1
|
Wang Y, Zhang X, Wang W, Zhang Y, Fleishman JS, Wang H. cGAS-STING targeting offers therapy choice in lung diseases. Biol Direct 2025; 20:20. [PMID: 39920718 PMCID: PMC11806777 DOI: 10.1186/s13062-025-00611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Cyclic GMP/AMP (cGAMP) synthase (cGAS), along with the endoplasmic reticulum (ER)-associated stimulator of interferon genes (STING), are crucial elements of the type 1 interferon response. cGAS senses microbial DNA and self-DNA, labeling cGAS-STING as a crucial mechanism in autoimmunity, sterile inflammatory responses, and cellular senescence. However, chronic and aberrant activation of the cGAS-STING axis results in inflammatory and autoimmune diseases. cGAS-STING has emerged as a vital mechanism driving inflammation-related diseases, including lung diseases. Insights into the biology of the cGAS-STING pathway have enabled the discovery of small-molecule agents which have the potential to inhibit the cGAS-STING axis in lung diseases. In this review, we first outline the principal components of the cGAS-STING signaling cascade. Then, we discuss recent research that highlights general mechanisms by which cGAS-STING contributes to lung diseases. Then, we focus on summarizing a list of bioactive small-molecule compounds which inhibit the cGAS-STING pathway, reviewing their potential mechanisms.These review highlights a novel groundbreaking therapeutic possibilities through targeting cGAS-STING in lung diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Xuan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Zhang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
2
|
Wang Y, Xue P, Gao L, Wang X, Zhou S, Wu X, Guo C. Improved bioavailability of polydatin and its protective effect against cisplatin induced nephrotoxicity through self-assembled fucoidan and carboxymethyl chitosan delivery system. Int J Biol Macromol 2025; 287:138577. [PMID: 39657878 DOI: 10.1016/j.ijbiomac.2024.138577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Cisplatin induced acute kidney injury (AKI) is clinically prevalent, with a complex pathogenesis and a lack of effective therapeutic drugs. Polydatin (Po) has excellent biological activity, but its low solubility and bioavailability limit its application. In this study, fucoidan (Fu) and carboxymethyl chitosan (Cs) self-assembled into nanoparticles through electrostatic interactions/hydrogen bonding and loaded Po (Fu/Cs Po NPs). In vitro studies found that Fu/Cs Po NPs protected human renal tubular epithelial (HK-2) cells from cisplatin induced damage and accumulation of reactive oxygen species (ROS). Mechanistic studies showed that Fu/Cs Po NPs inhibited cisplatin induced DNA damage and activation of cyclic guanosine monophosphate synthase (cGAS) and intron gene stimulator (STING) pathways. In vivo studies showed that Fu/Cs Po NPs treatment alleviated cisplatin induced AKI symptoms, including elevated blood urea nitrogen (BUN) and serum creatinine (SCr), as well as pathological damage to kidney tissues. In vivo mechanism studies also showed that Fu/Cs Po NPs treatment inhibited cisplatin induced DNA damage and activation of the cGAS-STING pathway. The pharmacokinetic and tissue distribution results demonstrated that the Fu/Cs delivery system enhanced the bioavailability and kidney accumulation of Po in vivo. In summary, our study provided potential drugs for the treatment of cisplatin induced AKI.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengyu Xue
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuefei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shilin Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Zhou Z, Xu L, Lv Y, Li L, Yuan H, Hu F. BAX pores facilitate mitochondrial DNA release in wasp sting-induced acute kidney injury. Int Immunopharmacol 2024; 143:113424. [PMID: 39437488 DOI: 10.1016/j.intimp.2024.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The role of B-cell lymphoma 2 (BCL2)-associated X (BAX) macropores in the leakage of mitochondrial DNA (mtDNA) and their impact on acute kidney injury (AKI) has recently been brought to the focus of researchers. This study aimed to explore the relationship between mtDNA leakage and BAX macropores during wasp sting-induced AKI. BAX mitochondrial translocation and macropores opening increased in both in vivo and in vitro models of wasp sting-induced AKI. In a mouse model, BAX inhibition dramatically attenuated mitochondrial impairment, cytoplasmic release of mtDNA, and suppressed activation of the mtDNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. This attenuation improved kidney function, reduced inflammatory