1
|
Zheng Z, Krueger L, Harrop ACF, Ross BP, Popat A, Miles JA. 3D printed tablets for personalised dose titration of prednisone using selective laser sintering. Int J Pharm 2025:125698. [PMID: 40345601 DOI: 10.1016/j.ijpharm.2025.125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
The recent clinical emergence of 3D printing in pharmaceutical development has opened the possibility for a shift away from standardised medication dosing and towards more precise and personalised medicines and treatments. Prednisone is a commonly utilised steroidal anti-inflammatory drug that often requires complex combinations of tablets to achieve dosage regimens and titration, which can lead to poor adherence and adverse effects. This study utilised selective laser sintering (SLS) 3D printing to produce custom prednisone tablets of various clinically relevant doses with high accuracy. Incorporating 3D models of different sizes, five doses of prednisone tablet were successfully printed ranging between 5 and 25 mg. Across the five distinct dosage groups, the SLS printed prednisone met conventional tablet manufacturing and British Pharmacopoeial quality standard criteria. When compared to commercially available prednisone tablets, the SLS printed tablets demonstrated a similar immediate release profile with complete drug release within 25 min. This proof-of-concept study demonstrates the capability of SLS 3D printing to produce custom therapeutic doses of clinically relevant medications, showing the viability of translation to clinical practice for the provision of personalised medications.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Liam Krueger
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Angus C F Harrop
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Benjamin P Ross
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Amirali Popat
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Jared A Miles
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
2
|
Horváth ZM, Grundšteins K, Radziņš O, Kons A, Bērziņš A, Viter R, Lamprou DA, Mohylyuk V. FDM 3D-printed oral dosage form of prednisolone - Improvement of printability and influencing drug release. Int J Pharm 2025; 673:125391. [PMID: 40020949 DOI: 10.1016/j.ijpharm.2025.125391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
The customisation of solid oral dosage forms is essential for maximising efficacy, minimising harm, and providing patient-centred care. Fused Deposition Modelling (FDM) 3D-printing (3DP) is current research of interest within the pharmaceutical industry to produce personalised 3D printed oral "tablets" (printlets) by utilising drug-loaded polymer filaments. Due to the novelty of such technique within the pharmaceutical industry, the printability of many dosage forms and the effect of physical parameters such as the geometry of printlets requires additional research. In this work, the printability of prednisolone (PDL) loaded semi-crystalline polyvinyl alcohol (PVAl) filament was investigated via various characterisation and analytical techniques, such as optical microscopy, x-ray micro-computed tomography (μCT), powder x-ray diffraction (pXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), melt rheology (at 215 ℃), and dissolution testing. Using these techniques, it was shown that the viscosity of the prednisolone-loaded polyvinyl alcohol (PVAl-PDL) drastically decreased with increasing shear rate beyond 5 s-1 due to the presence of prednisolone which affected the macro and microscopic qualities of the printlets upon using the same printing settings (215 ℃) as for the polymer only. It was further shown that the geometry (structure) of the printlets had a significant influence on the drug release with the most influential factor being the contact surface area to volume ratio in contrast to other parameters. The results presented in this work show the ability of FDM 3DP within the pharmaceutical industry and the possibility to control the drug release, and the macro and microstructure qualities of the printlets.
Collapse
Affiliation(s)
- Zoltán Márk Horváth
- Leading Research Group, Faculty of Pharmacy, Rīga Stradiņš University, Riga LV-1007, Latvia
| | - Kārlis Grundšteins
- Laboratory of Optical Biosensors and Functional Nanomaterials, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, LV 1586, Latvia
| | - Oskars Radziņš
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, LV 1658, Latvia; Department of Orthodontics, Institute of Stomatology, Rīga Stradiņš University, Riga, LV 1007, Latvia
| | - Artis Kons
- Department of Chemistry, Faculty of Medicine and Life Sciences, University of Latvia, Riga, LV 1004, Latvia
| | - Agris Bērziņš
- Department of Chemistry, Faculty of Medicine and Life Sciences, University of Latvia, Riga, LV 1004, Latvia
| | - Roman Viter
- Laboratory of Optical Biosensors and Functional Nanomaterials, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, LV 1586, Latvia
| | | | - Valentyn Mohylyuk
- Leading Research Group, Faculty of Pharmacy, Rīga Stradiņš University, Riga LV-1007, Latvia.
