1
|
Silva DC, Oliveira M, Marto-Costa C, Teixeira J, Oom MS, Pinto CA, Saraiva JA, Marques AC, Fitzhenry L, Serro AP. Low friction hydrogel with diclofenac eluting ability for dry eye therapeutic contact lenses. Methods 2025; 234:67-84. [PMID: 39617282 DOI: 10.1016/j.ymeth.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
When placed in the eye, contact lenses (CLs) disturb the tear fluid and affect the natural tribological behaviour of the eye. The disruption in the contact mechanics between the ocular tissues can increase frictional shear stress and ocular dryness, causing discomfort. Ultimately, continuous CLs wear can trigger inflammation which is particularly critical for people suffering from dry eye. In this work, a double strategy was followed to obtain therapeutic daily disposable CLs for dry eye: a hydroxyethyl methacrylate (HEMA) based hydrogel was coated with two natural polysaccharides, chitosan (CHI) and hyaluronic acid (HA) and posteriorly loaded with an anti-inflammatory drug (diclofenac, DCF). Material sterilisation was carried out by high hydrostatic pressure (HHP) combined with moderate temperature. The friction coefficient (μ) was determined in the presence of different tear biomolecules (cholesterol, lysozyme and albumin) using a nanotribometer. Drug release experiments were performed in static and in hydrodynamic conditions. The material was extensively characterised, regarding surface morphology/topography, optical properties, water content and swelling behaviour, wettability, ionic and oxygen permeability and mechanical properties. It was found that the coating did not impair the physico-chemical properties relevant for the material's application in CLs. Besides, it also ensured a sustained release of DCF for 24 h in tests performed in hydrodynamic conditions that simulate those found in the eye, increasing significantly the amount of drug released. It reduced friction, improving the lubrication ability of the hydrogel, and presented antibacterial properties against S. aureus, P. aeruginosa and B. Cereus. The coated samples did not reveal any signs of cytotoxicity or potential eye irritation. Overall, the coating of the hydrogel may be useful to produce daily CLs able to alleviate dry eye symptoms and the discomfort of CLs wearers.
Collapse
Affiliation(s)
- Diana C Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal.
| | - Margarida Oliveira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carolina Marto-Costa
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - João Teixeira
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Madalena Salema Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Clara Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), South East Technological University, Waterford City, County Waterford X91 K0EK, Ireland
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal.
| |
Collapse
|
2
|
Ferreres G, Pérez-Rafael S, Guaus E, Palacios Ò, Ivanov I, Torrent-Burgués J, Tzanov T. Antimicrobial and antifouling hyaluronic acid-cobalt nanogel coatings built sonochemically on contact lenses. ULTRASONICS SONOCHEMISTRY 2024; 111:107131. [PMID: 39476555 PMCID: PMC11554631 DOI: 10.1016/j.ultsonch.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
The wearing of contact lenses (CLs) may cause bacterial infections, leading in turn to more serious complications and ultimately vision impairment. In this scenario, the first step is the adhesion of tear proteins, which provide anchoring points for bacterial colonization. A possible solution is the functionalization with an antimicrobial coating, though the latter may also lead to sight obstruction and user discomfort. In this study, adipic acid dihydrazide-modified hyaluronic acid-cobalt (II) (HA-ADH-Co) nanogels (NGs) were synthesized and deposited onto commercial CLs in a single-step sonochemical process. The coating hindered up to 60 % the protein adsorption and endowed the CLs with strong antibacterial activity against major ocular pathogens like Staphylococcus aureus and Pseudomonas aeruginosa, reducing their concentration by around 3 logs. Cytotoxicity assessment with human corneal cells demonstrated viabilities above 95 %. The nanocomposite coating did not affect the optical power and the light transmission of the CLs and provided enhanced wettability, important for the wearer comfort.
Collapse
Affiliation(s)
- Guillem Ferreres
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Sílvia Pérez-Rafael
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ester Guaus
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Bellaterra, Spain
| | - Ivan Ivanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Juan Torrent-Burgués
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain.
| |
Collapse
|
3
|
He G, Liu W, Liu Y, Wei S, Yue Y, Dong L, Yu L. Antifouling hydrogel with different mechanisms:Antifouling mechanisms, materials, preparations and applications. Adv Colloid Interface Sci 2024; 335:103359. [PMID: 39591834 DOI: 10.1016/j.cis.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Biofouling is a long-standing problem for biomedical devices, membranes and marine equipment. Eco-friendly hydrogels show great potential for antifouling applications due to their unique antifouling characteristics. However, a single antifouling mechanism cannot meet a wider practical application of antifouling hydrogels, combined with multiple antifouling mechanisms, the various antifouling advantages can be played, as well as the antifouling performance and service life of antifouling hydrogel can be improved. For the construction of the antifouling hydrogel with multiple antifouling mechanisms, the antifouling mechanisms that have been used in antifouling hydrogels should be analyzed. Hence, this review focus on five major antifouling mechanisms used in antifouling hydrogel: hydration layer, elastic modulus, antifoulant modification, micro/nanostructure and self-renewal surface construction. The methods of exerting the above antifouling mechanisms in hydrogels and the materials of preparing antifouling hydrogel are introduced. Finally, the development of antifouling hydrogel in biomedical materials, membrane and marine related field is summarized, and the existing problems as well as the future trend of antifouling hydrogel are discussed. This review provides reasonable guidance for the future and application of the construction of antifouling hydrogels with multiple antifouling mechanisms.