response, and decreased apoptosis in mouse models. Furthermore, in cultured human proximal tubular epithelial cells (HK-2) treated with myoglobin and subjected to BAX knockdown, quantitative real-time polymerase chain reaction (PCR) directly demonstrated decreased mtDNA release into the cytoplasm. Consistent with in vivo results, downregulation of BAX expression in vitro ameliorated mitochondrial damage and attenuated subsequent inflammation and apoptosis caused by the activation of the mtDNA-cGAS-STING signaling pathway. Our findings revealed that mtDNA is released into the cytoplasm through BAX macropores in wasp sting-induced AKI, which provided an important novel perspective for understanding wasp sting-induced AKI and is conducive for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zilin Zhou
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Lv
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
4
|
Jiang T, Zhu F, Gao X, Wu X, Zhu W, Guo C. Naringenin loaded fucoidan/polyvinylpyrrolidone nanoparticles protect against folic acid induced acute kidney injury in vitro and in vivo. Colloids Surf B Biointerfaces 2024; 245:114343. [PMID: 39486374 DOI: 10.1016/j.colsurfb.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Acute kidney injury (AKI) is a common clinical problem with no effective treatment. Excessive folic acid (FA) induced kidney tubular injury is characterized by oxidative stress and inflammation, and is a common model of AKI. The excellent pharmacological activity of naringenin (NAR) makes it a potential agent for treating AKI, but its poor solubility limits its application. This study prepared NAR loaded nanoparticles (FU/PVP-NAR) using fucoidan (FU) and polyvinylpyrrolidone (PVP) as carriers, with a particle size of 23.96 ± 2.77 nm. In vitro studies showed that FU/PVP-NAR inhibited excessive FA induced proliferation inhibition, accumulation of reactive oxygen species (ROS), and disruption of mitochondrial membrane potential (MMP) of HK-2 cells. Further confirmed that FU/PVP-NAR inhibited FA induced DNA damage and Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. In vivo studies showed that excessive FA induced AKI features in mice, such as elevated serum creatinine (SCr) and blood urea nitrogen (BUN) levels, accompanied by pathological damage to kidney tissues. The above AKI characteristics induced by FA were alleviated by FU/PVP-NAR. FU/PVP-NAR also inhibited the decrease in antioxidant enzyme levels in kidney tissues induced by FA. Furthermore, in vivo mechanism studies indicated that FU/PVP-NAR inhibited the release of inflammatory factors by inhibiting DNA damage-cGAS-STING pathway. In summary, this study provided the possibility for FU/PVP-NAR as a potential candidate drug for treating FA induced AKI.
Collapse
Affiliation(s)
- Tao Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feikai Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Wang L, Zhang Z, Zhang H, Zhou M, Huang C, Xia W, Li J, You H. The effects of cGAS-STING inhibition in liver disease, kidney disease, and cellular senescence. Front Immunol 2024; 15:1346446. [PMID: 39114669 PMCID: PMC11303230 DOI: 10.3389/fimmu.2024.1346446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is one of the fundamental mechanisms of the body's defense, which responds to the abnormal presence of double-stranded DNA in the cytoplasm to establish an effective natural immune response. In addition to detecting microbial infections, the cGAS pathway may be triggered by any cytoplasmic DNA, which is absent from the normal cytoplasm, and only conditions such as senescence and mitochondrial stress can lead to its leakage and cause sterile inflammation. A growing body of research has shown that the cGAS-STING pathway is strongly associated with sterile inflammation. In this study, we reviewed the regulatory mechanisms and biological functions of the cGAS-STING pathway through its involvement in aseptic inflammation in liver disease, kidney disease, and cellular senescence.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Zhengwei Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Haichao Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Minmin Zhou
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenjiang Xia
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hongmei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| |
Collapse
|
6
|
