of the assay while benefiting to obtain more comprehensive characteristic peaks of polypeptides. The synthetic strategy of confining analytes while fabricating plasmonic nanostructures enables the diffusion of target molecules into the nanogap in a highly specific and sensitive manner, providing the majority of the functionality required to achieve peptide detection or sequencing without the hassle of labeling.
Collapse
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| |
Collapse
|
10
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
11
|
Chen M, Wang H, Zhang Y, Jiang H, Li T, Liu L, Zhao Y. Label-Free Multiplex Profiling of Exosomal Proteins with a Deep Learning-Driven 3D Surround-Enhancing SERS Platform for Early Cancer Diagnosis. Anal Chem 2024; 96:6794-6801. [PMID: 38624007 DOI: 10.1021/acs.analchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Identification of protein profiling on plasma exosomes by SERS can be a promising strategy for early cancer diagnosis. However, it is still challenging to detect multiple exosomal proteins simultaneously by SERS since the Raman signals of exosomes detected by conventional colloidal nanocrystals or two-dimensional SERS substrates are incomplete and complex. Herein, we develop a novel three-dimensional (3D) surround-enhancing SERS platform, named 3D se-SERS, for the multiplex detection of exosomal proteins. In this 3D se-SERS, proteins and exosomes are covered with "hotspots" generated by the gold nanoparticles, which surround the analytes densely and three-dimensionally, providing sensitive and comprehensive SERS signals. Combining this 3D se-SERS with a deep learning model, we successfully quantitatively profiled seven proteins including CD63, CD81, CD9, CD151, CD171, TSPAN8, and PD-L1 on the surface of plasma exosomes from patients, which can predict the occurrence and advancement of lung cancer. This 3D se-SERS integrating deep learning technique benefits from high sensitivity and significant multiplexing ability for comprehensive analysis of proteins and exosomes, demonstrating the potential of deep learning-driven 3D se-SERS technology for plasma exosome-based early cancer diagnosis.
Collapse
Affiliation(s)
- Miao Chen
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Haoyang Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanyu Jiang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Tan Li
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Lixin Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yuetao Zhao
- School of Life Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
12
|
Wang KS, Kuan TY, Chen YC, Chu YJ, Chen JS, Chen CC, Liu TY. Simultaneous detection of SARS-CoV-2 S1 protein by using flexible electrochemical and Raman enhancing biochip. Biosens Bioelectron 2024; 249:116021. [PMID: 38219466 DOI: 10.1016/j.bios.2024.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Flexible laser-scribed graphene (LSG) substrates with gold nanoislands have been developed as biochips for in situ electrochemical (EC) and surface-enhanced Raman scattering (SERS) biodetection (biomolecules and viral proteins). A flexible biochip was fabricated using CO2 laser engraving polyimide (PI) films to form a 3D porous graphene-like nanostructure. Gold nanoislands were deposited on the LSG substrates to enhance the intensity of the Raman signals. Moreover, the addition of auxiliary and reference electrodes induced a dual-function EC-SERS biochip with significantly enhanced detection sensitivity. The biochip could selectively and easily capture SARS-CoV-2 S1 protein through the SARS-CoV-2 S1 antibody immobilized on EC-SERS substrates using 1-ethyl-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The grafted antibody specifically bound to SARS-CoV-2, resulting in a significant increase in the SERS signal of the target analyte. The limit of detection (LOD) of the SARS-CoV-2 S1 protein was 5 and 100 ng/mL by using EC and SERS detection, respectively. Although the LOD of the SARS-CoV-2 S1 protein detected using SERS is only 100 ng/mL, it can provide fingerprint information for identification. To improve the LOD, EC detection was integrated with SERS detection. The three-electrode detection chip enables the simultaneous detection of SERS and EC signals, which provides complementary information for target identification. The dual-functional detection technology demonstrated in this study has great potential for biomedical applications, such as the rapid and sensitive detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Kuan-Syun Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Tsai-Yu Kuan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Yun-Chu Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Yu-Ju Chu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Jeng-Shiung Chen
- Yottadeft Optoelectronics Technology Co., Ltd., Taipei, 10460, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, 23742, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; College of Engineering & Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, Taiwan.
| |
Collapse
|
13
|
Yan Z, Chang C, Kang Z, Chen C, Lv X, Chen C. Application of one-dimensional hierarchical network assisted screening for cervical cancer based on Raman spectroscopy combined with attention mechanism. Photodiagnosis Photodyn Ther 2024; 46:104086. [PMID: 38608802 DOI: 10.1016/j.pdpdt.2024.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Cervical cancer is one of the most common malignant tumors among women, and its pathological change is a relatively slow process. If it can be detected in time and treated properly, it can effectively reduce the incidence rate and mortality rate of cervical cancer, so the early screening of cervical cancer is particularly critical and significant. In this paper, we used Raman spectroscopy technology to collect the tissue sample data of patients with cervicitis, Low-grade Squamous Intraepithelial Lesion, High-grade Squamous Intraepithelial Lesion, Well differentiated squamous cell carcinoma, Moderately differentiated squamous cell carcinoma, Poorly differentiated squamous cell carcinoma and cervical adenocarcinoma. A one-dimensional hierarchical convolutional neural network based on attention mechanism was constructed to classify and identify seven types of tissue samples. The attention mechanism Efficient Channel Attention Networks module and Squeeze-and-Excitation Networks module were combined with the established one-dimensional convolutional hierarchical network model, and the results showed that the combined model had better diagnostic performance. The average accuracy, F1, and AUC of the Principal Component Analysis-Squeeze and Excitation-hierarchical network model after 5-fold cross validations could reach 96.49%±2.12%, 0.97±0.03, and 0.98±0.02, respectively, which were 1.58%, 0.0140, and 0.008 higher than those of hierarchical network. The recall rate of the Principal Component Analysis-Efficient Channel Attention-hierarchical network model was as high as 96.78%±2.85%, which is 1.47% higher than hierarchical network. Compared with the classification results of traditional CNN and ResNet for seven types of cervical cancer staging, the accuracy of the Principal Component Analysis-Squeeze and Excitation-hierarchical network model is 3.33% and 11.05% higher, respectively. The experimental results indicate that the model established in this study is easy to operate and has high accuracy. It has good reference value for rapid screening of cervical cancer, laying a foundation for further research on Raman spectroscopy as a clinical diagnostic method for cervical cancer.
