1
|
Lopez VA, Lim JJ, Seguin RP, Dempsey JL, Kunzman G, Cui JY, Xu L. Oral exposure to benzalkonium chlorides in male and female mice reveals alteration of the gut microbiome and bile acid profile. Toxicol Sci 2024; 202:265-277. [PMID: 39363503 PMCID: PMC11589104 DOI: 10.1093/toxsci/kfae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid (BA) homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d7-C12- and d7-C16-BACs at 120 µg/g/d for 1 wk. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d7-C12- or d7-C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted BA quantitation analysis, we observed decreases in secondary BAs in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary BAs into secondary BAs, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.
Collapse
Affiliation(s)
- Vanessa A Lopez
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joe J Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Ryan P Seguin
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Gabrielle Kunzman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
2
|
Abdulaal WH, Omar UM, Zeyadi M, El-Agamy DS, Alhakamy NA, Ibrahim SRM, Almalki NAR, Asfour HZ, Al-Rabia MW, Mohamed GA, Elshal M. Pirfenidone ameliorates ANIT-induced cholestatic liver injury via modulation of FXR, NF-кB/TNF-α, and Wnt/GSK-3β/β-catenin signaling pathways. Toxicol Appl Pharmacol 2024; 490:117038. [PMID: 39019095 DOI: 10.1016/j.taap.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3β/β-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ulfat M Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nabil A Alhakamy
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
3
|
Guan G, Cao H, Tang Z, Zhang K, Zhong M, Lv R, Wan W, Guo F, Wang Y, Gao Y. Mechanistic studies on the alleviation of ANIT-induced cholestatic liver injury by Polygala fallax Hemsl. polysaccharides. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118108. [PMID: 38574780 DOI: 10.1016/j.jep.2024.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1β, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.
Collapse
Affiliation(s)
- Guoqiang Guan
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Zixuan Tang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Rui Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
4
|
Du X, Liu M, Trevisi E, Ju L, Yang Y, Gao W, Song Y, Lei L, Zolzaya M, Li X, Fang Z, Liu G. Expression of hepatic genes involved in bile acid metabolism in dairy cows with fatty liver. J Dairy Sci 2024:S0022-0302(24)00833-6. [PMID: 38825110 DOI: 10.3168/jds.2023-24485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024]
Abstract
Bile acids are cholesterol-derived molecules that are primarily produced in the liver. In nonruminants with fatty liver, overproduction of bile acids is associated with liver injury. During the transition period, fatty liver is a metabolic disorder that can affect up to 50% of high-producing dairy cows. The purpose of this study was to provide a comprehensive evaluation on hepatic bile acid metabolism in dairy cows with fatty liver by assessing expression changes of genes involved in bile acid synthesis, export and uptake. The serum activities of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase and concentration of total bile acids were all greater, whereas serum concentration of total cholesterol was lower in cows with fatty liver than in healthy cows. Content of total bile acids was higher but total cholesterol was slightly lower in liver tissues from fatty liver cows than from healthy cows. The hepatic mRNA abundance of cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid delta-isomerase 7 (HSD3B7) and sterol 12α-hydroxylase (CYP8B1), enzymes involved in the classic pathway of bile acid synthesis, was higher in fatty liver cows than in healthy cows. Compared with healthy cows, the hepatic mRNA abundance of alternative bile acid synthesis pathway-related genes sterol 27-hydroxylase (CYP27A1) and oxysterol 7α-hydroxylase (CYP7B1) did not differ in cows with fatty liver. The protein and mRNA abundance of bile acid transporter bile salt efflux pump (BSEP) were lower in the liver of dairy cow with fatty liver. Compared with healthy cows, the hepatic mRNA abundance of bile acid transporters solute carrier family 51 subunit α (SLC51A), ATP binding cassette subfamily C member 1 (ABCC1) and 3 (ABCC3) was greater in cows with fatty liver, whereas the solute carrier family 51 subunit β (SLC51B) did not differ. The expression of genes involved in bile acid uptake, including solute carrier family 10 member 1 (NTCP), solute carrier organic anion transporter family member 1A2 (SLCO1A2) and 2B1 (SLCO2B1) was upregulated in dairy cows with fatty liver. Furthermore, the hepatic protein and mRNA abundance of bile acid metabolism regulators farnesoid X receptor (FXR) and small heterodimer partner (SHP) were lower in cows with fatty liver than in healthy cows. Overall, these data suggest that inhibition of FXR signaling pathway may lead to the increased bile acid synthesis and uptake and decreased secretion of bile acids from hepatocytes to the bile, which elevates hepatic bile acids content in dairy cows with fatty liver. As the hepatotoxicity of bile acids has been demonstrated on nonruminant hepatocytes, it is likely that the liver injury is induced by increased hepatic bile acids content in dairy cows with fatty liver.