Collapse
Affiliation(s)
- Guangling He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuqing Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhao Yue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lei Dong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Sanya Oceanographic Laboratory, Sanya 572024, China.
| |
Collapse
|
4
|
Itokawa T, Yamasaki K, Suzuki T, Koh S. Advances in Contact Lens Care Solutions: PVP-I Disinfectant and HAD Wetting Agents From Japan. Eye Contact Lens 2024; 50:91-101. [PMID: 38019569 DOI: 10.1097/icl.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/30/2023]
Abstract
ABSTRACT Half of the individuals who wear contact lenses use reusable lenses that require proper care. Improper contact lens (CL) care and using inadequate disinfecting solutions can lead to lens contamination, CL-related microbial keratitis, and Acanthamoeba keratitis. Oxidative disinfecting solutions, such as hydrogen peroxide, show higher efficacy than multipurpose solutions. Povidone-iodine (PVP-I), an oxidative disinfectant used in ophthalmic surgery, has been proven to be safe and effective. The PVP-I system, a CL disinfecting solution developed in Japan, has demonstrated excellent antimicrobial and antiviral properties. Although CL discomfort does not have a risk of ocular disorders with poor visual prognosis, such as keratitis, CL discomfort can still lead to lens dropout and thus needs to be addressed. To mitigate CL discomfort, it is essential to use disinfecting solutions containing surfactants and wetting agents that improve wettability of the lens surface. A CL solution containing hyaluronic acid derivatives (HADs) as wetting agents that permanently adhere to the lens surface to improve wettability of the lens surface was developed in Japan. There is potential for HAD to be integrated into various solutions. This article reviews the efficacy of novel PVP-I-based disinfecting solution and HAD wetting agents.
Collapse
Affiliation(s)
- Takashi Itokawa
- Department of Ophthalmology (T.I., T.S.), Toho University, Tokyo, Japan; OPHTECS Corporation (K.Y.), Kobe Research Center, Kobe, Japan; Ishizuchi Eye Clinic (T.S.), Ehime, Japan; Department of Innovative Visual Science (S.K.), Osaka University Graduate School of Medicine, Osaka, Japan; and Department of Ophthalmology (S.K.), Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | |
Collapse
|
5
|
Costa D, De Matteis V, Treso F, Montani G, Martino M, Rinaldi R, Corrado M, Cascione M. Impact of the physical properties of contact lens materials on the discomfort: role of the coefficient of friction. Colloids Surf B Biointerfaces 2024; 233:113630. [PMID: 37956592 DOI: 10.1016/j.colsurfb.2023.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Contact Lens Discomfort (CLD) is the main cause in contact lens (CLs) discontinuation, referred in literature as drop-out phenomenon. Despite such evidence was reported in several clinical studies, a relationship between physico-chemical properties of CLs and CLD is not still totally understood. In this regard, the friction of CLs surfaces seems to be related to discomfort feeling events, probably due to an alteration of the lubricate function of the tear film after the CL placement inside the ocular environment. In the last years, many studies have been finalized to the friction measurements of CLs surface, finding conflicting data due to a lack in standardized protocol. The aim of this review is primarily to show evident relationships between CLs surface properties (i.e. wettability, tear evaporation, tear film quality, etc.) and the coefficient of friction (CoF), resulting therefore the most relevant physical quantity in the CLs characterization. In addition, we reported the most recent studies in CLs tribology, which highlight that the introduction of a standard protocol in CoF measurements is necessary to obtain reproducible results, considering the aim to evaluate in a more precise way the relationship between this material surface property and comfort in CLs users.