Zhou S, Sun Y, Wang K, Gao X, Dong K, Wang J, Wu X, Guo C. Polyvinylpyrrolidone-Polydatin nanoparticles protect against oxaliplatin induced intestinal toxicity in vitro and in vivo. Food Chem Toxicol 2024; 184:114427. [PMID: 38160781 DOI: 10.1016/j.fct.2023.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Oxaliplatin (OXL) is a first-line drug for the treatment of colon cancer, with excellent efficacy. Intestinal toxicity is a common side effect of OXL, with unclear pathogenesis and a lack of effective treatment strategies. Polydatin (PD) has anti-inflammatory and antioxidant activities and is a potential drug for treating intestinal diseases, but its poor water solubility limits its application. In this study, polyvinylpyrrolidone (PVP) was used as a carrier to prepare nanoparticles loaded with PD (PVP-PD), with a particle size of 92.42 nm and exhibiting sustained release properties. In vitro results showed that PVP-PD protected NCM460 cells from OXL induced injury, mitochondrial membrane potential (MMP) disruption, and accumulation of reactive oxygen species (ROS). The in vivo results demonstrated the protective effect of PVP-PD on intestinal toxicity induced by OXL, such as alleviating weight loss and colon length reduction induced by OXL. Both in vivo and in vitro mechanisms indicated that OXL induced DNA damage and activated the cGAS-STING pathway, further inducing the expression of inflammatory factors such as IL-1β and TNF-α. PVP-PD alleviated the aforementioned changes induced by OXL by inhibiting the DNA damage-cGAS-STING pathway. In summary, our study demonstrated that the DNA damage-cGAS-STING pathway was involved in OXL induced intestinal toxicity, and PVP-PD provided a potential strategy for treating OXL induced intestinal toxicity.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuxuan Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kaidi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
7
|
Yu B, Jin Q, Ji J. Natural products applied in acute kidney injury treatment: polymer matters. Biomater Sci 2024; 12:621-633. [PMID: 38131274 DOI: 10.1039/d3bm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) is a global health threat due to its high morbidity and mortality. There is still a lack of effective therapeutic methods to deal with AKI clinically. Natural products with outstanding accessibility and bioactivity are potential candidates for AKI treatment. Natural product-based prodrugs or nano-structures with improved properties are frequently fabricated for maximizing bioavailability and decreasing side effects, in which natural polymers are selected as carriers, or natural drugs are loaded as cargos on designed polymers. In this review, the etiologies of AKI are briefly presented, and emerging natural products delivered rationally for AKI therapy, as either carriers or cargos, are both introduced. Moreover, the challenges of the future development of nature-based nanodrugs or prodrugs for AKI have also been discussed.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Chen L, Fan T, Wang M, Zhu CY, Feng WY, Li Y, Yang H. Myricetin, a natural inhibitor of CD147, increases sensitivity of cisplatin in ovarian cancer. Expert Opin Ther Targets 2024; 28:83-95. [PMID: 38235574 DOI: 10.1080/14728222.2024.2306345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological tumor, but it currently lacks effective therapeutic targets. CD147, which is overexpressed in OC, plays a crucial role in promoting malignant progression and is associated with poor prognosis in patients. Therefore, CD147 has been identified as a potential therapeutic target. However, there is a limited amount of research on the development of CD147 inhibitors. METHODS Surface plasmon resonance (SPR) assay and virtual molecular docking analysis were performed to identify potential natural compounds targeting CD147. The anti‑tumor effects of myricetin were evaluated using various assays, including CCK8, Alkaline comet, immunofluorescence and xenograft mouse models. The underlying mechanism was investigated through western blot analysis and lentivirus short hairpin RNA (LV-shRNA) transfection. RESULTS Myricetin, a flavonoid commonly found in plants, was discovered to be a potent inhibitor of CD147. Our findings demonstrated that myricetin exhibited a strong affinity for CD147 and down-regulated the protein level of CD147 by facilitating its proteasome-dependent degradation. Additionally, we observed synergistic antitumor effects of myricetin and cisplatin both in vivo and in vitro. Mechanistically, myricetin suppressed the expression of FOXM1 and its downstream DNA damage response (DDR) genes E×O1and BRIP1, thereby enhancing the DDR induced by cisplatin. CONCLUSION Our data demonstrate that myricetin, a natural inhibitor of CD147, may have clinical utility in the treatment of OC due to its ability to increase genomic toxicity when combined with cisplatin.