Collapse
Affiliation(s)
- Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuting Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Majigsuren Zolzaya
- Institute of Veterinary Medicine, Mongolian Mongolian University of Life Sciences (MULS)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Lopez VA, Lim JL, Seguin RP, Dempsey JL, Kunzman G, Cui JY, Xu L. Oral Exposure to Benzalkonium Chlorides in Male and Female Mice Reveals Sex-Dependent Alteration of the Gut Microbiome and Bile Acid Profile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593991. [PMID: 38798482 PMCID: PMC11118417 DOI: 10.1101/2024.05.13.593991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d 7 -C12- and d 7 -C16-BACs at 120 µg/g/day for one week. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d 7 -C12- or d 7 -C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted bile acid quantitation analysis, we observed decreases in secondary bile acids in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary bile acids into secondary bile acids, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.
Collapse
|
6
|
Niu C, Xie X, Liu R, Liang X, Hu Y, Lai Y. CYP7A1 Gene Induction via SHP-Dependent or Independent Mechanisms can Increase the Risk of Drug-Induced Liver Injury Independently or in Synergy with BSEP Inhibition. Drug Metab Dispos 2024; 52:432-441. [PMID: 38485279 DOI: 10.1124/dmd.124.001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Drug-induced liver injury (DILI) is a frequent cause of clinical trial failures during drug development. While inhibiting bile salt export pump (BSEP) is a well-documented DILI mechanism, interference with genes related to bile acid (BA) metabolism and transport can further complicate DILI development. Here, the effects of twenty-eight compounds on genes associated with BA metabolism and transport were evaluated, including those with discontinued development or use, boxed warnings, and clean labels for DILI. The study also included rifampicin and omeprazole, pregnane X receptor and aryl hydrocarbon receptor ligands, and four mitogen-activated protein kinase kinase (MEK1/2) inhibitors. BSEP inhibitors with more severe DILI, notably pazopanib and CP-724714, significantly upregulated the expression of 7 alpha-hydroxylase (CYP7A1), independent of small heterodimer partner (SHP) expression. CYP7A1 expression was marginally induced by omeprazole. In contrast, its expression was suppressed by mometasone (10-fold), vinblastine (18-fold), hexachlorophene (2-fold), bosentan (2.1-fold), and rifampin (2-fold). All four MEK1/2 inhibitors that show clinical DILI were not potent BSEP inhibitors but significantly induced CYP7A1 expression, accompanied by a significant SHP gene suppression. Sulfotransferase 2A1 and BSEP were marginally upregulated, but no other genes were altered by the drugs tested. Protein levels of CYP7A1 were increased with the treatment of CYP7A1 inducers and decreased with obeticholic acid, an farnesoid X receptor ligand. CYP7A1 inducers significantly increased bile acid (BA) production in hepatocytes, indicating the overall regulatory effects of BA metabolism. This study demonstrates that CYP7A1 induction via various mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition, and it should be evaluated early in drug discovery. SIGNIFICANCE STATEMENT: Kinase inhibitors, pazopanib and CP-724714, inhibit BSEP and induce CYP7A1 expression independent of small heterodimer partner (SHP) expression, leading to increased bile acid (BA) production and demonstrating clinically elevated drug-induced liver toxicity. MEK1/2 inhibitors that show BSEP-independent drug-induced liver injury (DILI) induced the CYP7A1 gene accompanied by SHP suppression. CYP7A1 induction via SHP-dependent or independent mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition. Monitoring BA production in hepatocytes can reliably detect the total effects of BA-related gene regulation for de-risking.