Collapse
Affiliation(s)
- Ziwei Yan
- College of Software, Xinjiang University, Urumqi, China
| | - Chenjie Chang
- School of Computer Science and Technology, Xinjiang University, Urumqi, China
| | - Zhenping Kang
- School of Computer Science and Technology, Xinjiang University, Urumqi, China
| | - Chen Chen
- College of Software, Xinjiang University, Urumqi, China
| | - Xiaoyi Lv
- School of Computer Science and Technology, Xinjiang University, Urumqi, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, China.
| |
Collapse
|
14
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
15
|
Gutierrez-Romero L, Díez P, Montes-Bayón M. Bioanalytical strategies to evaluate cisplatin nanodelivery systems: From synthesis to incorporation in individual cells and biological response. J Pharm Biomed Anal 2024; 237:115760. [PMID: 37839264 DOI: 10.1016/j.jpba.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Cisplatin metallodrugs have been widely used in the treatment of multiple cancers over the last years. Nevertheless, its limited effectiveness, development of acquired drug resistances, and toxic effects decrease nowadays their application in clinical settings. Aiming at improving their features, investigations have been oriented towards the coupling of cisplatin to nanocarriers, like liposomes or inorganic nanoparticles. Moreover, these systems can be further developed to allow targeted co-delivery of drugs. In this review, we describe the major nanosystems and the optimal analytical strategies for their assessment. Finally, we describe the main biological effects of these metallodrug conjugates and the available approaches for their study.
Collapse
Affiliation(s)
- Lucia Gutierrez-Romero
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Paula Díez
- Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Maria Montes-Bayón
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| |
Collapse
|
16
|
Chen X, Chen C, Tian X, He L, Zuo E, Liu P, Xue Y, Yang J, Chen C, Lv X. DBAN: An improved dual branch attention network combined with serum Raman spectroscopy for diagnosis of diabetic kidney disease. Talanta 2024; 266:125052. [PMID: 37574605 DOI: 10.1016/j.talanta.2023.125052] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most common kidney diseases worldwide. It is estimated that approximately 537 million adults worldwide have diabetes, and up to 30%-40% of diabetic patients are at risk of developing nephropathy. The pathogenesis of DKD is complex, and its onset is insidious. Currently, the clinical diagnosis of DKD primarily relies on the increase of urinary albumin and the decrease in glomerular filtration rate in diabetic patients. However, the excretion of urinary albumin is influenced by various factors, such as physical activity, infections, fever, and high blood glucose, making it challenging to achieve an objective and accurate diagnosis. Therefore, there is an urgent need to develop an efficient, fast, and low-cost auxiliary diagnostic technology for DKD. In this study, an improved Dual Branch Attention Network (DBAN) was developed to quickly identify DKD. Serum Raman spectroscopy samples were collected from 32 DKD patients and 32 healthy volunteers. The collected data were preprocessed using the adaptive iteratively reweighted penalized least squares (airPLS) algorithm, and the DBAN was used to classify the serum Raman spectroscopy data of DKD. The model consists of a dual branch structure that extracts features using Convolutional Neural Network (CNN) and bottleneck layer modules. The attention module allows the model to learn features specifically, and lateral connections are added between the dual branches to achieve multi-level and multi-scale fusion of shallow and deep features, as well as local and global features, improving the classification accuracy of the experiment. The results of the study showed that compared to traditional deep learning algorithms such as Artificial Neural Network (ANN), CNN, GoogleNet, ResNet, and AlexNet, our proposed DBAN classification model achieved 95.4% accuracy, 98.0% precision, 96.5% sensitivity, and 97.2% specificity, demonstrating the best classification performance. This is the best method for identifying DKD, and has important reference value for the diagnosis of DKD patients, as well as improving the accuracy of medical auxiliary diagnosis.
Collapse
Affiliation(s)
- Xinya Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Xuecong Tian
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Liang He
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Xinjiang Key Laboratory of Signal Detection and Processing, Urumqi, 830017,China; Department of Electronic Engineering, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Enguang Zuo
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Pei Liu
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - You Xue
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Jie Yang
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, 840046, China.
| |
Collapse
|
17
|
Majdinasab M, Azziz A, Liu Q, Mora-Sanz V, Briz N, Edely M, Lamy de la Chapellea M. Label-free SERS for rapid identification of interleukin 6 based on intrinsic SERS fingerprint of antibody‑gold nanoparticles conjugate. Int J Biol Macromol 2023; 253:127560. [PMID: 37884230 DOI: 10.1016/j.ijbiomac.2023.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
A label-free surface-enhanced Raman scattering (SERS) was designed for sensitive detection of interleukin-6 (IL-6). The sensing element composed of anti-IL-6 antibodies adsorbed on the surface of spherical gold nanoparticles (AuNPs) as SERS-active surface. The principle of detection was probing antibody conformational changes using its intrinsic SERS fingerprint after binding to IL-6. Comparison of SERS spectra of antibody before and after binding to IL-6 showed that secondary structure of antibody does not change upon binding to IL-6. Vibrational information from disulfide bonds ν(SS) in antibody structure indicated some changes of geometry around SS bridges as a consequence of the immunocomplex formation. Transmission electron microscopy (TEM) and UV-Vis spectroscopy were used to confirm AuNPs conjugation with antibody as well as IL-6 binding to antibody on the surface of AuNPs. The SERS-based immunoassay showed a wide linear range (2.0-1000 pg mL-1) and a high sensitivity with a limit of detection (LOD) as low as 0.91 pg mL-1 (0.04 pM) without using any extrinsic Raman label. UV-Vis spectroscopy was employed as a conventional method for IL-6 detection based on observation of any change in the position of localized surface plasmon resonance (LSPR) band of AuNPs-antibody conjugates with LOD of 10 ng mL-1.
Collapse
Affiliation(s)
- Marjan Majdinasab
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Aicha Azziz
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Qiqian Liu
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Verónica Mora-Sanz
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain
| | - Nerea Briz
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain
| | - Mathieu Edely
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Marc Lamy de la Chapellea
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
18
|
Zavatski S, Dubkov S, Gromov D, Bandarenka H. Comparative Study of SERS-Spectra of NQ21 Peptide on Silver Particles and in Gold-Coated "Nanovoids". BIOSENSORS 2023; 13:895. [PMID: 37754129 PMCID: PMC10526949 DOI: 10.3390/bios13090895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The NQ21 peptide has relatively recently attracted attention in the biomedical sphere due to its prospects for facilitating the engineering of the HIV1 vaccine and ELISA test. Today, there is still a need for a reliable and fast methodology that reveals the secondary structure of this analyte at the low concentrations conventionally used in vaccines and immunological assays. The present research determined the differences between the surface-enhanced Raman scattering (SERS) spectra of NQ21 peptide molecules adsorbed on solid SERS-active substrates depending on their geometry and composition. The ultimate goal of our research was to propose an algorithm and SERS-active material for structural analysis of peptides. Phosphate buffer solutions of the 30 µg/mL NQ21 peptide at different pH levels were used for the SERS measurements, with silver particles on mesoporous silicon and gold-coated "nanovoids" in macroporous silicon. The SERS analysis of the NQ21 peptide was carried out by collecting the SERS spectra maps. The map assessment with an originally developed algorithm resulted in defining the effect of the substrate on the secondary structure of the analyte molecules. Silver particles are recommended for peptide detection if it is not urgent to precisely reveal all the characteristic bands, because they provide greater enhancement but are accompanied by analyte destruction. If the goal is to carefully study the secondary structure and composition of the peptide, it is better to use SERS-active gold-coated "nanovoids". Objective results can be obtained by collecting at least three 15 × 15 maps of the SERS spectra of a given peptide on substrates from different batches.
