1
|
Provenzano M, Bellussi FM, Fasano M, Chávez Thielemann H. Atomistic Modeling of Cross-Linking in Epoxy-Amine Resins: An Open-Source Protocol. ACS APPLIED POLYMER MATERIALS 2025; 7:4876-4884. [PMID: 40309653 PMCID: PMC12039963 DOI: 10.1021/acsapm.4c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025]
Abstract
Atomistic modeling has become an extensively used method for studying thermosetting polymers, particularly in the analysis and development of high-performance composite materials. Despite extensive research on the topic, a widely accepted, standardized, flexible, and open-source approach for simulating the cross-linking process from precursor molecules has yet to be established. This study proposes, tests, and validates a Molecular Dynamics (MD) protocol to simulate the cross-linking process of epoxy resins. We developed an in-house code based on Python and LAMMPS, enabling the generation of epoxy resin structures with high degrees of cross-linking. In our work, the epoxy network is dynamically formed within the MD simulations, modeling the chemical bonding process with constraints based on the distance between the reactive sites. To validate our model against experimental data from the literature, we then computed the density, thermal conductivity, and elastic response. The results show that the produced structures align well with experimental evidence, validating our method and confirming its feasibility for further analyses and in silico experiments. Beyond the case study presented in this work, focusing on bisphenol A diglycidyl ether (DGEBA) epoxy resin and diethylenetriamine (DETA) as curing agents in a 5:2 ratio, our approach can be easily adapted to investigate different epoxy resins.
Collapse
Affiliation(s)
- Marina Provenzano
- Department
of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | | | - Matteo Fasano
- Department
of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hernán Chávez Thielemann
- Department
of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department
of Mechanical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
2
|
Deshpande PP, Chan-Jobe R, Kemppainen J, Odegard GM, Keles O. Optimizing Epoxy Nanocomposites with Oxidized Graphene Quantum Dots for Superior Mechanical Performance: A Molecular Dynamics Approach. ACS OMEGA 2025; 10:14209-14220. [PMID: 40256520 PMCID: PMC12004152 DOI: 10.1021/acsomega.5c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/04/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Due to their excellent mechanical properties, epoxy composites are widely used in low-density applications. However, the brittle epoxy matrix often serves as the principal failure point. Matrix enhancements can be achieved by optimizing polymer combinations to maximize intermolecular interactions or by introducing fillers. While nanofillers such as clay, rubber, carbon nanotubes, and nanoplatelets enhance mechanical properties, they can lead to issues like agglomeration, voids, and poor load transfer. Quantum dots, being the smallest nanofillers, offer higher dispersion and the potential to promote intermolecular interactions, enhancing stiffness, strength, and toughness simultaneously. This study employed molecular dynamics simulations to design graphene quantum dot (GQD) reinforced epoxy nanocomposites. By functionalizing GQDs with oxygen-based groups-hydroxyl, epoxide, carboxyl, and mixed chemistries-their effects on the mechanical properties of nanocomposites were systematically evaluated. Results show that hydroxyl-functionalized GQDs provide optimal performance, increasing stiffness and yield strength by 18.4 and 56.1%, respectively. Structural analysis reveals that these GQDs promote a closely packed molecular configuration, resulting in reduced free volume.
Collapse
Affiliation(s)
- Prathamesh P. Deshpande
- Department
of Chemical and Materials Engineering, San
Jose State University, San Jose, California 95192, United States
| | - Robert Chan-Jobe
- Department
of Chemical and Materials Engineering, San
Jose State University, San Jose, California 95192, United States
| | - Josh Kemppainen
- Department
of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregory M. Odegard
- Department
of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ozgur Keles
- Department
of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
3
|
Pykal M, Nociarová J, Řeha D, Filo J, Šebela M, Zajíček P, Paloncýová M, Olla C, Mocci F, Cappai A, Carbonaro CM, Baďura Z, Zdražil L, Zbořil R, Rogach AL, Medveď M, Otyepka M. Thermodynamics and kinetics of early stages of carbon dot formation: a case of citric acid and ethylenediamine reaction. NANOSCALE 2025; 17:7780-7789. [PMID: 39964206 DOI: 10.1039/d4nr04420g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Owing to their extraordinary photophysical properties, carbon dots (CDs) have found applications across various fields, including bioimaging, sensing, and environmental research. Despite huge application potential, the fabrication of CDs still lacks the desired control at the molecular level, and precise structural regulation towards property-tailored CDs remains elusive. The mechanistic details of nucleation, growth, and carbonization processes leading to CDs are still unknown, with key thermodynamic and kinetic parameters yet to be revealed. Herein, we performed quantum chemical calculations of explicitly micro-hydrated reaction systems to thoroughly explore the mechanism of a prototypical reaction of citric acid and ethylenediamine. The theoretical results showed activation barriers and thermodynamics along the reaction pathway, thus helping identify key heterocyclic intermediates and cyclization products. The cyclization and condensation reactions were further simulated via a reactive molecular dynamics protocol, suggesting potential growth scenarios and generating plausible structures for further exploration of the polymerization and carbonization processes. The theoretical calculations were cross-validated with NMR and MALDI-TOF measurements. The data obtained provide a comprehensive deterministic insight into the initial stages of CD formation, revealing new reaction intermediates and pathways, and rationally predicting the formation of specific structural arrangements of premature CDs. The presented deterministic approach represents an important step towards rational bottom-up design of these unique fluorescence systems.
Collapse
Affiliation(s)
- Martin Pykal
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Jela Nociarová
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovak Republic
| | - David Řeha
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Petr Zajíček
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Chiara Olla
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | | | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Lukáš Zdražil
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Andrey L Rogach
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovak Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
4
|
Delasoudas I, Kallivokas SV, Kostopoulos V. Macroscopic Fracture Properties of Glassy Nanocomposites from Molecular Dynamics Simulations and Empirical Force Fields. J Phys Chem B 2025; 129:2318-2327. [PMID: 39957089 DOI: 10.1021/acs.jpcb.4c08381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
In this study, we extend a previously developed methodology for calculating macroscopic fracture properties in glassy polymers using molecular dynamics (MD) and empirical force fields to glassy nanocomposites. We apply this approach to epoxy nanocomposites with randomly dispersed carbon nanotubes (CNTs), modeling four system types: two with pristine CNTs (1 and 2% by weight) and two with hydroxyl (OH)-functionalized CNTs at similar concentrations. Using a macroscopic analytical model, we calculate the fracture energy and the stress intensity factor for each system and examine how interfacial adhesion influences load transfer and failure mechanisms. Moreover, the cohesive energies and the mean squared displacements for the different systems are calculated, to further analyze the load transfer mechanisms between CNTs and the matrix. Our results demonstrate that functionalized CNTs significantly enhance fracture properties compared to pristine CNTs due to improved interfacial adhesion, enabling better load transfer and delaying crack propagation. This study offers a computationally efficient approach for exploring fracture characteristics in CNT-epoxy nanocomposites. Using empirical force fields, we get faster calculations enabling us to model bigger and more complex systems.
Collapse
Affiliation(s)
- I Delasoudas
- Mechanical Engineering & Aeronautics Department, University of Patras, Rio Campus, 26500 Patras, Greece
| | - S V Kallivokas
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Aglantzia, 2121 Nicosia, Cyprus
| | - V Kostopoulos
- Mechanical Engineering & Aeronautics Department, University of Patras, Rio Campus, 26500 Patras, Greece
| |
Collapse
|
5
|
Zhang X, Chen X, Bai R, Wu L, Wang W, Luo Z, Cheng Y, Zhu M, Yan X. Molecularly Woven Polymer Aerogels. J Am Chem Soc 2025. [PMID: 40011062 DOI: 10.1021/jacs.4c18138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Aerogels with abundant nanopores and large specific surface areas have extensive potential in various applications but are constrained by fragility and difficulty in degradation. Currently, the exploration of adaptive and reprocessing aerogels has become increasingly urgent, as the demand for intelligent and sustainable materials intensifies. Here, we present a molecular weaving strategy to construct molecularly woven polymer aerogels (WPAs) via catalyst-free aldimine condensation between prewoven aldehyde-functionalized Cu(I) bisphenanthroline (Cu(PBD)2) and flexible 4,4'-diaminodibenzyl (DB). The key feature of this system consists entirely of dense woven nodes that can be readily activated by external stimuli, where Cu(I) ions can also be reversibly removed as needed, while preserving porous structures. Consequently, we achieve adjustable mechanical properties of WPAs, with a 10-fold enhancement in elasticity after removing Cu(I) ions. Moreover, the destroyed WPAs demonstrate a straightforward reprocessing capacity rather than tedious monomer recovery due to the dissociation of Cu(I)-coordination bonds, the activation of sequential polymer thread motions, and the accelerated imine bond exchange enabled by adjacent Cu(I) ions. This work offers a new perspective on designing customizable and sustainable aerogels and verifies the feasibility of the emergent molecularly woven technique in a more complex functional material system.