Collapse
Affiliation(s)
- D Costa
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy
| | - V De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy.
| | - F Treso
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy
| | - G Montani
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy
| | - M Martino
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy
| | - R Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
| | - M Corrado
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy
| | - M Cascione
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy.
| |
Collapse
|
6
|
Ishihara K, Shi X, Fukazawa K, Yamaoka T, Yao G, Wu JY. Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials. ACS APPLIED BIO MATERIALS 2023; 6:3600-3616. [PMID: 37616500 PMCID: PMC10521029 DOI: 10.1021/acsabm.3c00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Contact lenses are one of the most successful applications of biomaterials. The chemical structure of the polymers used in contact lenses plays an important role in determining the function of contact lenses. Different types of contact lenses have been developed based on the chemical structure of polymers. When designing contact lenses, materials scientists consider factors such as mechanical properties, processing properties, optical properties, histocompatibility, and antifouling properties, to ensure long-term wear with minimal discomfort. Advances in contact lens materials have addressed traditional issues such as oxygen permeability and biocompatibility, improving overall comfort, and duration of use. For example, silicone hydrogel contact lenses with high oxygen permeability were developed to extend the duration of use. In addition, controlling the surface properties of contact lenses in direct contact with the cornea tissue through surface polymer modification mimics the surface morphology of corneal tissue while maintaining the essential properties of the contact lens, a significant improvement for long-term use and reuse of contact lenses. This review presents the material science elements required for advanced contact lenses of the future and summarizes the chemical methods for achieving these goals.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Xinfeng Shi
- Alcon
Research, LLC, Fort Worth, Texas 76134, United States
| | - Kyoko Fukazawa
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Tetsuji Yamaoka
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - George Yao
- Alcon
Research, LLC, Duluth, Georgia 30097, United States
| | | |
Collapse
|
7
|
Zhu Q, Zhang Q, Fu DY, Su G. Polysaccharides in contact lenses: From additives to bulk materials. Carbohydr Polym 2023; 316:121003. [PMID: 37321708 DOI: 10.1016/j.carbpol.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/17/2023]
Abstract
As the number of applications has increased, so has the demand for contact lenses comfort. Adding polysaccharides to lenses is a popular way to enhance comfort for wearers. However, this may also compromise some lens properties. It is still unclear how to balance the variation of individual lens parameters in the design of contact lenses containing polysaccharides. This review provides a comprehensive overview of how polysaccharide addition impacts lens wear parameters, such as water content, oxygen permeability, surface wettability, protein deposition, and light transmittance. It also examines how various factors, such as polysaccharide type, molecular weight, amount, and mode of incorporation into lenses modulate these effects. Polysaccharide addition can improve some wear parameters while reducing others depending on the specific conditions. The optimal method, type, and amount of added polysaccharides depend on the trade-off between various lens parameters and wear requirements. Simultaneously, polysaccharide-based contact lenses may be a promising option for biodegradable contact lenses as concerns regarding environmental risks associated with contact lens degradation continue to increase. It is hoped that this review will shed light on the rational use of polysaccharides in contact lenses to make personalized lenses more accessible.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Jones L, Efron N, Bandamwar K, Barnett M, Jacobs DS, Jalbert I, Pult H, Rhee MK, Sheardown H, Shovlin JP, Stahl U, Stanila A, Tan J, Tavazzi S, Ucakhan OO, Willcox MDP, Downie LE. TFOS Lifestyle: Impact of contact lenses on the ocular surface. Ocul Surf 2023; 29:175-219. [PMID: 37149139 DOI: 10.1016/j.jtos.2023.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Several lifestyle choices made by contact lens wearers can have adverse consequences on ocular health. These include being non-adherent to contact lens care, sleeping in lenses, ill-advised purchasing options, not seeing an eyecare professional for regular aftercare visits, wearing lenses when feeling unwell, wearing lenses too soon after various forms of ophthalmic surgery, and wearing lenses when engaged in risky behaviors (e.g., when using tobacco, alcohol or recreational drugs). Those with a pre-existing compromised ocular surface may find that contact lens wear exacerbates ocular disease morbidity. Conversely, contact lenses may have various therapeutic benefits. The coronavirus disease-2019 (COVID-19) pandemic impinged upon the lifestyle of contact lens wearers, introducing challenges such as mask-associated dry eye, contact lens discomfort with increased use of digital devices, inadvertent exposure to hand sanitizers, and reduced use of lenses. Wearing contact lenses in challenging environments, such as in the presence of dust and noxious chemicals, or where there is the possibility of ocular trauma (e.g., sport or working with tools) can be problematic, although in some instances lenses can be protective. Contact lenses can be worn for sport, theatre, at high altitude, driving at night, in the military and in space, and special considerations are required when prescribing in such situations to ensure successful outcomes. A systematic review and meta-analysis, incorporated within the review, identified that the influence of lifestyle factors on soft contact lens dropout remains poorly understood, and is an area in need of further research. Overall, this report investigated lifestyle-related choices made by clinicians and contact lens wearers and discovered that when appropriate lifestyle choices are made, contact lens wear can enhance the quality of life of wearers.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada.
| | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kalika Bandamwar
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Deborah S Jacobs
- Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
| | - Isabelle Jalbert
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Heiko Pult
- Dr Heiko Pult Optometry & Vision Research, Weinheim, Germany
| | | | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Ulli Stahl
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | | | - Jacqueline Tan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | | | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Zhang ZQ, Ren KF, Ji J. Silane coupling agent in biomedical materials. Biointerphases 2023; 18:030801. [PMID: 37382394 DOI: 10.1116/6.0002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.