| |
Collapse
|
3
|
Gkaragkounis A, Chachlioutaki K, Katsamenis OL, Alvarez-Borges F, Koltsakidis S, Partheniadis I, Bouropoulos N, Vizirianakis IS, Tzetzis D, Nikolakakis I, Verhoeven CHJ, Fatouros DG, van Bommel KJC. Spiked Systems for Colonic Drug Delivery: Architectural Opportunities and Quality Assurance of Selective Laser Sintering. ACS Biomater Sci Eng 2025; 11:1818-1833. [PMID: 39912506 PMCID: PMC11897947 DOI: 10.1021/acsbiomaterials.4c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Additive manufacturing has been a breakthrough therapy for the pharmaceutical industry raising opportunities for long-quested properties, such as controlled drug-delivery. The aim of this study was to explore the geometrical capabilities of selective laser sintering (SLS) by creating spiked (tapered-edged) drug-loaded specimens for administration in colon. Poly(vinyl alcohol) (PVA) was used as the binding material and loperamide hydrochloride was incorporated as the active ingredient. Printing was feasible without the addition of a sintering agent or other additives. Innovative printing protocols were developed to help improve the quality of the obtained products. Intentional vibrations were applied on the powder bed through rapid movements of the printing platform in order to facilitate rigidity and consistency of the printed objects. The drug-loaded products had physicochemical properties that met the pharmacopoeia standards and exhibited good biocompatibility. The behavior of spiked balls (spherical objects with prominent spikes) and their retention time in the colon was assessed using a custom ex vivo intestinal setup. The spiked balls showed favorable mucoadhesive properties over the unspiked ones. No movement on the tissue was recorded for the spiked balls, and specimens with more spikes exhibited longer retention times and potentially, enhanced bioavailability. Our results suggest that SLS 3D printing is a versatile technology that holds the potential to revolutionize drug delivery systems by enabling the creation of complex geometries and medications with tunable properties.
Collapse
Affiliation(s)
- Angelos Gkaragkounis
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- The
Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| | - Konstantina Chachlioutaki
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- Center
for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 54124, Greece
| | - Orestis L. Katsamenis
- μ-VIS
X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
- Institute
for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, U.K.
| | - Fernando Alvarez-Borges
- μ-VIS
X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Savvas Koltsakidis
- Digital Manufacturing
and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Ioannis Partheniadis
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Nikolaos Bouropoulos
- Department
of Materials Science, University of Patras, Patras 26504, Rio, Greece
- Institute
of Chemical Engineering and High Temperature Chemical Processes, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Ioannis S. Vizirianakis
- Laboratory
of Pharmacology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing
and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Ioannis Nikolakakis
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Chris H. J. Verhoeven
- The
Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| | - Dimitrios G. Fatouros
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- Center
for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 54124, Greece
| | - Kjeld J. C. van Bommel
- The
Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| |
Collapse
|
4
|
Liu H, Nail A, Meng D, Zhu L, Guo X, Li C, Li HJ. Recent progress in the 3D printing of microneedle patches for biomedical applications. Int J Pharm 2025; 668:124995. [PMID: 39586508 DOI: 10.1016/j.ijpharm.2024.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
3D-printed microneedles (MNs) have emerged as a transformative technology in drug delivery, diagnostics, and cosmetics, providing a minimally invasive alternative to traditional methods. This review highlights the advancements in 3D printing technologies, including fused deposition modeling (FDM), digital light processing (DLP), and stereolithography (SLA), which enable the precise fabrication of MNs with customizable geometries and functionalities. The unique ability of MNs to penetrate the stratum corneum facilitates enhanced delivery of therapeutic agents, biosensing capabilities, and improved patient compliance. Recent innovations in MNs design, such as biomimetic structures and optimized geometries, have significantly improved their mechanical properties and drug delivery efficiency. Furthermore, integrating sensing elements within MNs enables real-time monitoring of biomarkers, paving the way for personalized medicine. Despite the promising applications, challenges remain, including regulatory considerations, material biocompatibility, and manufacturing scalability. This review discusses the current state of 3D-printed MNs, their diverse applications, and future directions. By addressing existing limitations and exploring novel materials and hybrid fabrication techniques, 3D-printed MNs have the potential to revolutionize healthcare delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Aminov Nail
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Xiaohan Guo
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Cong Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Huan-Jun Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| |
Collapse
|
5
|
Patel R, Patel S, Shah N, Shah S, Momin I, Shah S. 3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2723-2766. [PMID: 39102337 DOI: 10.1080/09205063.2024.2386222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.