Collapse
Affiliation(s)
- Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xinwei Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenbin Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanhua Cheng
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Patil SU, Kemppainen J, Maiaru M, Odegard GM. High-performance, multi-component epoxy resin simulation for predicting thermo-mechanical property evolution during curing. Polym J 2025; 57:539-552. [PMID: 40343150 PMCID: PMC12055604 DOI: 10.1038/s41428-025-01022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 05/11/2025]
Abstract
High-performance epoxy systems are extensively used in structural polymer‒matrix composites for aerospace vehicles. The evolution of the thermomechanical properties of these epoxies significantly impacts the evolution of process-induced residual stresses. The corresponding process parameters need to be optimized via multiscale process modeling to minimize the residual stresses and maximize the composite strength and durability. In this study, the thermomechanical properties of a multicomponent epoxy system are predicted via molecular dynamics (MD) simulation as a function of the degree of cure to provide critical property evolution data for process modeling. In addition, the experimentally validated results of this study provide critical insight into MD modeling protocols. Among these insights, harmonic- and Morse-bond-based force fields predict similar mechanical properties. However, simulations with the Morse-bond potential fail at intermediate strain values because of cross-term energy dominance. Additionally, crosslinking simulations should be conducted at the corresponding processing temperature, because the simulation temperature impacts shrinkage evolution significantly. Multiple analysis methods are utilized to process MD heating/cooling data for glass transition temperature prediction, and the results indicate that neither method has a significant advantage. These results are important for effective and comprehensive process modeling within the ICME (Integrated Computational Materials Engineering) and Materials Genome Initiative frameworks.
Collapse
|
7
|
Laeremans W, den Ouden AF, Hooyberghs J, Ellenbroek WG. Polymer dynamics under tension: Mean first passage time for looping. Phys Rev E 2025; 111:025401. [PMID: 40103061 DOI: 10.1103/physreve.111.025401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 03/20/2025]
Abstract
This study deals with polymer looping, an important process in many chemical and biological systems. We investigate basic questions on the looping dynamics of a polymer under tension using the freely jointed chain (FJC) model. Previous theoretical approaches to polymer looping under tension have relied on barrier escape methods, which assume local equilibrium, an assumption that may not always hold. As a starting point, we use an analytical expression for the equilibrium looping probability as a function of the number of monomers and applied force, predicting an inverse relationship between looping time and looping probability. Using molecular dynamics simulations, the predictions of this theoretical approach are validated within the numerical precision achieved. We compare our predictions to those of the barrier escape approach by way of a calculation of the mean first passage time (MFPT) for the ends of a polymer to cross. For this purpose, we derive the exact free energy landscape, but the resulting temporal predictions do not agree with the observed inverse scaling. We conclude that the traditional barrier escape approach does not provide satisfactory predictions for polymer looping dynamics and that the inverse scaling with looping probability offers a more reliable alternative.
Collapse
Affiliation(s)
- Wout Laeremans
- Eindhoven University of Technology, Soft Matter and Biological Physics, Department of Applied Physics and Science Education, and Institute for Complex Molecular Systems, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Anne Floor den Ouden
- Eindhoven University of Technology, Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Jef Hooyberghs
- UHasselt, Faculty of Sciences, Data Science Institute, Theory Lab, Agoralaan, 3590 Diepenbeek, Belgium
| | - Wouter G Ellenbroek
- Eindhoven University of Technology, Soft Matter and Biological Physics, Department of Applied Physics and Science Education, and Institute for Complex Molecular Systems, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
8
|
Gallegos I, Varshney V, Kemppainen J, Odegard GM. Investigating the structure-property correlations of pyrolyzed phenolic resin as a function of degree of carbonization. NANOSCALE ADVANCES 2025:d4na00824c. [PMID: 39876922 PMCID: PMC11770810 DOI: 10.1039/d4na00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/04/2025] [Indexed: 01/31/2025]
Abstract
Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties in situ. This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis. First, the crosslinked resin is pyrolyzed and the resulting char yield and mass density are verified to match experimental values, establishing the model's powerful predictive capabilities. Young's modulus, yield stress, Poisson's ratio, and thermal conductivity are calculated for the polymerized structure, intermediate pyrolyzed structures, and fully pyrolyzed structure to reveal structure-property correlations, and the evolution of properties are linked to observed structural features. It is determined that reduction in fractional free volume and densification of the resin during pyrolysis contribute significantly to the increase in thermomechanical properties of the skeletal phenolic matrix. A complex interplay of the formation of six-membered carbon rings at the expense of five and seven-membered carbon rings is revealed to affect thermal conductivity. Increased anisotropy was observed in the latter stages of pyrolysis due to the development of aligned aromatic structures. Experimentally validated predictive atomistic models are a key first step to multiscale process modeling of C/C composites to optimize next-generation materials.
Collapse
Affiliation(s)
- Ivan Gallegos
- Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | - Vikas Varshney
- Air Force Research Laboratory, Wright-Patterson Air Force Base 2941 Hobson Way OH 45433 USA
| | - Josh Kemppainen
- Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | - Gregory M Odegard
- Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| |
Collapse
|
9
|
Morsch S, Liu Y, Harris K, Siperstein FR, Di Lullo C, Visser P, Lyon S. Probing the Nanostructure and Reactivity of Epoxy-Amine Interphases. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70097-70107. [PMID: 39653646 DOI: 10.1021/acsami.4c17387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Understanding and controlling the structure of interphase regions in epoxy resins have been a long-standing goal in high-performance composite and coating development, since these are widely considered to be weak points in the microstructure of these materials, determining key properties such as fracture strength and barrier performance. These buried nanoscale regions are, however, inaccessible to conventional analytical techniques, and little is understood about their underlying formation mechanism. Here, we combine molecular dynamics (MD) simulation with nanoscale infrared chemical mapping to develop new understanding of the interphase using model epoxy-amine binders composed of diglycidyl ether of bisphenol A (DGEBA) cross-linked using m-xylylenediamine (MXDA). Iron oxide powders are used as exemplary surfaces, where we demonstrate that the electrostatic binding energies between the amine cross-linker and particles range from repulsive (magnetite, Fe3O4) to weakly attractive (hematite, Fe2O3) to strong immobilization (goethite, FeOOH). We find that interfacial binding occurs upon mixing and determines the overall level of residual amine content in the bulk matrix but does not correlate with a detectable amine depletion in the vicinity of particles. In all cases, an excess of both epoxy and amine functionality is detected close to particles, and the extent of matrix undercuring is found to be dependent on the entropic segregation of the unreacted material during the ambient cure. Detailed MD simulations demonstrate that spatial segregation of the unreacted precursors is expected in the interphase, leading to the experimental observation that, even after extensive postcure heating, individual particles remain embedded in a nanoscale underdeveloped environment.