Collapse
Affiliation(s)
- Siarhei Zavatski
- Applied Plasmonic Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus;
| | - Sergey Dubkov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology, Moscow 124498, Russia; (S.D.)
| | - Dmitry Gromov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology, Moscow 124498, Russia; (S.D.)
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Hanna Bandarenka
- Applied Plasmonic Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus;
| |
Collapse
|
19
|
Zhang W, Zi X, Bi J, Liu G, Cheng H, Bao K, Qin L, Wang W. Plasmonic Nanomaterials in Dark Field Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2027. [PMID: 37446543 DOI: 10.3390/nano13132027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Plasma nanoparticles offer promise in data storage, biosensing, optical imaging, photoelectric integration, etc. This review highlights the local surface plasmon resonance (LSPR) excitation mechanism of plasmonic nanoprobes and its critical significance in the control of dark-field sensing, as well as three main sensing strategies based on plasmonic nanomaterial dielectric environment modification, electromagnetic coupling, and charge transfer. This review then describes the component materials of plasmonic nanoprobes based on gold, silver, and other noble metals, as well as their applications. According to this summary, researchers raised the LSPR performance of composite plasmonic nanomaterials by combining noble metals with other metals or oxides and using them in process analysis and quantitative detection.
Collapse
Affiliation(s)
- Wenjia Zhang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Xingyu Zi
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Jinqiang Bi
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Guohua Liu
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Hongen Cheng
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Kexin Bao
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Liu Qin
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Wei Wang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| |
Collapse
|
20
|
Kaladharan K, Chen KH, Chen PH, Goudar VS, Ishdorj TO, Santra TS, Tseng FG. Dual-clamped One-Pot SERS-based Biosensors for Rapid and Sensitive Detection of SARS-CoV-2 Using Portable Raman Spectrometer. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 393:134172. [PMID: 37363301 PMCID: PMC10276524 DOI: 10.1016/j.snb.2023.134172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/20/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Rapid and sensitive diagnostics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of utmost importance to control the widespread coronavirus disease 2019 (COVID-19) upsurge. This study demonstrated a novel one-pot surface-enhanced Raman scattering (SERS) based immunoassay to detect SARS-CoV-2, without any washing process using a portable Raman spectrometer. The SERS-immune assay was designed using a regular digital versatile disk (DVD) substrate integrated with Raman reporter labeled silver nanoparticles for double clamping effects. The disks were molded to form nanopillar arrays and coated with silver film to enhance the sensitivity of immunoassay. The SERS platform demonstrated a limit of detection (LoD) up to 50 pg mL-1 for SARS-CoV-2 spike protein and virus-like-particle (VLP) protein in phosphate buffer saline within a turnaround time of 20 minutes. Moreover, VLP protein spiked in untreated saliva achieved an LoD of 400 pg mL-1, providing a cycle threshold (Ct) value range of 30-32, closer to reverse transcription-polymerase chain reaction (RT-PCR) results (35-40) and higher than the commercial rapid antigen tests, ranging from 25-28. Therefore, the developed one-pot SERS based biosensor exhibited highly sensitive and rapid detection of SARS-CoV-2, which could be a potential point-of-care platform for early and cost-effective diagnosis of the COVID-19 virus.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Kuan-Hung Chen
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Pin-Han Chen
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Venkanagouda S Goudar
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
| | - Tseren-Onolt Ishdorj
- School of Information and Communication Technology, Mongolian University of Science and Technology, Mongolia
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Taiwan ROC
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Taiwan ROC
- Department of Chemistry, National Tsing Hua University, Taiwan ROC
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua, University, Taiwan, ROC
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan ROC
| |
Collapse
|
21
|
Zhao J, Ma H, Liu Y, Xu B, Song L, Han X, Liu R, He C, Cheng Z, Zhao B. SERS-based biosensor for detection of f-PSA%: Implications for the diagnosis of prostate cancer. Talanta 2023; 261:124654. [PMID: 37196403 DOI: 10.1016/j.talanta.2023.124654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
In diagnosing prostate cancer and distinguishing it from other prostate diseases, the ratio of the concentration of free prostate-specific antigen (f-PSA) to total prostate-specific antigen (t-PSA), i.e., (f-PSA%) is more accurate than the concentration of t-PSA alone. Immunoassay based on surface-enhanced Raman scattering (SERS) frequency shift has been proven to be particularly suitable for detecting large biomolecules with high reproducibility. Along similar lines, the present study developed a SERS-based biosensor that simultaneously detects t-PSA and f-PSA. The 4-mercaptobenzoic acid (MBA) on the immunocapture substrate is coupled to the t-PSA antibody through the carboxyl group, and the combination of t-PSA induces the Raman frequency shifts of MBA. The immunocolloidal gold attached with f-PSA antibodies selectively capture the f-PSA that immobilized on the MBA-modified SERS substrates, allowing for f-PSA quantification according to the SERS intensities of the 5, 5'-Dithiobis (succinimidyl-2-nitrobenzoate) (DSNB) probe. The results show that f-PSA and t-PSA have good linear response in the concentration scale of 0.1-20 ng/mL, and 1-200 ng/mL, respectively. The biosensor combines Raman frequency shifts and intensities, which greatly simplifies traditional procedures for f-PSA% detection. All the results demonstrated the great potential of the proposed biosensor in highly reproducible and accurate diagnosis of prostate cancers.
Collapse
Affiliation(s)
- Junqi Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Hao Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Baofeng Xu
- Department of Stroke Center, First Hospital of Jilin University, Changchun, China.
| | - Lina Song
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
22
|
Badillo-Ramírez I, Landeros-Rivera B, Saniger JM, Popp J, Cialla-May D. SERS-based detection of 5- S-cysteinyl-dopamine as a novel biomarker of Parkinson's disease in artificial biofluids. Analyst 2023; 148:1848-1857. [PMID: 36939184 DOI: 10.1039/d3an00027c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The early detection of Parkinson's disease (PD) can significantly improve treatment and quality of life in patients. 5-S-Cysteinyl-dopamine (CDA) is a key metabolite of high relevance for the early detection of PD. Therefore, its sensitive detection with fast and robust methods can improve its use as a biomarker. In this work we show the potentialities of label-free SERS spectroscopy in detecting CDA in aqueous solutions and artificial biofluids, with a simple, fast and sensitive approach. We present a detailed experimental SERS band assignment of CDA employing silver nanoparticle (AgNP) substrates in aqueous media, which was supported by theoretical calculations and simulated Raman and SERS spectra. The tentative orientation of CDA over the AgNP was also studied, indicating that catechol and carboxylic acid play a key role in the metallic surface adsorption. Moreover, we showed that SERS can allow us to identify CDA in aqueous media at low concentration, leading to the identification of some of its characteristic bands in pure water and in synthetic cerebrospinal fluid (SCSF) below 1 × 10-8 M, while its band identification in simulated urine (SUR) can be reached at 1 × 10-7 M. In conclusion, we show that CDA can be suitably detected by means of label-free SERS spectroscopy, which can significantly improve its sensitive detection for further analytical studies as a novel biomarker and further clinical diagnosis in PD patients.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Bruno Landeros-Rivera
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
23
|
Fatkullin M, Rodriguez RD, Petrov I, Villa NE, Lipovka A, Gridina M, Murastov G, Chernova A, Plotnikov E, Averkiev A, Cheshev D, Semyonov O, Gubarev F, Brazovskiy K, Sheng W, Amin I, Liu J, Jia X, Sheremet E. Molecular Plasmonic Silver Forests for the Photocatalytic-Driven Sensing Platforms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:923. [PMID: 36903801 PMCID: PMC10005408 DOI: 10.3390/nano13050923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor's performance when exposed to prostate cancer cells' media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.