Collapse
Affiliation(s)
- Ze-Qun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
11
|
Lin X, Mekonnen T, Verma S, Zevallos-Delgado C, Singh M, Aglyamov SR, Gesteira TF, Larin KV, Coulson-Thomas VJ. Hyaluronan Modulates the Biomechanical Properties of the Cornea. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36478198 PMCID: PMC9733656 DOI: 10.1167/iovs.63.13.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Hyaluronan (HA) is a major constituent of the extracellular matrix (ECM) that has high viscosity and is essential for maintaining tissue hydration. In the cornea, HA is enriched in the limbal region and is a key component of the limbal epithelial stem cell niche. HA is upregulated after injury participating in the formation of the provisional matrix, and has a key role in regulating the wound healing process. This study investigated whether changes in the distribution of HA before and after injury affects the biomechanical properties of the cornea in vivo. Methods Corneas of wild-type (wt) mice and mice lacking enzymes involved in the biosynthesis of HA were analyzed before, immediately after, and 7 and 14 days after a corneal alkali burn (AB). The corneas were evaluated using both a ring light and fluorescein stain by in vivo confocal microscopy, optical coherence elastography (OCE), and immunostaining of corneal whole mounts. Results Our results show that wt mice and mice lacking HA synthase (Has)1 and 3 present an increase in corneal stiffness 7 and 14 days after AB without a significant increase in HA expression and absence of scarring at 14 days after AB. In contrast, mice lacking Has2 present a significant decrease in corneal stiffness, with a significant increase in HA expression and scarring at 14 days after AB. Conclusions Our findings show that the mechanical properties of the cornea are significantly modulated by changes in HA distribution following alkali burn.
Collapse
Affiliation(s)
- Xiao Lin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, Texas, United States,Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas, United States
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
12
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
13
|
Liu L, Rambarran T, Sheardown H. Phenylboronic acid modified hydrogel materials and their potential for use in contact lens based drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1924-1938. [PMID: 35695022 DOI: 10.1080/09205063.2022.2088531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The use of hydrogel-based contact lens materials holds promise for ophthalmic drug delivery by increasing drug residence time, improving drug bioavailability, reducing administration frequency, and enhancing special site targeting. Issues such as ease of manufacturing, lens comfort and appropriate release kinetics must be considered. Furthermore, the high water content of hydrogel materials can result in rapid and poorly controlled release kinetics. Herein, we modified common hydrogels used in contact lens manufacturing with phenylboronic acid (PBA). PBA addresses these material design issues since boronate esters are easily formed when boron acid and diols interact, opening up a pathway for simple modification of the model lens materials with saccharide based wetting agents. The wetting agents have the potential to improve lens comfort. Furthermore, the hydrophobicity of PBA and the presence of diols can be useful to help control drug release kinetics. In this work, polymerizable 3-(acrylamido)phenylboronic acid (APBA) was synthesized and incorporated into various hydrogels used in contact lens applications, including poly(2-hydroxyethylmethacrylate) (PHEMA), polyvinylpyrrolidone (PVP) and poly(N,N-dimethyl acrylamide) (PDMA) using UV induced free radical polymerization. The APBA structure and its incorporation into the hydrogel materials were confirmed by NMR and FTIR. The materials were shown to interact with and bind wetting agents such as hyaluronan (HA) and hydroxypropyl guar (HPG) by simple soaking in an aqueous solution. The equilibrium water content of the modified materials was characterized, demonstrating that most materials are still in the appropriate range after the introduction of the hydrophobic PBA. The release of three model ophthalmic drugs with varying hydrophilicity, atropine, atropine sulfate and dexamethasone, was examined. The presence of PBA in the materials was found to promote sustained drug release due to its hydrophobic nature. The results suggest that the modification of the materials with PBA was able to not only provide a mucoadhesive property that enhanced wetting agent interactions with the materials, but had the potential to alter drug release. Thus, the modification of contact lens materials with mucoadhesive functionality may be useful in the design of hydrogel contact lenses for ophthalmic drug release and wetting agent binding.