Collapse
Affiliation(s)
- Suzanne Morsch
- Corrosion@Manchester, Department of Materials, The University of Manchester, Nancy Rothwell Building, Oxford Road, Manchester M13 9PL, U.K
| | - Yanwen Liu
- Corrosion@Manchester, Department of Materials, The University of Manchester, Nancy Rothwell Building, Oxford Road, Manchester M13 9PL, U.K
| | - Kieran Harris
- Department of Chemical Engineering, The University of Manchester, Nancy Rothwell Building, Oxford Road, Manchester M13 9PL, U.K
| | - Flor R Siperstein
- Department of Chemical Engineering, The University of Manchester, Nancy Rothwell Building, Oxford Road, Manchester M13 9PL, U.K
| | - Claudio Di Lullo
- AkzoNobel Powder Coatings, Stoneygate Lane, Felling, Gateshead, Tyne & Wear NE10 0JY, U.K
| | - Peter Visser
- AkzoNobel, Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Stuart Lyon
- Corrosion@Manchester, Department of Materials, The University of Manchester, Nancy Rothwell Building, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
10
|
Deshpande P, Chan-Jobe R, Keles O. Molecular structure data and modelling roadmap for optimized oxidized graphene quantum dot and epoxy interface and mechanical properties. Data Brief 2024; 57:111059. [PMID: 39697598 PMCID: PMC11652893 DOI: 10.1016/j.dib.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 12/20/2024] Open
Abstract
Hybrid epoxy composites are highly considered for low-density applications due to the excellent specific strength and specific stiffness. Enhancements made to the epoxy matrix by addition of nanofillers like carbon nanotubes (CNTs) and graphene (GNPs) have been studied in detail over the course of few decades. These enhancements not only help elevate the material properties of the matrix but also activate different failure mitigating mechanisms in the composite. Although highly beneficial, there are few shortcomings due to the challenging fabrication process of integrating such. Common problems like filler agglomeration, formation of voids, wrinkling and more can result in poor load transfer within the composite. Graphene quantum dots (GQDs), on the other hand are the smallest carbon-based filler which are known to promote more intimate contact with the matrix. Their small size enables simultaneous enhancement of stiffness, strength and toughness. In addition, functionalization of these materials enables other supramolecular interactions like hydrogen bonding which improve the interfacial interaction with the epoxy. This study provides a molecular dynamics (MD) workflow to model a single functionalized GQD embedded in an epoxy matrix and the effective mechanical response of the nanocomposite. Ten chemistries were developed with different oxygen-based functional groups which capture the effect of GQD on the mechanical properties of the nanocomposite. Uniaxial strain simulations revealed that a maximum strength gain of 56 % and stiffness gain of 18 % was computed by the oxidized GQD-epoxy nanocomposite.
Collapse
Affiliation(s)
| | - Robert Chan-Jobe
- San Jose State University, 1 Washington Sq., San Jose, CA 95192, United States
| | - Ozgur Keles
- San Jose State University, 1 Washington Sq., San Jose, CA 95192, United States
| |
Collapse
|
11
|
Zheng S, Gissinger J, Hsiao BS, Wei T. Interfacial Polymerization of Aromatic Polyamide Reverse Osmosis Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65677-65686. [PMID: 39552280 DOI: 10.1021/acsami.4c16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Polyamide membranes are widely used in reverse osmosis (RO) water treatment, yet the mechanism of interfacial polymerization during membrane formation is not fully understood. In this work, we perform atomistic molecular dynamics simulations to explore the cross-linking of trimesoyl chloride (TMC) and m-phenylenediamine (MPD) monomers at the aqueous-organic interface. Our studies show that the solution interface provides a function of "concentration and dispersion" of monomers for cross-linking. The process starts with rapid cross-linking, followed by slower kinetics. Initially, amphiphilic MPD monomers diffuse in water and accumulate at the solution interface to interact with TMC monomers from the organic phase. As cross-linking progresses, a precross-linked thin film forms, reducing monomer diffusion and reaction rates. However, the structural flexibility of the amphiphilic film, influenced by interfacial fluctuations and mixed interactions with water and the organic solvent at the solution interface, promotes further cross-linking. The solubility of MPD and TMC monomers in different organic solvents (cyclohexane versus n-hexane) affects the cross-linking rate and surface homogeneity, leading to slight variations in the structure and size distribution of subnanopores. Our study of the interfacial polymerization process in explicit solvents is essential for understanding membrane formation in various solvents, which will be crucial for optimal polyamide membrane design.
Collapse
Affiliation(s)
- Size Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | - Jacob Gissinger
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tao Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
12
|
Wang Y, Liu G, Zhao J, Zhang Z, Zhang H, Ding Y, Zhang X, Liu Z, Yu W, Yan X. Mechanically Interlocked [an]Daisy Chain Adhesives with Simultaneously Enhanced Interfacial Adhesion and Cohesion. Angew Chem Int Ed Engl 2024; 63:e202409705. [PMID: 39072904 DOI: 10.1002/anie.202409705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Adhesives have been widely used to splice and repair materials to meet practical needs of humanity for thousands of years. However, developing robust adhesives with balanced adhesive and cohesive properties still remains a challenging task. Herein, we report the design and preparation of a robust mechanically interlocked [an]daisy chain network (DCMIN) adhesive by orthogonal integration of mechanical bonds and 2-ureido-4[1H]-pyrimidone (UPy) H-bonding in a single system. Specifically, the UPy moiety plays a dual role: it allows the formation of a cross-linked network and engages in multivalent interactions with the substrate for strong interfacial bonding. The mechanically interlocked [an]daisy chain, serving as the polymeric backbone of the adhesive, is able to effectively alleviate applied stress and uphold network integrity through synergistic intramolecular motions, and thus significantly improves the cohesive performance. Comparative analysis with the control made of the same quadruple H-bonding network but with non-interlocked [an]daisy chain backbones demonstrates that our DCMIN possesses superior adhesion properties over a wide temperature range. These findings not only contribute to a deep understanding of the structure-property relationship between microscopic mechanical bond motions and macroscopic adhesive properties but also provide a valuable guide for optimizing design principles of robust adhesives.
Collapse
Affiliation(s)
- Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yi Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhu Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
13
|
Wang Z, Du H, Evans AM, Ni X, Bredas JL, Li H. Growth of two-dimensional covalent organic frameworks on substrates: insight from microsecond atomistic simulations. Chem Sci 2024:d4sc05168h. [PMID: 39386909 PMCID: PMC11459634 DOI: 10.1039/d4sc05168h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
While growing two-dimensional covalent organic frameworks (2D COFs) on substrates holds promise for producing functional monolayers, the presence of many defects in the resulting crystals often hinders their practical applications. Achieving structural order while suppressing defect formation necessitates a detailed atomic-level understanding. The key lies in understanding the polymerization process with high nano-scale accuracy, which presents significant challenges. Here, we perform microsecond atomistic molecular dynamics simulations to describe the deposition and polymerization of cyclohexa-m-phenylene on metal substrates, closely mimicking experimental conditions. Our improved approach highlights that 2D polymerization occurs through monomer addition and island coalescence, with a pre-bonding stage allowing monomers/oligomers to dynamically adjust their configurations to the expanding island structures. Our results elucidate the mechanisms underlying the formation of vacancy and dislocation defects during 2D polymerization as well as their healing processes. Overall, our findings underscore the significant roles that high surface mobility, effective monomer-substrate anchoring, high framework rigidity, moderate monomer coordination, and low bonding rate play in forming large, extended 2D crystals while suppressing vacancy and dislocation defects. We demonstrate how these factors can be tuned through substrate selection, deposition rate modulation, and temperature control, thereby offering valuable insight for strategically optimizing on-surface 2D polymerizations.
Collapse
Affiliation(s)
- Zilin Wang
- School of Microelectronics, Shanghai University Shanghai 201800 China
- Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 China
| | - Hong Du
- School of Microelectronics, Shanghai University Shanghai 201800 China
- Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 China
| | - Austin M Evans
- George and Josephine Butler Polymer Laboratory, Department of Chemistry, University of Florida Gainesville Florida 32611-7200 USA
| | - Xiaojuan Ni
- Department of Chemistry and Biochemistry, The University of Arizona Tucson Arizona 85721-0041 USA
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, The University of Arizona Tucson Arizona 85721-0041 USA
| | - Haoyuan Li
- School of Microelectronics, Shanghai University Shanghai 201800 China
- Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 China
| |
Collapse
|
14
|
Bamane S, Deshpande PP, Patil SU, Maiaru M, Odegard GM. Evolution of Physical, Thermal, and Mechanical Properties of Poly(methyl Methacrylate)-Based Elium Thermoplastic Polymer During Polymerization. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15639-15648. [PMID: 39323573 PMCID: PMC11421096 DOI: 10.1021/acs.jpcc.4c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Elium-based thermoplastic composites are a key material for future use in the marine, wind energy, and automotive industries because of their recyclability and ease of manufacture. To optimize the processing of the Elium composites to yield optimal structural properties, computational process modeling can be used to relate processing parameters to residual stresses and material durability. The key ingredient for reliable and accurate process modeling is the evolution of physical, thermal, and mechanical properties during polymerization. The objective of this study is to use molecular dynamics to predict the mass density, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, glass transition temperature, and coefficient of thermal expansion as a function of the extent of reaction of the polymer. The predicted properties compare favorably to the experimentally measured values in the fully polymerized state. This data set of properties provides needed input data for process modeling of Elium-based composites for process parameter optimization and improved durability and performance.