Collapse
Affiliation(s)
- Maxim Fatkullin
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Raul D. Rodriguez
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Ilia Petrov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Nelson E. Villa
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Anna Lipovka
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Maria Gridina
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Gennadiy Murastov
- Montanuniversität Leoben, Franz Josef-Straße 18, 8700 Leoben, Austria
| | - Anna Chernova
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Evgenii Plotnikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Andrey Averkiev
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Dmitry Cheshev
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Oleg Semyonov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Fedor Gubarev
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Konstantin Brazovskiy
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ihsan Amin
- Van’t Hoff Institute of Molecular Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianxi Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xin Jia
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Evgeniya Sheremet
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| |
Collapse
|
24
|
Khosroshahi ME, Patel Y. Reflective FT-NIR and SERS studies of HER-II breast cancer biomarker using plasmonic-active nanostructured thin film immobilized oriented antibody. JOURNAL OF BIOPHOTONICS 2023; 16:e202200252. [PMID: 36177970 DOI: 10.1002/jbio.202200252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
We describe the fabrication of plasmonic-active nanostructured thin film substrate as a label-free surface-enhanced Raman scattering (SERS)-based biosensor immobilized covalently with monoclonal HER-II antibody (mAb) to detect overexpressed HER-II as a biomarker in breast cancer serum (BCS). Oriented conjugation of mAb via hydrazone linkage to provide higher mAb accessibility was characterized by UV-vis and reflective Fourier transform near-infrared (FT-NIR) spectroscopic techniques. The interaction of BCS with mAb was studied by FT-NIR and nonresonant SERS at 637 nm. The results showed detection of glycoprotein content at different laser powers including a rise in amino acid and glycan content with varying results at higher power. With nonresonant SERS we observed nonlinear behavior of peak intensity. Analysis of variance was implemented to determine the effect of laser power which was found not to be a contributing factor. However, at the nanoscale, factors including the heating effect and aggregation of molecules can contribute to the nonlinearity of peak intensity.
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Institute for Advanced Non-Destructive & Diagnostic Technologies (IANDIT), University of Toronto, Toronto, Ontario, Canada
| | - Yesha Patel
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Department of Biochemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Li Q, Huo H, Wu Y, Chen L, Su L, Zhang X, Song J, Yang H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202051. [PMID: 36683237 PMCID: PMC10015885 DOI: 10.1002/advs.202202051] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Hongqi Huo
- Department of Nuclear MedicineHan Dan Central HospitalHandanHebei056001P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| |
Collapse
|
26
|
Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2023; 18:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.
Collapse
Affiliation(s)
- Yunfan Chen
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Kaixuan Teng
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of, Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guangtao Li
- Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
27
|
Chen J, Wang P, Tian Y, Zhang R, Sun J, Zhang Z, Gao J. Identification of blood species based on surface-enhanced Raman scattering spectroscopy and convolutional neural network. JOURNAL OF BIOPHOTONICS 2023; 16:e202200254. [PMID: 36151762 DOI: 10.1002/jbio.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The identification of blood species is of great significance in many aspects such as forensic science, wildlife protection, and customs security and quarantine. Conventional Raman spectroscopy combined with chemometrics is an established method for identification of blood species. However, the Raman spectrum of trace amount of blood could hardly be obtained due to the very small cross-section of Raman scattering. In order to overcome this limitation, surface-enhanced Raman scattering (SERS) was adopted to analyze trace amount of blood. The 785 nm laser was selected as the optimal laser to acquire the SERS spectra, and the blood SERS spectra of 19 species were measured. The convolutional neural network (CNN) was used to distinguish the blood of 19 species including human. The recognition accuracy of the blood species was obtained with 98.79%. Our study provides an effective and reliable method for identification and classification of trace amount of blood.
Collapse
Affiliation(s)
- Jiansheng Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Peng Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yubing Tian
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Rui Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jiaojiao Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jing Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
28
|
Suresh K, Monisha K, Bankapur A, Chidangil S, George SD. Optically trapped SiO 2@Au particle-dye hybrid-based SERS detection of Hg 2+ ions. Analyst 2023; 148:539-545. [PMID: 36562341 DOI: 10.1039/d2an01326f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective ultra-sensitive detection of a very low concentration of analyte in a liquid environment using surface-enhanced Raman spectroscopy (SERS) is a challenging task owing to the poor reproducibility of the Raman signals arising from the nonstationary nature of the substrate. However, plasmonic metal particle-incorporated microparticles can be effectively 3-D arrested in a liquid environment that can serve as a stable SERS substrate by employing an optical trapping force. Herein, we demonstrate a 3-D optically trapped Au-attached SiO2 microparticle as an efficient SERS substrate that can detect 512 pM for Rhodamine6G and 6.8 pM for crystal violet. Further, the substrate allows the simultaneous detection of multiple analytes. By utilizing the Raman signal from Rhodamine 6G as the probe beam, the selective detection of Hg2+ ions as low as 100 pM is demonstrated.
Collapse
Affiliation(s)
- K Suresh
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - K Monisha
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India. .,Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India. .,Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India. .,Centre for applied Nanosciences (CANs), Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
29
|
Liu Z, Wang C, Zheng S, Yang X, Han H, Dai Y, Xiao R. Simultaneously ultrasensitive and quantitative detection of influenza A virus, SARS-CoV-2, and respiratory syncytial virus via multichannel magnetic SERS-based lateral flow immunoassay. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102624. [PMID: 36328340 PMCID: PMC9622431 DOI: 10.1016/j.nano.2022.102624] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Respiratory viruses usually induced similar clinical symptoms at early infection. Herein, we presented a multichannel surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFA) using high-performance magnetic SERS tags for the simultaneous ultrasensitive detection of respiratory viruses, namely influenza A virus (H1N1), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) in biological samples. As-prepared magnetic SERS tags can directly enrich and capture target viruses without pretreatment of samples, avoiding the interference of impurities in the samples as well as improving the sensitivity. With the capture-detection method, the detection limits of the proposed assay reached 85 copies mL-1, 8 pg mL-1, and 8 pg mL-1 for H1N1, SARS-CoV-2 and RSV, respectively. Moreover, the detection properties of the proposed method for target viruses in throat swab samples were verified, suggesting its remarkable potential for the early and rapid differential diagnosis of respiratory viruses.