Collapse
Affiliation(s)
- Congrong Niu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Xiaodong Xie
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Renmeng Liu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Yiding Hu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
7
|
The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol Ther 2022; 238:108271. [DOI: 10.1016/j.pharmthera.2022.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
|
8
|
Zuo Q, Xu W, Wan Y, Feng D, He C, Lin C, Huang D, Chen F, Han L, Sun Q, Chen D, Du H, Huang L. Efficient generation of a CYP3A4-T2A-luciferase knock-in HepaRG subclone and its optimized differentiation. Biomed Pharmacother 2022; 152:113243. [PMID: 35687910 DOI: 10.1016/j.biopha.2022.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
CRISPR/Cas9 has allowed development of better and easier-to-use ADME models than traditional methods by complete knockout or knock-in of genes. However, gene editing in HepaRG cells remains challenging because long-term monoclonal cultivation may alter their differentiation capacity to a large extent. Here, CRISPR/Cas9 was used to generate a CYP3A4-T2A-luciferase knock-in HepaRG subclone by Cas9-mediated homologous recombination and monoclonal cultivation. The knock-in HepaRG-#9 subclone retained a similar differentiation potential to wildtype HepaRG cells (HepaRG-WT). To further improve differentiation and expand the applications of knock-in HepaRG cells, two optimized differentiation procedures were evaluated by comparison with the standard differentiation procedure using the knock-in HepaRG-#9 subclone and HepaRG-WT. The results indicated that addition of forskolin (an adenylate cyclase activator) and SB431542 (a TGF-β pathway inhibitor) to the first optimized differentiation procedure led to better differentiation consequence in terms of not only the initiation time for differentiation and morphological characterization, but also the mRNA levels of hepatocyte-specific genes. These data may contribute to more extensive applications of genetically modified HepaRG cells in ADME studies.
Collapse
Affiliation(s)
- Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liya Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qi Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dong Chen
- Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou 510006, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Sonoi R, Hagihara Y. Quantitative understanding of HepaRG cells during drug-induced intrahepatic cholestasis through changes in bile canaliculi dynamics. Pharmacol Res Perspect 2022; 10:e00960. [PMID: 35621230 PMCID: PMC9137115 DOI: 10.1002/prp2.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
An understanding of the quantitative relationship between bile canaliculus (BC) dynamics and the disruption of tight junctions (TJs) during drug-induced intrahepatic cholestasis may lead to new strategies aimed at drug development and toxicity testing. To investigate the relationship between BC dynamics and TJ disruption, we retrospectively analyzed the extent of TJ disruption in response to changes in the dynamics of BCs cultured with entacapone (ENT). Three hours after adding ENT, the ZO-1-negative BC surface area ratio became significantly higher (4.1-fold) than those of ZO-1-positive BCs. Based on these data, we calculated slopes of surface area changes, m, of each ZO-1-positive and ZO-1-negative BC. BCs with m ≤ 15 that fell within the 95% confidence interval of ZO-1-positive BCs were defined as ZO-1-positive. To validate this method, we compared the frequency of ZO-1-positive BCs, FZ , with that of BCs with m ≤ 15, FT , in culture using drugs that regulate TJ, or induce intrahepatic cholestasis. FT values were correlated with FZ under all culture conditions (R2 = .99). Our results indicate that the magnitude of BC surface area changes is a factor affecting TJ disruption, suggesting that maintaining TJ integrity by slowing BC dilation inhibits cell death.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan
| |
Collapse
|
10
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Dihydroartemisinin improves hypercholesterolemia in ovariectomized mice via enhancing vectorial transport of cholesterol and bile acids from blood to bile. Bioorg Med Chem 2022; 53:116520. [PMID: 34847494 DOI: 10.1016/j.bmc.2021.116520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
The increase of concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum of postmenopausal women is the important risk factor of the high morbidity of cardiovascular diseases of old women worldwide. To test the anti-hypercholesterolemia function of dihydroartemisinin (DHA) in postmenopausal women, ovariectomized (OVX) mice were generated, and DHA were administrated to OVX mice for 4 weeks. The blood and liver tissues were collected for biochemical and histological tests respectively. The mRNA and protein expression levels of genes related to metabolism and transport of cholesterol, bile acid and fatty acid in the liver or ileum were checked through qPCR and western blot. DHA could significantly reduce the high concentrations of TC and LDL-C in the serum and the lipid accumulation in the liver of ovariectomized mice. The expression of ABCG5/8 was reduced in liver of OVX mice, and DHA could up-regulate the expression of them. Genes of transport proteins for bile salt transport from blood to bile, including Slc10a1, Slco1b2 and Abcb11, were also significantly up-regulated by DHA. DHA also down-regulated the expression of Slc10a2 in the ileum of OVX mice to reduce the absorption of bile salts. Genes required for fatty acid synthesis and uptake, such as Fasn and CD36, were reduced in the liver of OVX mice, and DHA administration could significantly up-regulate the expression of them. These results demonstrated that DHA could improve hypercholesterolemia in OVX mice through enhancing the vectorial transport of cholesterol and bile acid from blood to bile.