Collapse
Affiliation(s)
- Swapnil
S. Bamane
- Michigan
Technological University, Houghton, Michigan 49931, United States
| | | | - Sagar U. Patil
- Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Marianna Maiaru
- Columbia
University, New York, New York 10027, United States
| | - Gregory M. Odegard
- Michigan
Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
15
|
Winetrout JJ, Kanhaiya K, Kemppainen J, In 't Veld PJ, Sachdeva G, Pandey R, Damirchi B, van Duin A, Odegard GM, Heinz H. Implementing reactivity in molecular dynamics simulations with harmonic force fields. Nat Commun 2024; 15:7945. [PMID: 39261455 PMCID: PMC11391066 DOI: 10.1038/s41467-024-50793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2024] [Indexed: 09/13/2024] Open
Abstract
The simulation of chemical reactions and mechanical properties including failure from atoms to the micrometer scale remains a longstanding challenge in chemistry and materials science. Bottlenecks include computational feasibility, reliability, and cost. We introduce a method for reactive molecular dynamics simulations using a clean replacement of non-reactive classical harmonic bond potentials with reactive, energy-conserving Morse potentials, called the Reactive INTERFACE Force Field (IFF-R). IFF-R is compatible with force fields for organic and inorganic compounds such as IFF, CHARMM, PCFF, OPLS-AA, and AMBER. Bond dissociation is enabled by three interpretable Morse parameters per bond type and zero energy upon disconnect. Use cases for bond breaking in molecules, failure of polymers, carbon nanostructures, proteins, composite materials, and metals are shown. The simulation of bond forming reactions is included via template-based methods. IFF-R maintains the accuracy of the corresponding non-reactive force fields and is about 30 times faster than prior reactive simulation methods.
Collapse
Affiliation(s)
- Jordan J Winetrout
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- Insitute of Physics, Ruhr University Bochum, Universitätstrasse 150, Bochum, Germany
| | - Joshua Kemppainen
- Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | | | - Geeta Sachdeva
- Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Behzad Damirchi
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Adri van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Gregory M Odegard
- Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA.
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
16
|
Chen Q, Xia X, Huang W, Zhang L, Ni R, Liu J. Topological Programmability of Isomerizable Polymers. PHYSICAL REVIEW LETTERS 2024; 133:048101. [PMID: 39121423 DOI: 10.1103/physrevlett.133.048101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/20/2024] [Indexed: 08/11/2024]
Abstract
Topology isomerizable networks (TINs) can be programmed into numerous polymers exhibiting unique and spatially defined (thermo-) mechanical properties. However, capturing the dynamics in topological transformations and revealing the intrinsic mechanisms of mechanical property modulation at the microscopic level is a significant challenge. Here, we use a combination of coarse-grained molecular dynamics simulations and reaction kinetic theory to reveal the impact of dynamic bond exchange reactions on the topology of branched chains. We find that, the grafted units follow a geometric distribution with a converged uniformity, which depends solely on the average grafted units of branched chains. Furthermore, we demonstrate that the topological structure can lead to spontaneous modulation of mechanical properties. The theoretical framework provides a research paradigm for studying the topology and mechanical properties of TINs.
Collapse
Affiliation(s)
| | - Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | | | | | | | | |
Collapse
|
17
|
Delasoudas I, Kallivokas SV, Kostopoulos V. Fracture of Epoxy Networks Using Atomistic Simulations. J Phys Chem B 2024; 128:7271-7279. [PMID: 38989654 DOI: 10.1021/acs.jpcb.4c02350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Predicting fracture properties through all-atomistic simulations poses challenges due to classical force field limitations in breaking covalent bonds and the computational demands of reactive force fields like ReaxFF. In addressing this, we propose a scale-bridging method for forecasting the fracture behavior of highly cross-linked epoxy combining classical force fields, the LAMMPS package REACTER, and for bond breaking a parameter based on experimental distance criterion. In our analysis, we anticipate the macroscopic fracture energy GC of the epoxy network through the application of a continuum fracture mechanics model developed for fibrils. In addition, we extract the value of the stress intensity factor KI. This modeling approach is specifically implemented for a frequently used epoxy system that consists of bisphenol F and DETDA hardener. Notably, our results demonstrate a robust correlation with existing literature and experimental studies. Moreover, our approach boasts a substantial computational time advantage, facilitating calculations that are significantly faster compared to those performed using reactive force fields.
Collapse
Affiliation(s)
- Iakovos Delasoudas
- Mechanical Engineering & Aeronautics Department, University of Patras, Rio Campus, Patras 26500, Greece
| | - Spyros V Kallivokas
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia, Aglantzia 2121, Cyprus
| | - Vassilis Kostopoulos
- Mechanical Engineering & Aeronautics Department, University of Patras, Rio Campus, Patras 26500, Greece
| |
Collapse
|
18
|
Kemppainen J, Gissinger JR, Gowtham S, Odegard GM. LUNAR: Automated Input Generation and Analysis for Reactive LAMMPS Simulations. J Chem Inf Model 2024; 64:5108-5126. [PMID: 38926930 PMCID: PMC11234336 DOI: 10.1021/acs.jcim.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Generating simulation-ready molecular models for the LAMMPS molecular dynamics (MD) simulation software package is a difficult task and impedes the more widespread and efficient use of MD in materials design and development. Fixed-bond force fields generally require manual assignment of atom types, bonded interactions, charges, and simulation domain sizes. A new LAMMPS pre- and postprocessing toolkit (LUNAR) is presented that efficiently builds molecular systems for LAMMPS. LUNAR automatically assigns atom types, generates bonded interactions, assigns charges, and provides initial configuration methods to generate large molecular systems. LUNAR can also incorporate chemical reactivity into simulations by facilitating the use of the REACTER protocol. Additionally, LUNAR provides postprocessing for free volume calculations, cure characterization calculations, and property predictions from LAMMPS thermodynamic outputs. LUNAR has been validated via building and simulation of pure epoxy and cyanate ester polymer systems with a comparison of the corresponding predicted structures and properties to benchmark values, including experimental results from the literature. LUNAR provides the tools for the computationally driven development of next-generation composite materials in the Integrated Computational Materials Engineering (ICME) and Materials Genome Initiative (MGI) frameworks. LUNAR is written in Python with the usage of NumPy and can be used via a graphical user interface, a command line interface, or an integrated design environment. LUNAR is freely available via GitHub.
Collapse
Affiliation(s)
- Josh Kemppainen
- Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Jacob R. Gissinger
- Stevens
Institute of Technology, Hoboken, New Jersey 07030, United States
| | - S. Gowtham
- Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Gregory M. Odegard
- Michigan
Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
19
|
Choi SH, Kim JH, Ahn J, Kim T, Jung Y, Won D, Bang J, Pyun KR, Jeong S, Kim H, Kim YG, Ko SH. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. NATURE MATERIALS 2024; 23:834-843. [PMID: 38532072 DOI: 10.1038/s41563-024-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Liquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation. Incorporation of allyl sulfide groups enables adaptive liquid crystal elastomers that can be reconfigured into desired phases or complex patterns. Laser-induced dynamic crosslinking is compatible with existing processing methods and allows the generation of thermo- and strain-responsive patterns that include isotropic, polydomain and monodomain phases within a single liquid crystal elastomer film. We show temporary information encryption at body temperature, expanding the functionality of liquid crystal elastomer devices in wearable applications.