Collapse
|
30
|
Juneja S, Zhang B, Nujhat N, Wang AX. Quantitative Sensing of Domoic Acid from Shellfish Using Biological Photonic Crystal Enhanced SERS Substrates. Molecules 2022; 27:8364. [PMID: 36500455 PMCID: PMC9736055 DOI: 10.3390/molecules27238364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Frequent monitoring of sea food, especially shellfish samples, for the presence of biotoxins serves not only as a valuable strategy to mitigate adulteration associated health risks, but could also be used to develop predictive models to understand algal explosion and toxin trends. Periodic toxin assessment is often restricted due to poor sensitivity, multifarious cleaning/extraction protocols and high operational costs of conventional detection methods. Through this work, a simplistic approach to quantitatively assess the presence of a representative marine neurotoxin, Domoic acid (DA), from spiked water and crab meat samples is presented. DA sensing was performed based on surface-enhanced Raman scattering (SERS) using silver nanoparticle enriched diatomaceous earth—a biological photonic crystal material in nature. Distinctive optical features of the quasi-ordered pore patterns in diatom skeleton with sporadic yet uniform functionalization of silver nanoparticles act as excellent SERS substrates with improved DA signals. Different concentrations of DA were tested on the substrates with the lowest detectable concentration being 1 ppm that falls well below the regulatory DA levels in seafood (>20 ppm). All the measurements were rapid and were performed within a measurement time of 1 min. Utilizing the measurement results, a standard calibration curve between SERS signal intensity and DA concentration was developed. The calibration curve was later utilized to predict the DA concentration from spiked Dungeness crab meat samples. SERS based quantitative assessment was further complemented with principal component analysis and partial least square regression studies. The tested methodology aims to bring forth a sensitive yet simple, economical and an extraction free routine to assess biotoxin presence in sea food samples onsite.
Collapse
Affiliation(s)
- Subhavna Juneja
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Boxin Zhang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Nabila Nujhat
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
31
|
Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Ni J, Huang M, Ji W, Wang L, Sun T. Recent advances in Surface-enhanced Raman Scattering for Liver Cancer Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Li Y, Lin C, Peng Y, He J, Yang Y. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 365:131974. [PMID: 35505925 PMCID: PMC9047405 DOI: 10.1016/j.snb.2022.131974] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 05/20/2023]
Abstract
The outbreak of COVID-19 caused by SARS-CoV-2 urges the development of rapidly and accurately diagnostic methods. Here, one high-sensitivity and point-of-care detection method based on magnetic SERS biosensor composed of Fe3O4-Au nanocomposite and Au nanoneedles array was developed to detect SARS-CoV-2 directly. Among, the magnetic Fe3O4-Au nanocomposite is applied to capture and separate virus from nasal and throat swabs and enhance the Raman signals of SARS-CoV-2. The magnetic SERS biosensor possessed high sensitivity by optimizing the Fe3O4-Au nanocomposite. More significantly, the on-site detection of inactivated SARS-CoV-2 virus was achieved based on the magnetic SERS biosensor with ultra-low limit of detection of 100 copies/mL during 15 mins. Furthermore, the contaminated nasal and throat swabs samples were identified by support vector machine, and the diagnostic accuracy of 100% was obtained. The magnetic SERS biosensor combined with support vector machine provides giant potential as the point-of-care detection tool for SARS-CoV-2.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei 12560, Anhui, People's Republic of China
- Public Health Research Institute of Anhui Province, Hefei 12560, Anhui, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Avni A, Joshi A, Walimbe A, Pattanashetty SG, Mukhopadhyay S. Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation. Nat Commun 2022; 13:4378. [PMID: 35902591 PMCID: PMC9334365 DOI: 10.1038/s41467-022-32143-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) are involved in a myriad of critical cellular functions and debilitating neurodegenerative diseases. Elucidating the role of intrinsic disorder and conformational heterogeneity of intrinsically disordered proteins/regions (IDPs/IDRs) in these phase-separated membrane-less organelles is crucial to understanding the mechanism of formation and regulation of biomolecular condensates. Here we introduce a unique single-droplet surface-enhanced Raman scattering (SERS) methodology that utilizes surface-engineered, plasmonic, metal nanoparticles to unveil the inner workings of mesoscopic liquid droplets of Fused in Sarcoma (FUS) in the absence and presence of RNA. These highly sensitive measurements offer unprecedented sensitivity to capture the crucial interactions, conformational heterogeneity, and structural distributions within the condensed phase in a droplet-by-droplet manner. Such an ultra-sensitive single-droplet vibrational methodology can serve as a potent tool to decipher the key molecular drivers of biological phase transitions of a wide range of biomolecular condensates involved in physiology and disease. The authors introduce a unique single-droplet surface-enhanced Raman scattering (SERS) methodology that illuminates a wealth of molecular information within the mesoscopic liquid condensed phase of Fused in Sarcoma in the absence and presence of RNA.
Collapse
Affiliation(s)
- Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Swastik G Pattanashetty
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India. .,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
35
|
Boginskaya I, Safiullin R, Tikhomirova V, Kryukova O, Nechaeva N, Bulaeva N, Golukhova E, Ryzhikov I, Kost O, Afanasev K, Kurochkin I. Human Angiotensin I-Converting Enzyme Produced by Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022; 10:biomedicines10061389. [PMID: 35740411 PMCID: PMC9219671 DOI: 10.3390/biomedicines10061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment. The ability to separate ACEs’ SERS spectra was demonstrated using the linear discriminant analysis (LDA) method with high accuracy. The intervals in the spectra with maximum contributions of the spectral features were determined and their contribution to the spectrum of each separate ACE was evaluated. Near 25 spectral features forming three intervals were enough for successful separation of the spectra of different ACEs. However, more spectral information could be obtained from analysis of 50 spectral features. Band assignment showed that several features did not correlate with band assignments to amino acids or peptides, which indicated the carbohydrate contribution to the final spectra. Analysis of SERS spectra could be beneficial for the detection of tissue-specific ACEs.