Collapse
Affiliation(s)
- Lina Liu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Talena Rambarran
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Lee M, Chien Y, Teng P, Huang X, Lin Y, Lin T, Chou S, Chien C, Hsiao Y, Yang Y, Hsu W, Chiou S. Superrepellent Doubly Reentrant Geometry Promotes Antibiofouling and Prevention of Coronavirus Contamination. ADVANCED MATERIALS TECHNOLOGIES 2022; 8:2200387. [PMID: 36247709 PMCID: PMC9538020 DOI: 10.1002/admt.202200387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/12/2022] [Indexed: 06/16/2023]
Abstract
The fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn attention because of its highly contagious nature. Therefore, surfaces that can prevent coronavirus contamination are an urgent and unmet need during the coronavirus disease 2019 (COVID-19) pandemic. Conventional surfaces are usually based on superhydrophobic or antiviral coatings. However, these coatings may be dysfunctional because of biofouling, which is the undesired adhesion of biomolecules. A superhydrophobic surface independent of the material content and coating agents may serve the purpose of antibiofouling and preventing viral transmission. Doubly reentrant topology (DRT) is a unique structure that can meet the need. This study demonstrates that the DRT surfaces possess a striking antibiofouling effect that can prevent viral contamination. This effect still exists even if the DRT surface is made of a hydrophilic material such as silicon oxide and copper. To the best of our knowledge, this work first demonstrates that fomite transmission of viruses may be prevented by minimizing the contact area between pathogens and surfaces even made of hydrophilic materials. Furthermore, the DRT geometry per se features excellent antibiofouling ability, which may shed light on the applications of pathogen elimination in alleviating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Meng‐Shiue Lee
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Yueh Chien
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Pai‐Chi Teng
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Department of Education and ResearchTaipei City Hospital Renai BranchTaipei10629Taiwan
| | - Xuan‐Yang Huang
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Yi‐Ying Lin
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Ting‐Yi Lin
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Shih‐Jie Chou
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Chian‐Shiu Chien
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Yu‐Jer Hsiao
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Yi‐Ping Yang
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| | - Wensyang Hsu
- Department of Mechanical EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Shih‐Hwa Chiou
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityYangming CampusTaipei11217Taiwan
| |
Collapse
|
15
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
16
|
Liu L, Rambarran T, Muirhead B, Lasowski F, Sheardown H. A Radiolabeling Method for Precise Quantification of Polymers. Bioconjug Chem 2022; 33:634-642. [PMID: 35353491 DOI: 10.1021/acs.bioconjchem.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Radiolabeling a protein, molecule, or polymer can provide accurate and precise quantification in biochemistry, biomaterials, pharmacology, and drug delivery research. Herein, we describe a method to 125I label two different polymers for precise quantification in different applications. The surfaces of model contact lenses were modified with phenylboronic acid to bind and release the natural polymer, hyaluronic acid (HA); HA uptake and release were quantified by radiolabeling. In the second example, the in vivo distribution of a mucoadhesive micelle composed of the block copolymer of poly(lactide)-b-poly(methacrylic acid-co-acrylamidophenylboronic acid) was investigated. The presence of phenyl boronic acid groups (PBA), which bind to mucosal surfaces, was proposed to improve the retention of the micelle. 125I labeling of polymers was examined for quantification of microgram amounts of HA present on a contact lens or to evaluate the enhanced retention of PBA micelles on mucosal surfaces in vivo. The introduction of phenol groups onto the polymers allowed for the labeling. HA was modified with phenol groups through a coupling reaction of its carboxylic acid with hydroxybenzylamine. Phenol functional block copolymer micelles with and without PBA were synthesized by including N-(4-hydroxyphenethyl)acrylamide during polymerization. The phenol groups of HA and the block copolymers were labeled with 125I using a modified ICl labeling method. 125I labeling enabled quantification of HA loading and release including the effect of varying amounts of PBA on the contact lens surfaces. Micelles made from 125I-labeled block copolymers with and without PBA were administered intranasally to Brown Norway rats. The animals were sacrificed either immediately after or 4 h after their last nasal instillation, and the nasopharyngeal tissues were removed and quantified. Radioactivity measurements demonstrated that the presence of the PBA mucosal binding groups led to approximately four times higher retention. The HA and block copolymer 125I labeling presented in this article demonstrates the utility of the method for quantification and tracking of microgram quantities of polymers in diverse applications.
Collapse
Affiliation(s)
- Lina Liu
- Department of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7, Canada
| | - Talena Rambarran
- Department of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7, Canada
| | - Ben Muirhead
- Department of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7, Canada
| | - Frances Lasowski
- Department of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
17
|
Lu T, Wei L, Huang X, Li Y, Li G, Qin Q, Pan M, Tang B, Pan X, Wei M, Nong Z, Meng F, Li X. A potentially valuable nano graphene oxide/USPIO tumor diagnosis and treatment system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112293. [PMID: 34474844 DOI: 10.1016/j.msec.2021.112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/13/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Due to increased requirements for precision cancer treatment, cancer chemotherapy and combination therapies have gradually developed in the direction of diagnosis and treatment integration. In this study, a non-toxic nano carrier that demonstrates integrated MRI signal enhancing performance, as well as better chemotherapy and photothermal conversion performance, was prepared and characterized. Furthermore, the carrier was used to construct an integrated system of tumor diagnosis and treatment. Our in vitro studies showed that this system has a considerable inhibition effect on tumor cells during the treatment of chemotherapy when combined with PTT, and in vivo studies showed that the system could improve the MRI signal of the tumor site with application of a safe dosage. Thus, this system based on NGO/USPIO has the potential to be a multi-functional nano drug delivery system integrating diagnosis and treatment benefits and applications that are worthy of further research.