Collapse
Affiliation(s)
- Seok Hwan Choi
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jiyong Ahn
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taegyeom Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeongju Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Daeyeon Won
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Junhyuk Bang
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seongmin Jeong
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyunsu Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
20
|
Kashmari K, Patil SU, Kemppainen J, Shankara G, Odegard GM. Optimal Molecular Dynamics System Size for Increased Precision and Efficiency for Epoxy Materials. J Phys Chem B 2024; 128:4255-4265. [PMID: 38648370 DOI: 10.1021/acs.jpcb.4c00845] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Molecular dynamics (MD) simulation is an important tool for predicting thermo-mechanical properties of polymer resins at the nanometer length scale, which is particularly important for efficient computationally driven design of advanced composite materials and structures. Because of the statistical nature of modeling amorphous materials on the nanometer length scale, multiple MD models (replicates) are typically built and simulated for statistical sampling of predicted properties. Larger replicates generally provide higher precision in the predictions but result in higher simulation times. Unfortunately, there is insufficient information in the literature to establish guidelines between MD model size and the resulting precision in predicted thermo-mechanical properties. The objective of this study was to determine the optimal MD model size of epoxy resin to balance efficiency and precision. The results show that an MD model size of 15,000 atoms provides for the fastest simulations without sacrificing precision in the prediction of mass density, elastic properties, strength, and thermal properties of epoxy. The results of this study are important for efficient computational process modeling and integrated computational materials engineering (ICME) for the design of next-generation composite materials for demanding applications.
Collapse
Affiliation(s)
- Khatereh Kashmari
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sagar U Patil
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Josh Kemppainen
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gowtham Shankara
- Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregory M Odegard
- Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
21
|
Hao W, Sui C, Cheng G, Li J, Miao L, Zhao G, Sang Y, Li J, Zhao C, Zhou Y, Zang Z, Zhao Y, He X, Wang C. Dynamic Insights into the Growth Mechanisms of 2D Covalent Organic Frameworks on Graphene Surfaces. ACS NANO 2024; 18:10485-10494. [PMID: 38564695 DOI: 10.1021/acsnano.3c11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Producing high-quality two-dimensional (2D) covalent organic frameworks (COFs) is crucial for industrial applications. However, this remains significantly challenging with current synthetic techniques. A deep understanding of the intermolecular interactions, reaction temperature, and oligomers is essential to facilitate the growth of highly crystalline COF films. Herein, molecular dynamics simulations were employed to explore the growth of 2D COFs from monomer assemblies on graphene. Our results showed that chain growth reactions dominated the COF surface growth and that van der Waals (vdW) interactions were important in enhancing the crystallinity through monomer preorganization. Moreover, appropriately tuning the reaction temperature improved the COF crystallinity and minimized the effects of amorphous oligomers. Additionally, the strength of the interface between the COF and the graphene substrate indicated that the adhesion force was proportional to the crystallinity of the COF. This work reveals the mechanisms for nucleation and growth of COFs on surfaces and provides theoretical guidance for fabricating high-quality 2D polymer-based crystalline nanomaterials.
Collapse
Affiliation(s)
- Weizhe Hao
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Chao Sui
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Gong Cheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Junjiao Li
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Linlin Miao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Guoxin Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Yuna Sang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Jiaxuan Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Chenxi Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Yichen Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Zifu Zang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Yushun Zhao
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Chao Wang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
22
|
Gissinger JR, Nikiforov I, Afshar Y, Waters B, Choi MK, Karls DS, Stukowski A, Im W, Heinz H, Kohlmeyer A, Tadmor EB. Type Label Framework for Bonded Force Fields in LAMMPS. J Phys Chem B 2024; 128:3282-3297. [PMID: 38506668 DOI: 10.1021/acs.jpcb.3c08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
New functionality is added to the LAMMPS molecular simulation package, which increases the versatility with which LAMMPS can interface with supporting software and manipulate information associated with bonded force fields. We introduce the "type label" framework that allows atom types and their higher-order interactions (bonds, angles, dihedrals, and impropers) to be represented in terms of the standard atom type strings of a bonded force field. Type labels increase the human readability of input files, enable bonded force fields to be supported by the OpenKIM repository, simplify the creation of reaction templates for the REACTER protocol, and increase compatibility with external visualization tools, such as VMD and OVITO. An introductory primer on the forms and use of bonded force fields is provided to motivate this new functionality and serve as an entry point for LAMMPS and OpenKIM users unfamiliar with bonded force fields. The type label framework has the potential to streamline modeling workflows that use LAMMPS by increasing the portability of software, files, and scripts for preprocessing, running, and postprocessing a molecular simulation.
Collapse
Affiliation(s)
- Jacob R Gissinger
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Ilia Nikiforov
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yaser Afshar
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Intel Corporation, Hillsboro, Oregon 97124, United States
| | - Brendon Waters
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moon-Ki Choi
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel S Karls
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80301, United States
| | - Axel Kohlmeyer
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Ellad B Tadmor
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Pisani W, Wedgeworth DN, Burroughs JF, Thornell TL, Newman JK, Shukla MK. Micromechanical Dilution of PLA/PETG-Glass/Iron Nanocomposites: A More Efficient Molecular Dynamics Approach. ACS OMEGA 2024; 9:14887-14898. [PMID: 38585113 PMCID: PMC10993258 DOI: 10.1021/acsomega.3c08264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
Polylactic acid (PLA) and poly(ethylene terephthalate glycol) (PETG) are popular thermoplastics used in additive manufacturing applications. The mechanical properties of PLA and PETG can be significantly improved by introducing fillers, such as glass and iron nanoparticles (NPs), into the polymer matrix. Molecular dynamics (MD) simulations with the reactive INTERFACE force field were used to predict the mechanical responses of neat PLA/PETG and PLA-glass/iron and PETG-glass/iron nanocomposites with relatively high loadings of glass/iron NPs. We found that the iron and glass NPs significantly increased the elastic moduli of the PLA matrix, while the PETG matrix exhibited modest increases in elastic moduli. This difference in reinforcement ability may be due to the slightly greater attraction between the glass/iron NP and PLA matrix. The NASA Multiscale Analysis Tool was used to predict the mechanical response across a range of volume percent glass/iron filler by using only the neat and highly loaded MD predictions as input. This provides a faster and more efficient approach than creating multiple MD models per volume percent per polymer/filler combination. To validate the micromechanics predictions, experimental samples incorporating hollow glass microspheres (MS) and carbonyl iron particles (CIP) into PLA/PETG were developed and tested for elastic modulus. The CIP produced a larger reinforcement in elastic modulus than the MS, with similar increases in elastic modulus between PLA/CIP and PETG/CIP at 7.77 vol % CIP. The micromechanics-based mechanical predictions compare excellently with the experimental values, validating the integrated micromechanical/MD simulation-based approach.
Collapse
Affiliation(s)
- William
A. Pisani
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
- Environmental
Laboratory, US Army Engineer Research and
Development Center, Vicksburg, Mississippi 39180, United States
| | - Dane N. Wedgeworth
- Geotechnical
and Structures Laboratory, US Army Engineer
Research and Development Center, Vicksburg, Mississippi 39180, United States
| | - Jedadiah F. Burroughs
- Geotechnical
and Structures Laboratory, US Army Engineer
Research and Development Center, Vicksburg, Mississippi 39180, United States
| | - Travis L. Thornell
- Geotechnical
and Structures Laboratory, US Army Engineer
Research and Development Center, Vicksburg, Mississippi 39180, United States
| | - J. Kent Newman
- Geotechnical
and Structures Laboratory, US Army Engineer
Research and Development Center, Vicksburg, Mississippi 39180, United States
| | - Manoj K. Shukla
- Environmental
Laboratory, US Army Engineer Research and
Development Center, Vicksburg, Mississippi 39180, United States
| |
Collapse
|
24
|
Deshpande PP, Keles O. Simulation data for engineering graphene quantum dot epoxy nanocomposites using molecular dynamics. Data Brief 2024; 53:110169. [PMID: 38389955 PMCID: PMC10881529 DOI: 10.1016/j.dib.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Graphene quantum dots (GQDs) were reported to fill the role of nanofillers that enhance composite properties. Detailed investigation of this nanofiller in composites is largely unexplored. To understand the fundamental mechanisms in play, this study uses molecular dynamics simulations to reveal the effects of GQDs on epoxy properties. Mechanical simulations were performed on three varying GQD chemistries which included a pristine GQD and 2 edge aminated GQDs with different degrees of functionalization (5.2 % and 7.6 %). These GQDs were separately inserted in a polymer matrix across five individual replicates. The nanocomposite mechanical properties were computed using uniaxial strain simulations to display the effect of embedded GQDs.