Collapse
Affiliation(s)
- Lin Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Fan
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Miao Wang
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Chun-Yu Zhu
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Wang-You Feng
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Li
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Dong K, Sun Y, Gao X, Wang J, Wu X, Guo C. Mixed micelles loaded with hesperidin protect against acetaminophen induced acute liver injury by inhibiting the mtDNA-cGAS-STING pathway. Colloids Surf B Biointerfaces 2024; 233:113656. [PMID: 37984191 DOI: 10.1016/j.colsurfb.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Excessive acetaminophen (APAP) is the main cause of drug-induced acute liver failure, and the pathogenesis has not been elucidated and there is a lack of effective drugs. Hesperidin (Hes), a rich flavanone in citrus peel with excellent biological activities, is a potential agent for treatment liver injury. Due to poor water solubility of Hes, this study prepared mixed micelles using polyvinyl pyrrolidone (PVP K17) and poloxamer 188, and encapsulated Hes (Hes-MMs). The results showed that Hes-MMs exhibited a uniform spherical shape with a particle size of 66.80 ± 0.83 nm, and Hes-MMs significantly improved the dispersibility, antioxidant activity, and cellular uptake of Hes. In vitro results showed that Hes-MMs protected the proliferation inhibition of HepG2 cells induced by APAP, inhibited the production of reactive oxygen species (ROS) and the damage of mitochondrial membrane potential (MMP) induced by APAP. Furthermore, Hes-MMs exerted liver protective effects by inhibiting APAP induced mtDNA release and activating the cGAS-STING pathway. In vivo results demonstrated that Hes-MMs showed protective and therapeutic effects on APAP induced liver injury, and their mechanisms were related to the mtDNA-cGAS-STING signaling pathway. In summary, our study demonstrated that the mtDNA-cGAS-STING pathway was involved in APAP induced acute liver injury, and Hes-MMs might be a potential therapeutic agent for treating APAP induced acute liver injury.
Collapse
Affiliation(s)
- Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuxuan Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
10
|
Zhang T, Li N, Wang R, Sun Y, He X, Lu X, Chu L, Sun K. Enhanced therapeutic efficacy of doxorubicin against multidrug-resistant breast cancer with reduced cardiotoxicity. Drug Deliv 2023; 30:2189118. [PMID: 36919676 PMCID: PMC10026743 DOI: 10.1080/10717544.2023.2189118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX), a commonly used anti-cancer drug, is limited by its cardiotoxicity and multidrug resistance (MDR) of tumor cells. Epigallocatechin gallate (EGCG), a natural antioxidant component, can effectively reduce the cardiotoxicity of DOX. Meanwhile, EGCG can inhibit the expression of P-glycoprotein (P-gp) and reverse the MDR of tumor cells. In this study, DOX is connected with low molecular weight polyethyleneimine (PEI) via hydrazone bond to get the pH-sensitive PEI-DOX, which is then combined with EGCG to prevent the cardiotoxicity of DOX and reverse the MDR of cancer cells. In addition, folic acid (FA) modified polyethylene glycol (PEG) (PEG-FA) is added to get the targeted system PEI-DOX/EGCG/FA. The MDR reversal and targeting ability of PEI-DOX/EGCG/FA is performed by cytotoxicity and in vivo anti-tumor activity on multidrug resistant MCF-7 cells (MCF-7/ADR). Additionally, we investigate the anti-drug resistant mechanism by Western Blot. The ability of EGCG to reduce DOX cardiotoxicity is confirmed by cardiotoxicity assay. In conclusion, PEI-DOX/EGCG/FA can inhibit the expression of P-gp and reverse the MDR in tumor cells. It also shows the ability of remove oxygen free radicals effectively to prevent the cardiotoxicity of DOX.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Xiaoyan He
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
11
|
Sun C, Shi H, Zhao X, Chang YL, Wang X, Zhu S, Sun S. The Activation of cGAS-STING in Acute Kidney Injury. J Inflamm Res 2023; 16:4461-4470. [PMID: 37842189 PMCID: PMC10576462 DOI: 10.2147/jir.s423232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
The activation of the cGAS-STING pathway is associated with many sterile inflammatory and inflammatory conditions, including acute kidney injury. As a cytoplasmic DNA sensor, sensitization of the cGAS-STING pathway can ignite the innate immune response in vivo and trigger a series of biological effects. In recent years, there is increasing evidence showing that the cGAS-STING pathway plays a vital role in acute kidney injury, a non-inflammatory disease induced by activation of innate immune cells, and closely related to intracellular reactive oxygen species, mitochondrial DNA, and the cGAS-STING pathway. This review provides a prospect of the cGAS-STING pathway and its relationship to acute kidney injury.