Collapse
Affiliation(s)
- Taicheng Lu
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Liying Wei
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaoqing Huang
- Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Department of Experimental Pathology, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yin Li
- Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Department of Experimental Pathology, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Guo Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Qixiao Qin
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Meishi Pan
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Mei Wei
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Zhenzhen Nong
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Fayan Meng
- Frostburg State University, Chemistry Department, 101 Braddock Rd, Frostburg, MD 21532, USA.
| | - Xuehua Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
18
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
19
|
Huerta Ángeles G, Nešporová K. Hyaluronan and its derivatives for ophthalmology: Recent advances and future perspectives. Carbohydr Polym 2021; 259:117697. [PMID: 33673986 DOI: 10.1016/j.carbpol.2021.117697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
|
20
|
Chang WH, Liu PY, Lin MH, Lu CJ, Chou HY, Nian CY, Jiang YT, Hsu YHH. Applications of Hyaluronic Acid in Ophthalmology and Contact Lenses. Molecules 2021; 26:molecules26092485. [PMID: 33923222 PMCID: PMC8123179 DOI: 10.3390/molecules26092485] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan that was first isolated and identified from the vitreous body of a bull’s eye. HA is ubiquitous in the soft connective tissues of animals and therefore has high tissue compatibility for use in medication. Because of HA’s biological safety and water retention properties, it has many ophthalmology-related applications, such as in intravitreal injection, dry eye treatment, and contact lenses. Due to its broad range of applications, the identification and quantification of HA is a critical topic. This review article discusses current methods for analyzing HA. Contact lenses have become a widely used medical device, with HA commonly used as an additive to their production material, surface coating, and multipurpose solution. HA molecules on contact lenses retain moisture and increase the wearer’s comfort. HA absorbed by contact lenses can also gradually release to the anterior segment of the eyes to treat dry eye. This review discusses applications of HA in ophthalmology.
Collapse
Affiliation(s)
- Wan-Hsin Chang
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Pei-Yi Liu
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Min-Hsuan Lin
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Chien-Ju Lu
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Hsuan-Yi Chou
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Chih-Yu Nian
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Yuan-Ting Jiang
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
- Correspondence: (Y.-T.J.); (Y.-H.H.H.); Tel.: +886-4-25658384 (ext. 3706) (Y.-T.J.); +886-4-23590121 (ext. 32238) (Y.-H.H.H.)
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Xitun District, Taichung 40704, Taiwan
- Correspondence: (Y.-T.J.); (Y.-H.H.H.); Tel.: +886-4-25658384 (ext. 3706) (Y.-T.J.); +886-4-23590121 (ext. 32238) (Y.-H.H.H.)
| |
Collapse
|
21
|
CLEAR - Contact lens complications. Cont Lens Anterior Eye 2021; 44:330-367. [DOI: 10.1016/j.clae.2021.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
|
22
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
23
|
Korogiannaki M, Samsom M, Matheson A, Soliman K, Schmidt TA, Sheardown H. Investigating the Synergistic Interactions of Surface Immobilized and Free Natural Ocular Lubricants for Contact Lens Applications: A Comparative Study between Hyaluronic Acid and Proteoglycan 4 (Lubricin). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1062-1072. [PMID: 33434030 DOI: 10.1021/acs.langmuir.0c02796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The main reasons for the discontinuation of contact lens wear are ocular dryness and discomfort. Proteoglycan 4 (PRG4), a mucinous glycoprotein, and hyaluronic acid (HA), a nonsulfated linear glycosaminoglycan, are naturally present in the eye and contribute to ocular hydration and lubrication. This study aimed to investigate the impact of the structure of the recombinant human PRG4 (rhPRG4)/HA complex on contact lens properties, when one agent is grafted and the counterpart is physisorbed on the surface of model conventional or silicone contact lens materials. Investigation of the wettability, water retention, antifouling, and boundary lubricant properties of the prepared hydrogels showed that the rhPRG4/HA interactions varied with the rhPRG/HA configuration on the hydrogel surface as well as the composition of the underlying substrate used. The rhPRG4-physisorbed/HA-grafted sample was characterized by better antifouling and boundary lubricant properties on the model conventional hydrogels, while the HA-physisorbed/rhPRG4-grafted sample exhibited improved surface wettability, antifouling, and water-retentive properties on the model silicone hydrogels. The results of this study contribute to the design of biomimetic contact lens surfaces that work synergistically with ocular fluid-phase biological agents to enhance compatibility between the contact lens and the ocular environment, alleviating dry eye symptoms and improving comfort.