Collapse
Affiliation(s)
- Irina Boginskaya
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
- Correspondence:
| | - Robert Safiullin
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Victoria Tikhomirova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Olga Kryukova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Natalia Nechaeva
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| | - Naida Bulaeva
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Elena Golukhova
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Ilya Ryzhikov
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- FMN Laboratory, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Olga Kost
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Konstantin Afanasev
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
| | - Ilya Kurochkin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| |
Collapse
|
36
|
Mariño-López A, Alvarez-Puebla RA, Vaz B, Correa-Duarte MA, Pérez-Lorenzo M. SERS optical accumulators as unified nanoplatforms for tear sampling and sensing in soft contact lenses. NANOSCALE 2022; 14:7991-7999. [PMID: 35467676 DOI: 10.1039/d2nr00531j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tear analysis has become an invaluable asset in clinical research in order to identify and quantify novel biomarkers for a wide array of conditions. The present work is intended to take this area of study one step further by implementing an innovative sensing platform through which exploration of low-molecular-weight compounds is conducted outperforming traditional analytical technologies. With this aim, carefully engineered plasmonic nanoassemblies have been synergistically combined with molecular-sieving materials giving rise to size-selective samplers with SERS detection capabilities. These architectures have been then integrated onto hydrogel-based contact lenses and tested in simulated tear fluids in order to evidence their operational features. Through this approach, a prolonged analyte accumulation can be realized, thus providing a competitive advantage in those scenarios where concentration of biomarkers is typically low or minimum sample volumes are not met. Additionally, quenching of metabolic flux and analyte extraction protocols can be circumvented, hence preventing the intrinsic physical and chemical interferences stemming from these procedures. The obtained results render these sensing platforms as promising medical devices, and constitute a great opportunity in order to expand the clinical toolkit in tear analysis.
Collapse
Affiliation(s)
- Andrea Mariño-López
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- ICREA, Passeig de Lluís Companys 23, Barcelona, 08010, Spain
| | - Belén Vaz
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310 Vigo, Spain.
| | - Miguel A Correa-Duarte
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| |
Collapse
|
37
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
38
|
Khalil MA, El-Shanshoury AERR, Alghamdi MA, Sun J, Ali SS. Streptomyces catenulae as a Novel Marine Actinobacterium Mediated Silver Nanoparticles: Characterization, Biological Activities, and Proposed Mechanism of Antibacterial Action. Front Microbiol 2022; 13:833154. [PMID: 35572675 PMCID: PMC9095859 DOI: 10.3389/fmicb.2022.833154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Biosynthesized silver nanoparticles (Bio-SNPs) were synthesized from the marine actinobacterium strain Streptomyces catenulae M2 and characterized using a variety of techniques, including UV–vis spectrum, fourier transform infrared spectroscopy (FTIR), energy dispersive x-ray (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), surface-enhanced Raman spectroscopy (SERS), and zeta potential. The antibacterial activity of Bio-SNPs alone and in combination with antibiotic was evaluated using a microtiter-dilution resazurin assay against multidrug-resistant (MDR) bacteria. Bio-SNPs’ minimum inhibitory concentration (MIC) against bacterial strains was determined. To assess the synergistic effect of Bio-SNPs in combination with antibiotics, the Fractional Inhibitory Concentration Index (FICI) was calculated. While the safety of Bio-SNPs in biomedical applications is dependent on their use, the in vitro cytotoxicity of Bio-SNPs on normal human epithelial colon cells (NCM460) and human colorectal adenocarcinoma cells (CaCo2) were evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay and cell lactate dehydrogenase (LDH) release. The presence of Bio-SNPs was revealed by UV–vis spectroscopy, which revealed a peak in the Surface Plasmon Resonance (SPR) spectrum at 439.5 nm. Bio-SNPs were spherical in shape and small in size (average 33 nm by TEM, 58.8 nm by DLS), with good stability (−30 mV) and the presence of capping agents. Bio-SNPs had MIC values ranging from 2 to 64 μg/ml against the bacteria tested. The MIC for P. aeruginosa was the lowest (2 μg/ml). Antibiotics have been shown to have a significant synergistic effect when combined with Bio-SNPs against tested bacteria. Bio-SNPs exhibited dose-dependent cytotoxicity against NCM460 and CaCo2 cancer cells, with the latter exhibiting far greater toxicity than the former. NCM460 and CaCo2 cell viability decreased from 99.3 to 95.7% and 92.3 to 61.8%, respectively, whereas LDH leakage increased from 200 to 215 nmol/ml and 261 to 730 nmol/ml, respectively. The half inhibitory concentrations (IC50) for NCM460 and CaCo2 cancer cells were 79.46 and 10.41 μg/ml and 89.4 and 19.3 μg/ml, respectively. Bio-SNPs were found to be biocompatible and to have anti-inflammatory activity. Bio-SNPs are highly appealing for future nanomedicine applications due to their antibacterial and biocompatible properties and their inherent “green” and simple manufacturing.
Collapse
Affiliation(s)
- Maha A Khalil
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Maha A Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.,Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sameh S Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt.,Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Ultrafast Detection of SARS-CoV-2 Spike Protein (S) and Receptor-Binding Domain (RBD) in Saliva Using Surface-Enhanced Raman Spectroscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Controlling contagious diseases necessitates using diagnostic techniques that can detect infection in the early stages. Although different diagnostic tools exist, there are still challenges related to accuracy, rapidity, cost-effectiveness, and ease of use. Surface-enhanced Raman spectroscopy (SERS) is a rapid, simple, less expensive, and accurate method. We continue our previous work published on SERS detection of the SARS-CoV-2 receptor-binding domain (RBD) in water. In this work, we replace water with saliva to detect SARS-CoV-2 proteins at very low concentrations and during a very short time. We prepared a very low concentration of 10−9 M SARS-CoV-2 spike protein (S) and SARS-CoV-2 receptor-binding domain (RBD) in saliva to mimic a real case scenario. Then, we drop them on a SERS substrate. Using modified SERS measurements on the control and the sample containing the biomolecules, confirmed the sensitivity of the target identification. This technique provides different diagnostic solutions that are fast, simple, non-destructive and ultrasensitive. Simulation of the real-world of silicon wire covered with silver and gold, were performed using an effective and accurate tool, COMSOL Multiphysics software, for the enhancement properties study.
Collapse
|
40
|
Early sum frequency generation vibrational spectroscopic studies on peptides and proteins at interfaces. Biointerphases 2022; 17:031202. [PMID: 35525602 DOI: 10.1116/6.0001859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper summarizes the early research results on studying proteins and peptides at interfaces using sum frequency generation (SFG) vibrational spectroscopy. SFG studies in the C-H stretching frequency region to examine the protein side-chain behavior and in the amide I frequency region to investigate the orientation and conformation of interfacial peptides/proteins are presented. The early chiral SFG research and SFG isotope labeling studies on interfacial peptides/proteins are also discussed. These early SFG studies demonstrate the feasibility of using SFG to elucidate interfacial molecular structures of peptides and proteins in situ, which built a foundation for later SFG investigations on peptides and proteins at interfaces.
Collapse
|
41
|
Tabb JS, Rapoport E, Han I, Lombardi J, Green O. An antigen-targeting assay for Lyme disease: Combining aptamers and SERS to detect the OspA protein. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102528. [PMID: 35104673 DOI: 10.1016/j.nano.2022.102528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Lyme disease is the fastest growing vector-borne disease in the United States. However, current testing modalities are ill suited to detection of Lyme disease, leading to the diagnosis of many cases after treatment is effective. We present an improved, direct method Lyme disease diagnosis, where the Lyme specific biomarker Outer Surface Protein A (OspA) in clinical serum samples is identified using a diagnostic platform combining surface enhanced Raman scattering (SERS) and aptamers. Employing orthogonal projections to latent structures discriminant analysis, the system accurately identified 91% of serum samples from Lyme patients, and 96% of serum samples from symptomatic controls. In addition, the OspA limit-of-detection, determined to be 1 × 10-4 ng/mL, is greater than four orders of magnitude lower than that found in serum samples from early Lyme disease patients. The application of this platform to detect this difficult-to-diagnose disease suggests its potential for detecting other diseases that present similar difficulties.