Collapse
Affiliation(s)
- Chuanchuan Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Heng Shi
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Yu-Ling Chang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shengyun Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Bhardwaj M, Gour A, Ahmed A, Dhiman S, Manhas D, Khajuria P, Wazir P, Mukherjee D, Nandi U. Impact of Disease States on the Oral Pharmacokinetics of EIDD-1931 (an Active Form of Molnupiravir) in Rats for Implication in the Dose Adjustment. Mol Pharm 2023; 20:4597-4610. [PMID: 37527414 DOI: 10.1021/acs.molpharmaceut.3c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The pharmacokinetic alteration of an antimicrobial medication leading to sub-therapeutic plasma level can aid in the emergence of resistance, a global threat nowadays. In this context, molnupiravir (prodrug of EIDD-1931) is the most efficacious orally against corona virus disease (COVID-19). In addition to drug-drug interaction, the pharmacokinetics of a drug can significantly vary during any disease state, leading to disease-drug interaction. However, no information is available for such a recently approved drug. Therefore, we aimed to explore the oral pharmacokinetics of EIDD-1931 in seven chemically induced disease states individually compared to the normal state using various rat models. Induction of any disease situation was confirmed by the disease specific study(s) prior to pharmacokinetic investigations. Compared to the normal state, substantially lowered plasma exposure (0.47- and 0.63-fold) with notably enhanced clearance (2.00- and 1.56-fold) of EIDD-1931 was observed in rats of ethanol-induced gastric injury and carbon tetrachloride-induced liver injury states. Conversely, paclitaxel-induced neuropathic pain and cisplatin-induced kidney injury states exhibited opposite outcomes on oral exposure (1.43- and 1.50-fold) and clearance (0.69- and 0.65-fold) of EIDD-1931. Although the highest plasma concentration (2.26-fold) markedly augmented in the doxorubicin-induced cardiac injury state, streptozocin-induced diabetes and lipopolysaccharide-induced lung injury state did not substantially influence the pharmacokinetics of EIDD-1931. Exploring the possible phenomenon behind the reduced or boosted plasma exposure of EIDD-1931, results suggest the need for dose adjustment in respective diseased conditions in order to achieve desired efficacy during oral therapy of EIDD-1931.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Gour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajaz Ahmed
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Khajuria
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Debaraj Mukherjee
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The pathophysiological understanding of kidney-related disorders has profoundly increased; however, tissue-specific and cell-specific treatments in this field remain scarce. Advances in nanomedicine enable alteration of pharmacokinetics and targeted treatments improving efficiency and reducing toxicity. This review addresses recent developments of nanocarriers used for various purposes in the broad field of kidney disease, which may pave a path to new therapeutic and diagnostic solutions employing nanomedicine. RECENT FINDINGS Controlled delivery of antiproliferative medications enables improved treatment of polycystic kidney disease and fibrosis. Directed anti-inflammatory treatment mitigated glomerulonephritis and tubulointerstitial nephritis. Multiple injury pathways in AKI have been targeted, with therapeutic solutions for oxidative stress, mitochondrial dysfunction, local inflammation and improving self-repair mechanisms. In addition to such treatment development, noninvasive early detection methods (minutes after ischemic insult) have been demonstrated as well. Sustained release of therapies that reduce ischemia-reperfusion injury as well as new aspects for immunosuppression bring hope to improving kidney transplant outcomes. The latest breakthroughs in gene therapy are made achievable by engineering the targeted delivery of nucleic acids for new treatments of kidney disease. SUMMARY Recent advances in nanotechnology and pathophysiological understanding of kidney diseases show potential for translatable therapeutic and diagnostic interventions in multiple etiologies of kidney disease.