Collapse
Affiliation(s)
| | - Ozgur Keles
- San Jose State University, 1 Washington Sq., San Jose, CA 95192, USA
| |
Collapse
|
25
|
Prasad D, Mitra N. Noncovalent Interactions in Mechanical Response of Thermoset Epoxy Resin. J Phys Chem B 2024. [PMID: 38422510 DOI: 10.1021/acs.jpcb.3c07369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Free volume in polymers is known to influence the mechanical response of the polymers. Noncovalent interactions such as hydrogen bonds, Coulombic electrostatic interactions, and van der Waals interactions are present within these free volume regions. The manuscript presents a comprehensive identification, characterization, and evolution of noncovalent interactions as a thermoset epoxy resin (typically used as an interfacial adhesive material) is subjected to uniaxial tension, shear, and shock loading. Even though noncovalent interactions dominate uniaxial tension and shear response (up to strain levels of 50% wherein covalent bond dissociation is not observed), both covalent and noncovalent interactions define response for shock loading. Van der Waals interactions dominate the response as the samples are subjected to strain levels of 50% in tension and shear. In contrast, hydrogen bonds influence shock response.
Collapse
Affiliation(s)
- Dipak Prasad
- Hopkins Extreme Materials Institute and Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nilanjan Mitra
- Hopkins Extreme Materials Institute and Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Hartquist CM, Lin S, Zhang JH, Wang S, Rubinstein M, Zhao X. An elastomer with ultrahigh strain-induced crystallization. SCIENCE ADVANCES 2023; 9:eadj0411. [PMID: 38091402 PMCID: PMC10848725 DOI: 10.1126/sciadv.adj0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024]
Abstract
Strain-induced crystallization (SIC) prevalently strengthens, toughens, and enables an elastocaloric effect in elastomers. However, the crystallinity induced by mechanical stretching in common elastomers (e.g., natural rubber) is typically below 20%, and the stretchability plateaus due to trapped entanglements. We report a class of elastomers formed by end-linking and then deswelling star polymers with low defects and no trapped entanglements, which achieve strain-induced crystallinity of up to 50%. The deswollen end-linked star elastomer (DELSE) reaches an ultrahigh stretchability of 12.4 to 33.3, scaling beyond the saturated limit of common elastomers. The DELSE also exhibits a high fracture energy of 4.2 to 4.5 kJ m-2 while maintaining low hysteresis. The heightened SIC and stretchability synergistically promote a high elastocaloric effect with an adiabatic temperature change of 9.3°C.
Collapse
Affiliation(s)
- Chase M. Hartquist
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James H. Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shu Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Rubinstein
- Departments of Mechanical Engineering and Materials Science, Biomedical Engineering, Chemistry, and Physics, Duke University, Durham, NC, USA
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Nguyen VP, Jeon I, Yang S, Choi ST. Mesoscale Simulation of Polymer Pyrolysis by Coarse-Grained Molecular Dynamics: A Parametric Study. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307299 DOI: 10.1021/acsami.3c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Full comprehension of the pyrolysis of polymer materials is crucial for the design and application of thermal protection systems; however, it involves complex phenomena at different spatial and temporal scales. To bridge the gap between the abundant atomistic simulations and continuum modeling in the literature, we perform a novel mesoscale study of the pyrolysis process using coarse-grained molecular dynamics (CG MD) simulations. Polyethylene (PE) consisting of united atoms including implicit hydrogen is considered a model polymer, and the configurational change of PE in thermal degradation is modeled by applying the bond-breaking phenomenon based on bond energy or bond length criteria. A cook-off simulation is implemented to optimize the heuristic protocol of bond dissociation by comparing the reaction products with a ReaxFF simulation. The aerobic hyperthermal pyrolysis under oxygen bombardment is simulated at a large scale of hundreds of nanometers to observe the intricate phenomena occurring from the surface to the depth inside the material. The intrinsic thermal durability of the model polymer at extreme conditions with and without oxygen environment can be effectively simulated from the proposed mesoscale simulation to predict important thermal degradation properties required for continuum-scale pyrolysis and ablation simulations. This work serves as an initial investigation of polymer pyrolysis at the mesoscale and helps understand the concept at a larger scale.
Collapse
Affiliation(s)
- Vinh Phu Nguyen
- Functional Materials and Applied Mechanics Lab, School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Inseok Jeon
- Mechanical Energy Engineering Division, School of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Seunghwa Yang
- Mechanical Energy Engineering Division, School of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Seung Tae Choi
- Functional Materials and Applied Mechanics Lab, School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
28
|
Karnes JJ, Weisgraber TH, Cook CC, Wang DN, Crowhurst JC, Fox CA, Harris BS, Oakdale JS, Faller R, Shusteff M. Isolating Chemical Reaction Mechanism as a Variable with Reactive Coarse-Grained Molecular Dynamics: Step-Growth versus Chain-Growth Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- John J. Karnes
- Lawrence Livermore National Laboratory Livermore, California 94550, United States
| | - Todd H. Weisgraber
- Lawrence Livermore National Laboratory Livermore, California 94550, United States
| | - Caitlyn C. Cook
- Lawrence Livermore National Laboratory Livermore, California 94550, United States
| | - Daniel N. Wang
- Lawrence Livermore National Laboratory Livermore, California 94550, United States
| | | | - Christina A. Fox
- Lawrence Livermore National Laboratory Livermore, California 94550, United States
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - Bradley S. Harris
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - James S. Oakdale
- Lawrence Livermore National Laboratory Livermore, California 94550, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Maxim Shusteff
- Lawrence Livermore National Laboratory Livermore, California 94550, United States
| |
Collapse
|
29
|
Schöller L, Nestler B, Denniston C. Modeling of a two-stage polymerization considering glass fibre sizing using molecular dynamics. NANOSCALE ADVANCES 2022; 5:106-118. [PMID: 36605801 PMCID: PMC9765651 DOI: 10.1039/d2na00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Fibre reinforced polymers are an important class of materials due to their light weight, high strength, and stiffness. However, there is a lack of knowledge about the interaction of fibre surface, sizing (fibre coating), and resin. Often only idealised academic systems are studied, and only rarely realistic systems that are used in an industrial context. Therefore, methods for studying the behaviour of complex sizing are highly desirable, especially as they play a crucial role in the performance of fibre reinforced polymers. Here, a simplified, yet industrially used resin system is extended using molecular dynamics simulations by adding a fibre surface and sizing layers. Furthermore, a common coupling agent was selected, and several additional assumptions were made about the structure of the sizing. Based on this, a systematic procedure for the development of a final cured system is introduced: a condensation reaction to form oligomers from coupling agent monomers is conducted. Subsequently, a two stage reaction, a polyurethane reaction and a radical polymerisation, is modelled based on an established approach. Using the final cured system, evaluations of averaged quantities during the reactions are carried out. Moreover, the system is evaluated along the normal direction of the fibre surface, which proves a spatial analysis of the fibre-sizing-resin interface.
Collapse
Affiliation(s)
- Lukas Schöller
- Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT) Kaiserstrasse 12 76131 Karlsruhe Germany
- Institute of Digital Materials Science (IDM), Karlsruhe University of Applied Sciences Moltkestrasse 30 76133 Karlsruhe Germany
| | - Britta Nestler
- Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT) Kaiserstrasse 12 76131 Karlsruhe Germany
- Institute of Digital Materials Science (IDM), Karlsruhe University of Applied Sciences Moltkestrasse 30 76133 Karlsruhe Germany
| | - Colin Denniston
- Department of Physics & Astronomy, University of Western Ontario (UWO) 1151 Richmond Street London ON N6A 3K7 Canada
| |
Collapse
|
30
|
Simulating Polymerization by Boltzmann Inversion Force Field Approach and Dynamical Nonequilibrium Reactive Molecular Dynamics. Polymers (Basel) 2022; 14:polym14214529. [DOI: 10.3390/polym14214529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The radical polymerization process of acrylate compounds is, nowadays, numerically investigated using classical force fields and reactive molecular dynamics, with the aim to probe the gel-point transition as a function of the initial radical concentration. In the present paper, the gel-point transition of the 1,6-hexanediol dimethacrylate (HDDMA) is investigated by a coarser force field which grants a reduction in the computational costs, thereby allowing the simulation of larger system sizes and smaller radical concentrations. Hence, the polymerization is investigated using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). The network structures in the polymerization process are probed by cluster analysis tools, and the results are critically compared with the similar all-atom system, showing a good agreement.