Collapse
Affiliation(s)
- Riya Patel
- School of Pharmacy, Indrashil University, Kadi, Gujarat, India
| | - Shivani Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Nehal Shah
- School of Pharmacy, Indrashil University, Kadi, Gujarat, India
| | - Sakshi Shah
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| | - Ilyas Momin
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| | - Shreeraj Shah
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Karanwad T, Jorvekar SB, Mandal S, Borkar RM, Banerjee S. Additive Manufacturing of SmartEx QD 100 Designed Oral Three-Dimensional Printlets Containing Isoniazid for Immediate Gastric Release by Selective Laser Sintering. Mol Pharm 2024; 21:5272-5284. [PMID: 39190777 DOI: 10.1021/acs.molpharmaceut.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The selection of appropriate materials and compatibility of selected materials with drugs and formulations are limiting steps in three-dimensional printing technology. In this study, SmartEx QD 100 (SM QD 100) was introduced as a novel, coprocessed, unexplored excipient that can be used in SLS-mediated 3D printing. The current study aimed to evaluate the feasibility of fabricating SM QD 100 containing INH-embedded SLS-mediated immediate gastric release tablets. The prepared physical mixtures were subjected to the fabrication of 3D printlets by using SLS-mediated 3D printing. The fabricated 3D printlets were subjected to physicochemical characterization by using various analytical techniques. After oral administration of sintered 3D printlets to rabbits, samples were collected and pharmacokinetic parameters were analyzed using the developed LC-APCI-MS/MS method. The optimized batch was able to release 100% INH within 15 min, which confirmed the immediate gastric release. Similarly, sintered 3D printlets were stable under accelerated stability conditions for three months. Finally, the pharmacokinetic parameters revealed the rate and extent of absorption of INH from sintered 3D printlets. As evidenced by in vitro and in vivo analyses, SM QD 100 was able to sinter SLS-mediated INH-embedded stable immediate gastric release tablets. SM QD 100 is a novel material for SLS-mediated 3D printing in pharmaceutical applications.
Collapse
Affiliation(s)
- Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam 781101, India
| | - Sachin B Jorvekar
- Department of Pharmaceutical Analysis, NIPER-Guwahati, Changsari, Assam 781101, India
| | - Santa Mandal
- Faculty of Pharmaceutical Science, Assam Downtown University, Guwahati, Assam 781026, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, NIPER-Guwahati, Changsari, Assam 781101, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam 781101, India
| |
Collapse
|
7
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
8
|
Funk NL, Januskaite P, Beck RCR, Basit AW, Goyanes A. 3D printed dispersible efavirenz tablets: A strategy for nasogastric administration in children. Int J Pharm 2024; 660:124299. [PMID: 38834109 DOI: 10.1016/j.ijpharm.2024.124299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Enteral feeding tubes (EFTs) can be placed in children diagnosed with HIV which need nutritional support due to malnutrition. EFTs are the main route for medication administration in these patients, bringing up concerns about off label use of medicines, dose inaccuracy and tube clogging. Here we report for the first time the use of selective laser sintering (SLS) 3D printing to develop efavirenz (EFZ) dispersible printlets for patients with HIV that require EFT administration. Water soluble polymers Parteck® MXP and Kollidon® VA64 were used to obtain both 500 mg (P500 and K500) and 1000 mg printlets (P1000 and K1000) containing 200 mg of EFZ each. The use of SLS 3D printing obtained porous dosage forms with high drug content (20 % and 40 % w/w) and drug amorphization using both polymers. P500, K500 and K1000 printlets reached disintegration in under 230 s in 20 mL of water (25 ± 1 °C), whilst P1000 only partially disintegrated, possibly due to saturation of the polymer in the medium. As a result, the development of dispersible EFZ printlets using hydrophilic polymers can be explored as a potential strategy for drug delivery through EFTs in paediatrics with HIV, paving the way towards the exploration of more rapidly disintegrating polymers and excipients for SLS 3D printing.