Collapse
Affiliation(s)
| | | | - Il Han
- Ionica Sciences, Ithaca, NY, USA
| | - John Lombardi
- Department of Chemistry, The City College of New York, New York, NY, USA
| | | |
Collapse
|
42
|
Kondo T, Saito Y. Single-Pulsed SERS with Density-Based Clustering Analysis. J Phys Chem A 2022; 126:1755-1760. [PMID: 35259872 DOI: 10.1021/acs.jpca.1c09873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed a new method for obtaining surface-enhanced Raman scattering (SERS) spectra with extremely high sensitivity and spectral resolution. In this method, thousands of SERS spectra are acquired, followed by a data selection procedure based on density-based spatial clustering of applications with noise (DBSCAN). Each spectrum is recorded by exposure to a single nanosecond laser pulse to avoid the effect of time averaging. The reconstructed spectrum consists of the data that belong to the clusters. The method was applied to a crystal violet aqueous solution with a concentration of 10-7 mol/L. The results suggest that several minor Raman peaks were successfully recovered, which cannot be detected in conventional SERS measurements. Moreover, the method is also effective for separately observing Raman peaks that overlap with other neighboring peaks. This method extends the possibilities of SERS and will contribute to future high-resolution spectroscopy in condensed phases.
Collapse
Affiliation(s)
- Takahiro Kondo
- Department of Chemistry, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuika Saito
- Department of Chemistry, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
43
|
Wen C, Wang L, Liu L, Shen XC, Chen H. Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 2022; 17:e202200014. [PMID: 35178878 DOI: 10.1002/asia.202200014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.
Collapse
Affiliation(s)
| | | | - Li Liu
- Guangxi Normal University, chemistry, CHINA
| | | | - Hua Chen
- Guangxi Normal University, school of chemistry, 15 Yucai Road, 541004, Guilin, CHINA
| |
Collapse
|
44
|
Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS PHOTONICS 2022; 9:333-350. [PMID: 35211644 PMCID: PMC8855429 DOI: 10.1021/acsphotonics.1c01934] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Future precision medicine will be undoubtedly sustained by the detection of validated biomarkers that enable a precise classification of patients based on their predicted disease risk, prognosis, and response to a specific treatment. Up to now, genomics, transcriptomics, and immunohistochemistry have been the main clinically amenable tools at hand for identifying key diagnostic, prognostic, and predictive biomarkers. However, other molecular strategies, including metabolomics, are still in their infancy and require the development of new biomarker detection technologies, toward routine implementation into clinical diagnosis. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has been recognized as a promising technology for clinical monitoring thanks to its high sensitivity and label-free operation, which should help accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and less-expensive manner. Many studies have demonstrated the excellent performance of SERS in biomedical applications. However, such studies have also revealed several variables that should be considered for accurate SERS monitoring, in particular, when the signal is collected from biological sources (tissues, cells or biofluids). This Perspective is aimed at piecing together the puzzle of SERS in biomarker monitoring, with a view on future challenges and implications. We address the most relevant requirements of plasmonic substrates for biomedical applications, as well as the implementation of tools from artificial intelligence or biotechnology to guide the development of highly versatile sensors.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | | | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160, Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Translational
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, 48160 Derio, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
45
|
Applications of hybridization chain reaction optical detection incorporating nanomaterials: A review. Anal Chim Acta 2022; 1190:338930. [PMID: 34857127 DOI: 10.1016/j.aca.2021.338930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
The development of powerful, simple and cost-effective signal amplifiers has significant implications for biological research and analysis. Hybridization chain reaction (HCR) has attracted increasing attention because of its enzyme-free, simple, and efficient amplification. In the HCR process, an initiator probe triggered a pair of metastable hairpins through a cross-opening process to propagate a chain reaction of hybridization events, yielding a long-nicked double-stranded nucleic acid structure. To achieve more noticeable signal amplification, nanomaterials, including graphene oxide, quantum dots, gold, silver, magnetic, and other nanoparticles, were integrated with HCR. Various types of colorimetric, fluorescence, plasmonic analyses or chemiluminescence optical sensing strategies incorporating nanomaterials have been developed to analyze various targets, such as nucleic acids, small biomolecules, proteins, and metal ions. This review summarized the recent advances of HCR technology pairing diverse nanomaterials in optical detection and discussed their challenges.
Collapse
|
46
|
Cantarutti C, Hunashal Y, La Rosa C, Condorelli M, Giorgetti S, Bellotti V, Fogolari F, Esposito G. The corona of protein-gold nanoparticle systems: the role of ionic strength. Phys Chem Chem Phys 2021; 24:1630-1637. [PMID: 34951613 DOI: 10.1039/d1cp04574a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nature of the nanoparticle-protein corona is emerging as a key aspect in determining the impact of nanomaterials on proteins and in general on the biological response. We previously demonstrated that citrate-stabilized gold nanoparticles (Cit-AuNPs) interact with β2-microglobulin (β2m) preserving the protein native structure. Moreover, Cit-AuNPs are able to hinder in vitro fibrillogenesis of a β2m pathologic variant, namely D76N, by reducing the oligomeric association of the protein in solution. Here, we clarify the characteristics of the interaction between β2m and Cit-AuNPs by means of different techniques, i.e. surface enhanced Raman spectroscopy, NMR and quartz crystal microbalance with dissipation monitoring. All the results obtained clearly show that by simply changing the ionic strength of the medium it is possible to switch from a labile and transient nature of the protein-NP adduct featuring the so-called soft corona, to a more "hard" interaction with a layer of proteins having a longer residence time on the NP surface. This confirms that the interaction between β2m and Cit-AuNPs is dominated by electrostatic forces which can be tuned by modifying the ionic strength.