Collapse
|
31
|
Orselly M, Devemy J, Bouvet-Marchand A, Dequidt A, Loubat C, Malfreyt P. Molecular Simulations of Thermomechanical Properties of Epoxy-Amine Resins. ACS OMEGA 2022; 7:30040-30050. [PMID: 36061676 PMCID: PMC9434774 DOI: 10.1021/acsomega.2c03071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
All-atom molecular dynamics (MD) simulations were performed with the CHARMM force field to characterize various epoxy resins, such as aliphatic and bisphenol-based resins. A multistep cross-linking algorithm was established, and key properties such as density, glass temperature, and elastic modulus were calculated. A quantitative comparison was made and was proven to be in good agreement with experimental data, with average absolute deviations between experiments and molecular simulation comprised between 2% and 12%. Additional findings on structure-property relationships were highlighted such as the effect of the cross-linking rate and oligomerization of the resin.
Collapse
Affiliation(s)
- Mathilde Orselly
- Specific
Polymers, 150 Avenue des Cocardières, 34160 Castries, France
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Julien Devemy
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | | | - Alain Dequidt
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Cédric Loubat
- Specific
Polymers, 150 Avenue des Cocardières, 34160 Castries, France
| | - Patrice Malfreyt
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
32
|
Zhang Y, Yang H, Sun Y, Zheng X, Guo Y. A molecular dynamics simulation on tunable and self-healing epoxy-polyimine network based on imine bond exchange reactions. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yongqin Zhang
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| | - Hua Yang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yaguang Sun
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| | - Xiangrui Zheng
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| | - Yafang Guo
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Jull EIL, Mandle RJ, Raistrick T, Zhang Z, Hine PJ, Gleeson HF. Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ethan I. L. Jull
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard J. Mandle
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Thomas Raistrick
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Zhaopeng Zhang
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Peter J. Hine
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen F. Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
34
|
Zhao Y, Kikugawa G, Kawagoe Y, Shirasu K, Kishimoto N, Xi Y, Okabe T. Uncovering the Mechanism of Size Effect on the Thermomechanical Properties of Highly Cross-Linked Epoxy Resins. J Phys Chem B 2022; 126:2593-2607. [PMID: 35325528 DOI: 10.1021/acs.jpcb.1c10827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epoxy resins are widely used as matrix resins, especially for carbon-fiber-reinforced plastic, due to their outstanding physical and mechanical properties. To date, most research into cross-linking processes using simulation has considered only a distance-based criterion to judge the probability of reaction. In this work, a new algorithm was developed for use with the large-scale atomic/molecular massively parallel simulator (LAMMPS) simulation package to study the cross-linking process; this new approach combines both a distance-based criterion and several kinetic criteria to identify whether the reaction has occurred. Using this simulation framework, we investigated the effect of model size on predicted thermomechanical properties of three different structural systems: diglycidyl ether of bisphenol A (DGEBA)/4,4'-diaminodiphenyl sulfone (4,4'-DDS), DGEBA/diethylenetriamine (DETA), and tetraglycidyl diaminodiphenylmethane (TGDDM)/4,4'-DDS. Derived values of gel point, volume shrinkage, and cross-linked resin density were found to be insensitive to model size in these three systems. Other thermomechanical properties, i.e., glass-transition temperature, Young's modulus, and yield stress, were found to reach stable values for systems larger than ∼40 000 atoms for both DGEBA/4,4'-DDS and DGEBA/DETA. However, these same properties modeled for TGDDM/4,4'-DDS did not stabilize until the system size reached 50 000 atoms. Our results provide general guidelines for simulation system size and procedures to more accurately predict the thermomechanical properties of epoxy resins.
Collapse
Affiliation(s)
- Yinbo Zhao
- Department of Aerospace Engineering, Tohoku University, 6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.,Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Gota Kikugawa
- Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yoshiaki Kawagoe
- Department of Aerospace Engineering, Tohoku University, 6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Keiichi Shirasu
- Department of Aerospace Engineering, Tohoku University, 6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Naoki Kishimoto
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yingxiao Xi
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Tomonaga Okabe
- Department of Aerospace Engineering, Tohoku University, 6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.,Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, Washington 98195, United States.,Research Center for Structural Materials, Polymer Matrix Hybrid Composite Materials Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
35
|
Monteferrante M, Tiribocchi A, Succi S, Pisignano D, Lauricella M. Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics. Macromolecules 2022; 55:1474-1486. [PMID: 35287293 PMCID: PMC8909409 DOI: 10.1021/acs.macromol.1c01408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered. The mechanical properties of the polymer resulting from 1,6-hexanediol dimethacrylate systems are characterized in terms of viscosity, diffusion constant, and activation energy, whereas the topological ones through the number of cycles (polymer loops) and cyclomatic complexity. Effects like volume shrinkage and delaying of the gel point for increasing monomer concentration are also predicted, as well as the stress-strain curve and Young's modulus. Combining ab initio, reactive molecular dynamics, and the D-NEMD method might lead to a novel and powerful tool to describe photopolymerization processes and to original routes to optimize additive manufacturing methods relying on photosensitive macromolecular systems.
Collapse
Affiliation(s)
| | - Adriano Tiribocchi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Sauro Succi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
- Center
for Life Nano Science@La Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Rome, Italy
| | - Dario Pisignano
- Dipartimento
di Fisica, Università di Pisa, Largo B. Pontecorvo 16 3, 56127 Pisa, Italy
- NEST,
Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Marco Lauricella
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
36
|
Vickers R, Weigand TM, Miller CT, Coronell O. Molecular Methods for Assessing the Morphology, Topology, and Performance of Polyamide Membranes. J Memb Sci 2022; 644:120110. [PMID: 35082452 PMCID: PMC8786217 DOI: 10.1016/j.memsci.2021.120110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular-scale morphology and topology of polyamide composite membranes determine the performance characteristics of these materials. However, molecular-scale simulations are computationally expensive and morphological and topological characterization of molecular structures are not well developed. Molecular dynamics simulation and analysis methods for the polymerization, hydration, and quantification of polyamide membrane structures were developed and compared to elucidate efficient approaches for producing and analyzing the polyamide structure. Polymerization simulations that omitted the reaction-phase solvent did not change the observed hydration, pore-size distribution, or water permeability, while improving the simulation efficiency. Pre-insertion of water into the aggregate pores (radius ≈ 4 Å) of dry domains enabled shorter hydration simulations and improved simulation scaling, without altering pore structure, properties, or performance. Medial axis and Minkowski functional methods were implemented to identify permeation pathways and quantify the polyamide morphology and topology, respectively. Better agreement between simulations and experimentally observed systems was accomplished by increasing the domain size rather than increasing the number of ensemble realizations of smaller systems. The largest domain hydrated was an order of magnitude larger by volume than the largest domain previously reported. This work identifies methods that can enable more efficient and meaningful fundamental modeling of membrane materials.
Collapse
Affiliation(s)
- Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Timothy M. Weigand
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
37
|
Yeganeh MS, Jusufi A, Deighton SP, Ide MS, Siskin M, Jaishankar A, Maldarelli C, Bertolini P, Natarajan B, Vreeland JL, King MA, Konicek AR. Solid with infused reactive liquid (SWIRL): A novel liquid-based separation approach for effective CO 2 capture. SCIENCE ADVANCES 2022; 8:eabm0144. [PMID: 35138903 PMCID: PMC8827647 DOI: 10.1126/sciadv.abm0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Economical CO2 capture demands low-energy separation strategies. We use a liquid-infused surface (LIS) approach to immobilize reactive liquids, such as amines, on a textured and thermally conductive solid substrate with high surface-area to volume ratio (A/V) continuum geometry. The infused, micrometer-thick liquid retains that high A/V and directly contacts the gas phase, alleviating mass transport resistance typically encountered in mesoporous solid adsorbents. We name this LIS class "solid with infused reactive liquid" (SWIRL). SWIRL-amine requires no water dilution or costly mixing unlike the current liquid-based commercial approach. SWIRL-tetraethylenepentamine (TEPA) shows stable, high capture capacities at power plant CO2 concentrations near flue gas temperatures, preventing energy-intensive temperature swings needed for other approaches. Water vapor increases CO2 capacity of SWIRL-TEPA without compromising stability.