Collapse
Affiliation(s)
- Bishop Boaz
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Swagat Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Simpson Quarry Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Gao X, Yin Y, Liu S, Dong K, Wang J, Guo C. Fucoidan-proanthocyanidins nanoparticles protect against cisplatin-induced acute kidney injury by activating mitophagy and inhibiting mtDNA-cGAS/STING signaling pathway. Int J Biol Macromol 2023:125541. [PMID: 37355076 DOI: 10.1016/j.ijbiomac.2023.125541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Fucoidan (FU) is a natural polymer from marine organisms, which has been widely studied and applied in drug delivery. In this study, FU nanoparticles loaded with proanthocyanidins (PCs) (FU/PCs NPs) were prepared and their effect and mechanism in protecting cisplatin-induced acute kidney injury (AKI) were studied. The in vitro studies confirmed that FU/PCs NPs increased the antioxidant activity of free PCs and protected the death of human kidney proximal tubule (HK-2) cells induced by cisplatin. Further mechanism studies showed that FU/PCs NPs protected the mitochondrial damage induced by cisplatin, activated mitophagy, inhibited the release of mitochondrial DNA (mtDNA), and inhibited the cGAS/STING signal pathway. The in vivo results also indicated that FU/PCs NPs protected cisplatin-induced AKI, including inhibiting the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels induced by cisplatin. The mechanism studies confirmed that cisplatin induced an increase in the expression of mitophagy-related protein Pink/Pakrin, mitochondrial mtDNA release and cGAS/STING expression in mice kidney tissues. Pre-administration of FU/PCs NPs further activated mitophagy, as well as inhibiting mtDNA release and cGAS/STING expression. In conclusion, our research proved the role of mitophagy-mtDNA-cGAS/STING signal was involved in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yulan Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266273, Shandong, China.
| |
Collapse
|
15
|
Lv Y, Lu L, Yu F, Gao Z, Yuan H, Hu F. STING deficiency protects against wasp venom-induced acute kidney injury. Inflamm Res 2023:10.1007/s00011-023-01749-5. [PMID: 37326694 DOI: 10.1007/s00011-023-01749-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Recent evidence suggests a key role of the inflammatory responses in wasp venom-induced acute kidney injury (AKI). However, the potential regulatory mechanisms underlying the inflammatory responses in wasp venom-induced AKI remain unclear. STING reportedly plays a critical role in other AKI types and is associated with inflammatory responses and diseases. We aimed to investigate the involvement of STING in inflammatory responses associated with wasp venom-induced AKI. METHODS The role of the STING signaling pathway in wasp venom-induced AKI was studied in vivo using a mouse model of wasp venom-induced AKI with STING knockout or pharmacological inhibition and in vitro using human HK2 cells with STING knockdown. RESULTS STING deficiency or pharmacological inhibition markedly ameliorated renal dysfunction, inflammatory responses, necroptosis, and apoptosis in wasp venom-induced AKI in mice. Moreover, STING knockdown in cultured HK2 cells attenuated the inflammatory response, necroptosis, and apoptosis induced by myoglobin, the major pathogenic factor in wasp venom-induced AKI. Urinary mitochondrial DNA upregulation has also been observed in patients with wasp venom-induced AKI. CONCLUSIONS STING activation mediates the inflammatory response in wasp venom-induced AKI. This may offer a potential therapeutic target for the management of wasp venom-induced AKI.