Collapse
Affiliation(s)
- Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Pandav G, Karanwad T, Banerjee S. Sketching feasibility of additively manufactured different size gradient conventional hollow capsular shells (HCSs) by selective laser sintering (SLS): From design to applications. J Mech Behav Biomed Mater 2024; 151:106393. [PMID: 38224646 DOI: 10.1016/j.jmbbm.2024.106393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
Additive manufacturing (AM) is widely used to fabricate 3D printed objects from Computer-aided Design (CAD) prepared using the SolidWorks CAD modelling software. Different printing techniques are used to fabricate desired 3D objects; among all these techniques, it is widely accepted that SLS is one of the most effective methods of 3D printing for fabricating drug-loaded solid oral dosage forms (SODFs) in bulk quantities using the single-step process. Different SODFs, such as pills, miniprintlets, dual miniprintlets, and tablets, were fabricated with different sizes and shapes. In this study, for the first time, we introduce SLS-mediated hollow capsular shells (HCSs) with the help of the SLS 3D printing technique. This work aimed to explore the sinterability and feasibility of sketching HCSs using the SLS-mediated sintering technique with different marketed sizes of capsules ranging from 000 to 5. Here, we have utilized Kolliphor P 188 (KP 188) and Kollidon SR (KSR) in a 1:1 ratio as a matrix-forming agent and 1% charcoal as a laser absorption-enhancing material. In accordance with the CAD models, we have fabricated the gradient conventional different sizes of HCSs ranging from 000 to 5 using the constant printing parameters and composition. Fabricated all biobased HCSs were subjected to the assessment of mechanistic and physicochemical parameters using varied analytical tools. In the current study, tartrazine dye is used to assess the release pattern from HCSs, which resulted in the modified release pattern. The adapted approach will be the futuristic approach to replace animal-based gelatin capsules with pharmaceutical-grade polymer-based HCSs with a modified release with optimum mechanical strength.
Collapse
Affiliation(s)
- Ganesh Pandav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER), Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
10
|
Kyser AJ, Fotouh B, Mahmoud MY, Frieboes HB. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J Control Release 2024; 366:349-365. [PMID: 38182058 PMCID: PMC10923108 DOI: 10.1016/j.jconrel.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
11
|
Mohamed EM, Dharani S, Khuroo T, Hamed R, Khan MA, Rahman Z. In Vitro and In Vivo Characterization of the Transdermal Gel Formulation of Desloratadine for Prevention of Obesity and Metabolic Syndrome. Pharmaceuticals (Basel) 2023; 16:ph16040578. [PMID: 37111335 PMCID: PMC10144708 DOI: 10.3390/ph16040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic use of antihistamines can induce abnormalities in lipid absorption with potential excessive accumulation of lipids in the mesentery that can lead to the development of obesity and a metabolic syndrome. The focus of the present work was to develop a transdermal gel formulation of desloratadine (DES) to prevent/reduce obesity and metabolic syndromes. Nine formulations were prepared to contain hydroxypropyl methylcellulose (2-3%), DES (2.5-5.0%), and Transcutol® (15-20%). The formulations were evaluated for cohesive and adhesive properties, viscosity, drug diffusion through synthetic and pig ear skin, and pharmacokinetics in New Zealand white rabbits. Drug permeation was faster through the skin compared to synthetic membranes. The drug had good permeation, as indicated by very short lag time (0.08-0.47 h) and high flux (59.3-230.7 μg/cm2.h). The maximum plasma concentration (Cmax) and area under the curve (AUC) of transdermal gel formulations were 2.4 and 3.2 fold that of the Clarinex tablet formulation. In conclusion, as indicated by the higher bioavailability, transdermal gel formulation of DES may decrease the dose of the drug, compared to commercial formulation. It has the potential to reduce or eliminate metabolic syndromes associated with oral antihistamine therapy.
Collapse
Affiliation(s)
- Eman M Mohamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Tahir Khuroo
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Rania Hamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Rahman Z, Khuroo T, Mohamed EM, Dharani S, Kayalar C, Kuttolamadom MA, Sangaré LO, Khan MA. Pyrimethamine 3D printlets for pediatric toxoplasmosis: design, pharmacokinetics, and anti-toxoplasma activity. Expert Opin Drug Deliv 2023; 20:301-311. [PMID: 36639201 DOI: 10.1080/17425247.2023.2169272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The focus of the present research is to develop printlet formulations of pyrimethamine (PMT). METHODS Printlets formulation of PMT were developed by screening design by varying laser scanning speed, Kollidon® VA 64, polyvinylpyrrolidone, and disintegrant. RESULTS Laser scanning speed, Kollidon® VA, and disintegrant had statistically significant effect on hardness, disintegration time, and/or dissolution (p < 0.05). Dissolution was almost 100% in 30 min. X-ray powder diffraction indicated partial amorphous transformation of the crystalline drug. Pharmacokinetic and anti-toxoplasma activity profiles of the printlets and compressed tablets were superimposable with no statistical difference (p > 0.05). CONCLUSION Clinical performance of the printlets would be similar to the compressed tablets.