Collapse
Affiliation(s)
- Myrto Korogiannaki
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Michael Samsom
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Austyn Matheson
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Karim Soliman
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
24
|
Karayilan M, Clamen L, Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules 2021; 22:223-261. [PMID: 33405900 DOI: 10.1021/acs.biomac.0c01525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ocular applications of polymeric materials have been widely investigated for medical diagnostics, treatment, and vision improvement. The human eye is a vital organ that connects us to the outside world so when the eye is injured, infected, or impaired, it needs immediate medical treatment to maintain clear vision and quality of life. Moreover, several essential parts of the eye lose their functions upon aging, causing diminished vision. Modern polymer science and polymeric materials offer various alternatives, such as corneal and scleral implants, artificial ocular lenses, and vitreous substitutes, to replace the damaged parts of the eye. In addition to the use of polymers for medical treatment, polymeric contact lenses can provide not only vision correction, but they can also be used as wearable electronics. In this Review, we highlight the evolution of polymeric materials for specific ocular applications such as intraocular lenses and current state-of-the-art polymeric systems with unique properties for contact lens, corneal, scleral, and vitreous body applications. We organize this Review paper by following the path of light as it travels through the eye. Starting from the outside of the eye (contact lenses), we move onto the eye's surface (cornea and sclera) and conclude with intraocular applications (intraocular lens and vitreous body) of mostly synthetic polymers and several biopolymers. Initially, we briefly describe the anatomy and physiology of the eye as a reminder of the eye parts and their functions. The rest of the Review provides an overview of recent advancements in next-generation contact lenses and contact lens sensors, corneal and scleral implants, solid and injectable intraocular lenses, and artificial vitreous body. Current limitations for future improvements are also briefly discussed.
Collapse
Affiliation(s)
- Metin Karayilan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Liane Clamen
- Adaptilens, LLC, Boston, Massachusetts 02467, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
25
|
Poly(2-hydroxyethyl methacrylate)/β-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases. Acta Biomater 2020; 110:105-118. [PMID: 32339710 DOI: 10.1016/j.actbio.2020.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
A series of poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels containing cross-linked β-cyclodextrin-hyaluronan (β-CD-crHA), with tear protein adsorption resistance and sustained drug delivery, were developed as contact lens materials for eye diseases. β-CD-HA was synthesized from aminated β-CD and HA and then crosslinked within pHEMA hydrogel using polyethylenimine as a crosslinker. The synthesized β-CD-HA was characterized by 1H NMR analysis, and β-CD-crHA immobilized in pHEMA hydrogel was confirmed by FT-IR, SEM, and AFM analyses. The incorporation of β-CD-crHA significantly improved the surface hydrophilicity, water uptake ability, oxygen permeability, and flexibility of pHEMA hydrogel, but did not compromise light transmission. pHEMA/β-CD-crHA hydrogels not only decreased the tear protein adsorption because of the electrostatically mutual repulsion and the improved hydrophilicity, leading to the reduced adhesion of Staphylococcus aureus on the hydrogel surface, but also enhanced the encapsulation capacity and the sustainable delivery of diclofenac due to the formation of inclusion complexes between β-CD and drugs. All the hydrogels were nontoxic to 3T3 mouse fibroblasts by in vitro cell viability analysis. Among these hydrogels with different β-CD-crHA contents, pHEMA/β-CD-crHA10 hydrogel showed the lowest water contact angle of 52 °, the highest water content of 65%, the largest Dk value of 36.4 barrer, and the optimal modulus of 1.8 MPa, as well as a good light transmission of over 90%. The in vivo conjunctivitis treatment of rabbits for 72 h indicated that drug-loaded pHEMA/β-CD-crHA10 hydrogel presented a better therapeutic effect than both one dose administration of drug solution per day and drug-loaded pHEMA hydrogel. Thus, pHEMA/β-CD-crHA10 hydrogel is a promising contact lens material for ophthalmic diseases. STATEMENT OF SIGNIFICANCE: Topical eye drops are currently the most popular treatment for ophthalmic diseases, but frequent dosing is necessary to acquire the desirable clinical effect at the expense of systemic side-effects. Drug-loaded contact lenses, as an alternative of eye drops, possess many good performances and show potential applications. However, the sustained drug delivery and the tear protein adsorption resistance are still challenging for contact lenses. Hence, we developed a novel pHEMA/β-CD-crHA hydrogel by incorporating β-CD-crHA crosslinked network into pHEMA hydrogel. Besides the improvements in surface hydrophilicity, water uptake ability, oxygen permeability, and flexibility, pHEMA/β-CD-crHA hydrogel also reduced the adsorption of tear proteins and the adhesion of Staphylococcus aureus, enhanced the drug encapsulation, and prolonged the drug delivery, with better effect in the conjunctivitis treatment of rabbits. Thus, pHEMA/β-CD-crHA hydrogel is a potential contact lens material for treating ophthalmic diseases.