Collapse
Affiliation(s)
- Ying Lv
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Li Lu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Fanglin Yu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| |
Collapse
|
16
|
Liu S, Gao X, Yin Y, Wang J, Dong K, Shi D, Wu X, Guo C. Silk fibroin peptide self-assembled nanofibers delivered naringenin to alleviate cisplatin-induced acute kidney injury by inhibiting mtDNA-cGAS-STING pathway. Food Chem Toxicol 2023; 177:113844. [PMID: 37244599 DOI: 10.1016/j.fct.2023.113844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Silk fibroin (SF) has excellent biocompatibility and biodegradability as a biomaterial. The purity and molecular weight distribution of silk fibroin peptide (SFP) make it more suitable for medical application. In this study, SFP nanofibers (molecular weight ∼30kD) were prepared through CaCl2/H2O/C2H5OH solution decomposition and dialysis, and adsorbed naringenin (NGN) to obtain SFP/NGN NFs. In vitro results showed that SFP/NGN NFs increased the antioxidant activity of NGN and protected HK-2 cells from cisplatin-induced damage. In vivo results also showed that SFP/NGN NFs protected mice from cisplatin-induced acute kidney injury (AKI). The mechanism results showed that cisplatin induced mitochondrial damage, as well as increased mitophagy and mtDNA release, which activated the cGAS-STING pathway and induced the expression of inflammatory factors such as IL-6 and TNF-α. Interestingly, SFP/NGN NFs further activated mitophagy and inhibited mtDNA release and cGAS-STING pathway. Demonstrated that mitophagy-mtDNA-cGAS-STING signal axis was involved in the kidney protection mechanism of SFP/NGN NFs. In conclusion, our study confirmed that SFP/NGN NFs are candidates for protection of cisplatin-induced AKI, which is worthy of further study.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yulan Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Kehong Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
17
|
Dong K, Zhang M, Liu Y, Gao X, Wu X, Shi D, Guo C, Wang J. Pterostilbene-Loaded Soluplus/Poloxamer 188 Mixed Micelles for Protection against Acetaminophen-Induced Acute Liver Injury. Mol Pharm 2023; 20:1189-1201. [PMID: 36647568 DOI: 10.1021/acs.molpharmaceut.2c00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Excessive acetaminophen (APAP) induces excess reactive oxygen species (ROS), leading to liver damage. Pterostilbene (PTE) has excellent antioxidant and anti-inflammatory activities, but poor solubility limits its biological activity. In this study, we prepared PTE-loaded Soluplus/poloxamer 188 mixed micelles (PTE-MMs), and the protective mechanism against APAP-induced liver injury was investigated. In vitro results showed that PTE-MMs protected H2O2-induced HepG2 cell proliferation inhibition, ROS accumulation, and mitochondrial membrane potential destruction. Immunofluorescence results indicated that PTE-MMs significantly inhibited H2O2-induced DNA damage and cGAS-STING pathway activation. For in vivo protection studies, PTE-MMs (25 and 50 mg/kg) were administered orally for 5 days, followed by APAP (300 mg/kg). The results showed that APAP significantly induced injury in liver histopathology as well as an increase in serum aspartate aminotransferase and alanine aminotransferase levels. Moreover, the above characteristics of APAP-induced acute liver injury were inhibited by PTE-MMs. In addition, APAP-induced changes in the activities of antioxidant enzymes such as SOD and GSH in liver tissue were also inhibited by PTE-MMs. Immunohistochemical results showed that PTE-MMs inhibited APAP-induced DNA damage and cGAS-STING pathway activation in liver tissues. For in vivo therapeutic effect study, mice were first given APAP (300 mg/kg), followed by oral administration of PTE-MMs (50 mg/kg) for 3 days. The results showed that PTE-MMs exhibited promising therapeutic effects on APAP-induced acute liver injury. In conclusion, our study shows that the Soluplus/poloxamer 188 MM system has the potential to enhance the biological activity of PTE in the protection and therapeutic of liver injury.
Collapse
Affiliation(s)
- Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Mei Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China.,Department of Pharmacy, The First Affiliated Hospital of Suzhou University, Suzhou215000, China
| | - Ying Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273Shandong, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273Shandong, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou014030, China
| |
Collapse
|