Collapse
Affiliation(s)
- Mohsen S. Yeganeh
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Arben Jusufi
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Shane P. Deighton
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Matthew S. Ide
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Michael Siskin
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Aditya Jaishankar
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Charles Maldarelli
- Chemical Engineering, The City College of New York, New York, NY 10031, USA
| | - Pedro Bertolini
- Chemical Engineering, The City College of New York, New York, NY 10031, USA
| | - Bharath Natarajan
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | | | - Mark A. King
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Andrew R. Konicek
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| |
Collapse
|
38
|
Abbott JW, Hanke F. Kinetically Corrected Monte Carlo-Molecular Dynamics Simulations of Solid Electrolyte Interphase Growth. J Chem Theory Comput 2022; 18:925-934. [PMID: 35007421 DOI: 10.1021/acs.jctc.1c00921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a kinetic approach to the Monte Carlo-molecular dynamics (MC-MD) method for simulating reactive liquids using nonreactive force fields. A graphical reaction representation allows definition of reactions of arbitrary complexity, including their local solvation environment. Reaction probabilities and molecular dynamics (MD) simulation times are derived from ab initio calculations. Detailed validation is followed by studying the development of the solid electrolyte interphase (SEI) in lithium-ion batteries. We reproduce the experimentally observed two-layered structure on graphite, with an inorganic layer close to the anode and an outer organic layer. This structure develops via a near-shore aggregation mechanism.
Collapse
|
39
|
Zeidi M, Kim CI, Park CB. The role of interface on the toughening and failure mechanisms of thermoplastic nanocomposites reinforced with nanofibrillated rubber. NANOSCALE 2021; 13:20248-20280. [PMID: 34851346 DOI: 10.1039/d1nr07363j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interface plays a crucial role in the physical and functional properties of polymer nanocomposites, yet its effects have not been fully recognized in the setting of classical continuum-based modeling. In the present study, we investigate the roles of interface and interfiber interactions on the toughening effects of rubber nanofibers embodied in thermoplastic-based materials. Emphasis is placed on establishing comprehensive theoretical and atomistic descriptions of the nanocomposite systems subjected to pull-out and uniaxial extension in the longitudinal and transverse directions. Using the framework of molecular dynamics, the annealed melt-drawn nanofibers were spontaneously formed via the proposed four-step methodology. The generated nanofibers were then crosslinked using the proposed robust topology-matching algorithm, through which the chemical reactions arising in the crosslinking were closely assimilated. The interfiber interactions were also examined with respect to separation distances and nanofiber radius via a nanofiber-pair atomistic scheme, and the obtained results were subsequently incorporated into the pull-out and uniaxial test simulations. The results indicate that the compatibilizer grafting results in enhanced interfacial shear strength by introducing extra chemical interactions at the interface. In particular, it was found that the compatibilizer restricts the formation and coalescence of nanovoids, resulting in enhanced toughening effects. Together, we have shown that the presence of a small amount of well-dispersed rubber nanofibrillar network whose surfaces are grafted with maleic anhydride compatibilizer can dramatically increase the toughness and alter the failure mechanisms of the nanocomposites without any deterioration in the stiffness, which is also consistent with the recent experimental observations in our lab. The interfacial failure mechanism was also investigated by monitoring the changes in the atomic concentration profiles, mean square displacement and fractional free volume. The results obtained may serve as a promising alternative for the continuum-based modeling and analysis of interfaces.
Collapse
Affiliation(s)
- Mahdi Zeidi
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada M5S 3G8.
| | - Chun Il Kim
- Department of Mechanical Engineering, University of Alberta, 9211 116 Street NW, Edmonton, AB, Canada T6G 1H9.
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada M5S 3G8.
| |
Collapse
|
40
|
Affiliation(s)
- Guido Raos
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Bruno Zappone
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Via P. Bucci, 33/C, 87036 Rende (CS), Italy
| |
Collapse
|
41
|
Yan S, Verestek W, Zeizinger H, Schmauder S. Characterization of Cure Behavior in Epoxy Using Molecular Dynamics Simulation Compared with Dielectric Analysis and DSC. Polymers (Basel) 2021; 13:polym13183085. [PMID: 34577986 PMCID: PMC8469284 DOI: 10.3390/polym13183085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 01/25/2023] Open
Abstract
The curing behavior of a thermosetting material that influences the properties of the material is a key issue for predicting the changes in material properties during processing. An empirical equation can describe the reaction kinetics of the curing behavior of an investigated material, which is usually estimated using experimental methods. In this study, the curing process of an epoxy resin, the polymer matrix in an epoxy molding compound, is computed concerning thermal influence using molecular dynamics. Furthermore, the accelerated reaction kinetics, which are influenced by an increased reaction cutoff distance, are investigated. As a result, the simulated crosslink density with various cutoff distances increases to plateau at a crosslink density of approx. 90% for the investigated temperatures during curing time. The reaction kinetics are derived according to the numerical results and compared with the results using experimental methods (dielectric analysis and differential scanning calorimetry), whereby the comparison shows a good agreement between experiment and simulation.
Collapse
|
42
|
Kawagoe Y, Kikugawa G, Shirasu K, Okabe T. Thermoset resin curing simulation using quantum-chemical reaction path calculation and dissipative particle dynamics. SOFT MATTER 2021; 17:6707-6717. [PMID: 34169305 DOI: 10.1039/d1sm00600b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermoset resin, which is commonly used as a matrix in carbon-fiber-reinforced plastic, requires curing procedures. We propose a curing simulation technique involving a dissipative particle dynamics (DPD) simulation, which can simulate a larger system and longer time period than those of conventional all-atom molecular dynamics (AA-MD) simulations. The proposed curing DPD simulation can represent the thermoset resin exothermic reaction process precisely by considering each reactivity according to the reaction types calculated via quantum-chemical reaction path calculations. The cure reaction process given by the curing DPD simulation agrees well with that given by a conventional curing AA-MD simulation, but with run-time and computational-resource reductions of 1/480 and 1/10 times, respectively. We also conduct reverse mapping, through which the AA-MD system can be reconstructed from the DPD system, to evaluate the structural and thermomechanical properties. The X-ray diffraction pattern and thermomechanical properties of the reconstructed system agree well with those of the systems derived from the curing AA-MD simulation and experimental setup. Therefore, a cured-resin AA-MD system can be obtained from a curing DPD simulation at an extremely low computational cost, and the thermomechanical properties can be evaluated precisely using this system. The proposed curing simulation technique can be applied in high-throughput screening for better materials properties and in large system calculations.
Collapse
Affiliation(s)
- Yoshiaki Kawagoe
- Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Gota Kikugawa
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan.
| | - Keiichi Shirasu
- Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Tomonaga Okabe
- Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan. and Department of Materials Science and Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Yamamoto S, Kuwahara R, Tanaka K. Dynamic behaviour of water molecules in heterogeneous free space formed in an epoxy resin. SOFT MATTER 2021; 17:6073-6080. [PMID: 34132297 DOI: 10.1039/d1sm00529d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although an epoxy resin is a stable material, it absorbs moisture over a long period of time, causing deterioration of its material properties. We here applied a full-atomistic molecular dynamics (MD) simulation to study where water molecules exist in an epoxy resin and how they dynamically behave. First, the curing reaction was simulated to obtain a network structure so that the time course of the density, and thereby the free space, in the resin were obtained. The results made it possible to discuss the formation and size distribution of the free spaces which were not connected to each other. Then, a few percent of water were inserted into the free space of the cured epoxy resin to examine the location and dynamics of their molecules. We found that several water molecules were clustered at a preferred site, where hydrogen bonds can be formed with hydroxy, ether and amino groups of the network, in the free space, and they heterogeneously moved from there to other sites.
Collapse
Affiliation(s)
- Satoru Yamamoto
- Centre for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan.
| | | | | |
Collapse
|
44
|
Tow GM, Maginn EJ. Cross-Linking Methodology for Fully Atomistic Models of Hydroxyl-Terminated Polybutadiene and Determination of Mechanical Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garrett M. Tow
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J. Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|