Collapse
Affiliation(s)
- Ziyaur Rahman
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Tahir Khuroo
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Eman M Mohamed
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Sathish Dharani
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Canberk Kayalar
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Mathew A Kuttolamadom
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, TX, USA
| | | | - Mansoor A Khan
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics 2022; 15:pharmaceutics15010116. [PMID: 36678745 PMCID: PMC9865937 DOI: 10.3390/pharmaceutics15010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 01/01/2023] Open
Abstract
After the successful commercial exploitation of 3D printing technology, the advanced version of additive manufacturing, i.e., 4D printing, has been a new buzz in the technology-driven industries since 2013. It is a judicious combination of 3D printing technologies and smart materials (stimuli responsive), where time is the fourth dimension. Materials such as liquid crystal elastomer (LCE), shape memory polymers, alloys and composites exhibiting properties such as self-assembling and self-healing are used in the development/manufacturing of these products, which respond to external stimuli such as solvent, temperature, light, etc. The technologies being used are direct ink writing (DIW), fused filament fabrication (FFF), etc. It offers several advantages over 3D printing and has been exploited in different sectors such as healthcare, textiles, etc. Some remarkable applications of 4D printing technology in healthcare are self-adjusting stents, artificial muscle and drug delivery applications. Potential of applications call for further research into more responsive materials and technologies in this field. The given review is an attempt to collate all the information pertaining to techniques employed, raw materials, applications, clinical trials, recent patents and publications specific to healthcare products. The technology has also been evaluated in terms of regulatory perspectives. The data garnered is expected to make a strong contribution to the field of technology for human welfare and healthcare.
Collapse
|
14
|
Releasing fast and slow: Non-destructive prediction of density and drug release from SLS 3D printed tablets using NIR spectroscopy. Int J Pharm X 2022; 5:100148. [PMID: 36590827 PMCID: PMC9798196 DOI: 10.1016/j.ijpx.2022.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Selective laser sintering (SLS) 3D printing is a revolutionary 3D printing technology that has been found capable of creating drug products with varied release profiles by changing the laser scanning speed. Here, SLS 3D printed formulations (printlets) loaded with a narrow therapeutic index drug (theophylline) were produced using SLS 3D printing at varying laser scanning speeds (100-180 mm/s). The use of reflectance Fourier Transform - Near Infrared (FT-NIR) spectroscopy was evaluated as a non-destructive approach to predicting 3D printed tablet density and drug release at 2 h and 4 h. The printed drug products formulated with a higher laser speed exhibited an accelerated drug release and reduced density compared with the slower laser scanning speeds. Univariate calibration models were developed based on a baseline shift in the spectra in the third overtone region upon changing physical properties. For density prediction, the developed univariate model had high linearity (R2 value = 0.9335) and accuracy (error < 0.029 mg/mm3). For drug release prediction at 2 h and 4 h, the developed univariate models demonstrated a linear correlation (R2 values of 0.9383 and 0.9167, respectively) and accuracy (error < 4.4%). The predicted vs. actual dissolution profiles were found to be statistically similar (f2 > 50) for all of the test printlets. Overall, this article demonstrates the feasibility of SLS 3D printing to produce drug products containing a narrow therapeutic index drug across a range of drug release profiles, as well as the potential for FT-NIR spectroscopy to predict the physical characteristics of SLS 3D printed drug products (drug release and density) as a non-destructive quality control method at the point-of-care.
Collapse
|
15
|
3D printed microfluidics for bioanalysis: A review of recent advancements and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Qbd based and Box-Behnken design assisted Oral delivery of stable lactone (active) form of Topotecan as PLGA nanoformulation: Cytotoxicity, pharmacokinetic, in vitro, and ex vivo gut permeation studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Vasiljević I, Turković E, Piller M, Mirković M, Zimmer A, Aleksić I, Ibrić S, Parojčić J. Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach. Int J Pharm 2022; 629:122337. [DOI: 10.1016/j.ijpharm.2022.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|