Collapse
Affiliation(s)
| | - Yamanappa Hunashal
- DAME, Università di Udine, 33100 Udine, Italy.,Science Division, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Carmelo La Rosa
- Dip. Scienze Chimiche, Università di Catania, 95125 Catania, Italy
| | | | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy.,Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Federico Fogolari
- DMIF, Università di Udine, 33100 Udine, Italy.,INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Gennaro Esposito
- Science Division, New York University Abu Dhabi, Abu Dhabi, UAE. .,INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| |
Collapse
|
47
|
Li TJ, Wen BY, Ma XH, Huang WT, Wu JZ, Lin XM, Zhang YJ, Li JF. Rapid and Simple Analysis of the Human Pepsin Secondary Structure Using a Portable Raman Spectrometer. Anal Chem 2021; 94:1318-1324. [PMID: 34928126 DOI: 10.1021/acs.analchem.1c04531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human pepsin is a digestive protease that plays an important role in the human digestive system. The secondary structure of human pepsin determines its bioactivity. Therefore, an in-depth understanding of human pepsin secondary structure changes is particularly important for the further improvement of the efficiency of human pepsin biological function. However, the complexity and diversity of the human pepsin secondary structure make its analysis difficult. Herein, a convenient method has been developed to quickly detect the secondary structure of human pepsin using a portable Raman spectrometer. According to the change of surface-enhanced Raman spectroscopy (SERS) signal intensity and activity of human pepsin at different pH values, we analyze the change of the human pepsin secondary structure. The results show that the content of the β-sheet gradually increased with the increase in the pH in the active range, which is in good agreement with circular dichroism (CD) measurements. The change of the secondary structure improves the sensitivity of human pepsin SERS detection. Meanwhile, human pepsin is a commonly used disease marker for the noninvasive diagnosis of gastroesophageal reflux disease (GERD); the detection limit of human pepsin we obtained is 2 μg/mL by the abovementioned method. The real clinical detection scenario is also simulated by spiking pepsin solution in saliva, and the standard recovery rate is 80.7-92.3%. These results show the great prospect of our method in studying the protein secondary structure and furthermore promote the application of SERS in clinical diagnosis.
Collapse
Affiliation(s)
- Tong-Jiang Li
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Bao-Ying Wen
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiao-Hui Ma
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Wan-Ting Huang
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jin-Zhun Wu
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiu-Mei Lin
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- Women and Children's Hospital Affiliated to Xiamen University, School of medicine, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| |
Collapse
|
48
|
Lin B, Wang Y, Yao Y, Chen L, Zeng Y, Li L, Lin Z, Guo L. Oil-Free Gold Nanobipyramid@Ag Microgels as a Functional SERS Substrate for Direct Detection of Small Molecules in a Complex Sample Matrix. Anal Chem 2021; 93:16727-16733. [PMID: 34851090 DOI: 10.1021/acs.analchem.1c04797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a super-sensitive analysis technology based on the target molecular fingerprint information. The enhancement of local electromagnetic field of the SERS substrate would increase the target molecules' Raman intensity which adsorb on the surface of nanoparticles. However, the existing adhesive macromolecules in the complex mixed sample would interfere with the adsorption of small target molecules, and it weakens the Raman intensity of target molecules. Microgels are one of the potential materials to suppress the interference of adhesive macromolecules and to avoid the complex pretreatments. However, most of the current microgel synthesis methods involve complex operations with precise instrumentation or the interference of oil and organic reagents. In this work, a simple and oil-free method was proposed to synthesize the gold nanobipyramid (Au NBP)@Ag@hyaluronic acid microgel via the condensation reaction of carboxyl and amino groups. As a proof-of-concept demonstration for small-molecule detection, the rhodamine 6G (R6G) molecules were allowed to enter inside the microgel through the meshes and adsorb on the surface of Au NBP@Ag nanoparticles within 30 min, while the macromolecule (bovine serum albumin in this case) was retained outside the microgel in the meantime. In addition, under the combined action of lightning rod effect of Au NBP and surface plasmon resonance effect of silver render the microgels with high SERS activity. The synthetic Au NBP@Ag@hyaluronic acid microgels were applied to detect 6-thioguanine in the human serum without any pretreatment process, and it showed a high signal enhancement and stable SERS signal, which can satisfy the requirement of clinical diagnosis. These results show that the proposed microgels have potential applications in the field of point-of-care testing.
Collapse
Affiliation(s)
- Bingyong Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.,Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Zhenyu Lin
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
49
|
Das GM, Managò S, Mangini M, De Luca AC. Biosensing Using SERS Active Gold Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2679. [PMID: 34685120 PMCID: PMC8539114 DOI: 10.3390/nano11102679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a powerful tool for biosensing applications owing to its fingerprint recognition, high sensitivity, multiplex detection, and biocompatibility. This review provides an overview of the most significant aspects of SERS for biomedical and biosensing applications. We first introduced the mechanisms at the basis of the SERS amplifications: electromagnetic and chemical enhancement. We then illustrated several types of substrates and fabrication methods, with a focus on gold-based nanostructures. We further analyzed the relevant factors for the characterization of the SERS sensor performances, including sensitivity, reproducibility, stability, sensor configuration (direct or indirect), and nanotoxicity. Finally, a representative selection of applications in the biomedical field is provided.
Collapse
Affiliation(s)
| | - Stefano Managò
- Laboratory of Biophotonics and Advanced Microscopy, Second Unit, Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (G.M.D.); (M.M.)
| | | | - Anna Chiara De Luca
- Laboratory of Biophotonics and Advanced Microscopy, Second Unit, Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (G.M.D.); (M.M.)
| |
Collapse
|
50
|
Zhang S, Acharya DP, Tang X, Zheng H, Yang G, Ng D, Xie Z. Dual Functions of a Au@AgNP-Incorporated Nanocomposite Desalination Membrane with an Enhanced Antifouling Property and Fouling Detection Via Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46202-46212. [PMID: 34528779 PMCID: PMC8485324 DOI: 10.1021/acsami.1c15948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 06/01/2023]
Abstract
Membrane fouling has remained a major challenge limiting the wide application of membrane technology because it reduces the efficiency and shortens the lifespan of the membrane, thus increasing the operation cost. Herein we report a novel dual-function nanocomposite membrane incorporating silver-coated gold nanoparticles (Au@AgNPs) into a sulfosuccinic acid (SSA) cross-linked poly(vinyl alcohol) (PVA) membrane for a pervaporation desalination. Compared with the control PVA membrane and PVA/SSA membrane, the Au@AgNPs/PVA/SSA membrane demonstrated a higher water flux and better salt rejection as well as an enhanced antifouling property. More importantly, Au@AgNPs provided an additional function enabling a foulant detection on the membrane surface via surface-enhanced Raman spectroscopy (SERS) as Au@AgNPs could amplify the Raman signals as an SERS substrate. Distinct SERS spectra given by a fouled membrane helped to distinguish different protein foulants from their characteristic fingerprint peaks. Their fouling tendency on the membrane was also revealed by comparing the SERS intensities of mixed foulants on the membrane surface. The Au@AgNPs/PVA/SSA nanocomposite membrane presented here demonstrated the possibility of a multifunction membrane to achieve both antifouling and fouling detection, which could potentially be used in water treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- Key
laboratory of the three Gorges Reservoir Region’s Eco-Environment,
State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Durga P. Acharya
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Xiaomin Tang
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
- Chongqing
Key Laboratory of Catalysis & New Environmental Materials, College
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P. R.
China
| | - Huaili Zheng
- Key
laboratory of the three Gorges Reservoir Region’s Eco-Environment,
State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Guang Yang
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Derrick Ng
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| | - Zongli Xie
- CSIRO
Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Victoria, Australia
| |
Collapse
|