Collapse
|
26
|
Yamasaki K, Drolle E, Nakagawa H, Hisamura R, Ngo W, Jones L. Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability. Cont Lens Anterior Eye 2020; 44:101334. [PMID: 32505651 DOI: 10.1016/j.clae.2020.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the interaction of a novel low molecular weight hyaluronic acid derivative containing hydrophobic groups with soft contact lenses and its effect on lens hydrophilicity compared with a conventional form of hyaluronic acid. METHODS This investigation studied the uptake of fluorescently-labelled hyaluronic acid and a low molecular weight hyaluronic acid derivative to four types of contact lenses using fluorescent microscopy and confocal laser scanning microscopy. Further, the four lens types were used to compare efficacy in improving hydrophilicity, as well as maintenance of contact angle measurements, in commercially available multipurpose solutions that contained either hyaluronic acid, the low molecular weight hyaluronic acid derivative, or an alternative wetting agent. RESULTS The low molecular weight hyaluronic acid derivative was found to sorb more readily to silicone hydrogel lenses and exhibit a greater accumulation over time than conventional hyaluronic acid. Multipurpose solutions containing the low molecular weight hyaluronic acid derivative showed an increase in lens hydrophilicity through decreases in contact angle measurements when compared with those obtained from lenses treated with multipurpose solutions containing conventional hyaluronic acid or alternative wetting agents. This increase in lens hydrophilicity associated with the low molecular weight hyaluronic acid derivative was also maintained over multiple cycles in phosphate buffered saline, while alternative solutions with conventional hyaluronic acid did not. CONCLUSION Overall, lens treatment using a low molecular weight hyaluronic acid derivative-based solution lead to improved in vitro lens hydrophilicity.
Collapse
Affiliation(s)
- Katsuhide Yamasaki
- Ophtecs Corporation, 5-2-4 Minatojima-Minami-Machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Elizabeth Drolle
- Centre for Ocular Research and Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Haruki Nakagawa
- Ophtecs Corporation, 5-2-4 Minatojima-Minami-Machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ryuji Hisamura
- Ophtecs Corporation, 5-2-4 Minatojima-Minami-Machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - William Ngo
- Centre for Ocular Research and Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Lyndon Jones
- Centre for Ocular Research and Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
27
|
Dong Q, Guo X, Li L, Yu C, Nie L, Tian W, Zhang H, Huang S, Zang H. Understanding hyaluronic acid induced variation of water structure by near-infrared spectroscopy. Sci Rep 2020; 10:1387. [PMID: 31992833 PMCID: PMC6987104 DOI: 10.1038/s41598-020-58417-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
In order to understand the hydration effect of hyaluronic acid (HA) in aqueous solution, near-infrared (NIR) spectroscopy was used to investigate the HA aqueous solutions at different concentrations and temperature. As HA concentration was raised, there was a nonlinear change in absorption value in the first overtone region of OH, indicating the changes of hydration water. A reconstructed spectrum based on principal component analysis (PCA) was established and analyzed with the concept of aquaphotomics. The results showed that HA acted as a structure maker to make water molecules arranged in order. Water species with two hydrogen bonds (S2) and three hydrogen bonds (S3) showed the decrease at low concentration range of 0-40 mg/mL, but increased at higher concentration, indicating the difference in water species at different HA concentration. Meanwhile, HA had the ability to improve the thermal stability of water structure, suggesting a potential bio-protective function. This study provides a unique perspective on the molecular interactions between HA and water molecules, which is helpful for understanding the role of HA in life process and may serve as the basis for HA applications.
Collapse
Affiliation(s)
- Qin Dong
- School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, China
| | - Xueping Guo
- Bloomage Biotechnology Corporation Limited, Tianchen Street 678, Jinan, 250012, China
| | - Lian Li
- School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, China
| | - Chen Yu
- School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, China
| | - Lei Nie
- School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, China
| | - Weilu Tian
- School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, China
| | - Hui Zhang
- School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, China
| | - Siling Huang
- Bloomage Biotechnology Corporation Limited, Tianchen Street 678, Jinan, 250012, China
| | - Hengchang Zang
- School of Pharmaceutical Sciences, Shandong University, Wenhuaxi Road 44, Jinan, 250012, China.
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Wenhuaxi Road 44, Jinan, 250012, China.
- National Glycoengineering Research Center, Shandong University, Binhai Road 72, Qingdao, 266200, China.
| |
Collapse
|
28
|
Liu Y, Hu H, Yang X, Lv J, Zhou L, Luo Z. Hydrophilic modification on polyvinyl alcohol membrane by hyaluronic acid. Biomed Mater 2019; 14:055009. [DOI: 10.1088/1748-605x/ab3010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|