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19(#), Yue-Xiu District, Guangzhou 510080, PR China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Sharma P, Singh N, Sharma S. ATP binding cassette transporters and cancer: revisiting their controversial role. Pharmacogenomics 2021; 22:1211-1235. [PMID: 34783261 DOI: 10.2217/pgs-2021-0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The expression of ATP-binding cassette transporter (ABC transporters) has been reported in various tissues such as the lung, liver, kidney, brain and intestine. These proteins account for the efflux of different compounds and metabolites across the membrane, thus decreasing the concentration of the toxic compounds. ABC transporter genes play a vital role in the development of multidrug resistance, which is the main obstacle that hinders the success of chemotherapy. Preclinical and clinical trials have investigated the probability of overcoming drug-associated resistance and substantial toxicities. The focus has been put on several strategies to overcome multidrug resistance. These strategies include the development of modulators that can modulate ABC transporters. This knowledge can be translated for clinical oncology treatment in the future.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
12
|
Sonoi R, Hagihara Y. Tight junction stabilization prevents HepaRG cell death in drug-induced intrahepatic cholestasis. Biol Open 2021; 10:269189. [PMID: 34151938 PMCID: PMC8272035 DOI: 10.1242/bio.058606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 01/11/2023] Open
Abstract
Entacapone (ENT), a catechol-O-methyltransferase inhibitor, causes liver injury by inducing bile canaliculi (BC) dilation through inhibition of the myosin light kinase pathway. Loss of tight junctions (TJs) induces hepatocyte depolarization, which causes bile secretory failure, leading to liver damage. To understand the influence of TJ structural changes as a consequence of BC dynamics, we compared the datasets of time-lapse and immunofluorescence images for TJ protein ZO-1 in hepatocytes cultured with ENT, forskolin (FOR), ENT/FOR, and those cultured without any drugs. Retrospective analysis revealed that the drastic change in BC behaviors caused TJ disruption and apoptosis in cells cultured with ENT. Exposure to FOR or sodium taurocholate facilitated TJ formation in the cells cultured with ENT and suppressed BC dynamic changes, leading to the inhibition of TJ disruption and apoptosis. Our findings clarify that hepatocyte TJ stabilization protects against cell death induced by BC disruption.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
13
|
Feng SL, Zhang J, Jin H, Zhu WT, Yuan Z. A Network Pharmacology Study of the Molecular Mechanisms of Hypericum japonicum in the Treatment of Cholestatic Hepatitis with Validation in an Alpha-Naphthylisothiocyanate (ANIT) Hepatotoxicity Rat Model. Med Sci Monit 2021; 27:e928402. [PMID: 33657087 PMCID: PMC7938440 DOI: 10.12659/msm.928402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This network pharmacology study aimed to identify the active compounds and molecular mechanisms involved in the effects of Hypericum japonicum on cholestatic hepatitis. We validated the findings in an alpha-naphthylisothiocyanate (ANIT) rat model of hepatotoxicity. Material/Methods The chemical constituents and targets of H. japonicum and target genes previously associated with cholestatic hepatitis were retrieved from public databases. A network was constructed using Cytoscape 3.7.2 software and the STRING database and potential protein functions were analyzed based on the public platform of bioinformatics. ANIT was used to induce cholestatic hepatitis in a rat model using 36 Sprague-Dawley rats, and this model was used to investigate intervention with 3 doses of quercetin (low-dose, 50 mg/kg; medium-dose, 100 mg/kg; and high-dose, 200 mg/kg), the main active component of H. japonicum. Levels of serum biochemical indexes were measured by commercial kits, and the messenger RNA (mRNA) levels of markers of liver and mitochondrial function and oxidative stress were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). Results The main active ingredients of H. japonicum were quercetin, kaempferol, and tetramethoxyluteolin, and their key targets included prostaglandin G/H synthase 2 (PTGS2), B-cell lymphoma-2 (BCL2), cholesterol 7-alpha hydroxylase (CYP7A1), and farnesoid X receptor (FXR). Quercetin intervention promoted recovery from cholestatic hepatitis. Conclusions The findings from this research provide support for future research on the roles of quercetin, kaempferol, and tetramethoxyluteolin in human liver disease and the roles of the PTGS2, BCL2, CYP7A1, and FXR genes in cholestatic hepatitis.
Collapse
Affiliation(s)
- Sen Ling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jing Zhang
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Hongliu Jin
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wen Ting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
14
|
Hua W, Zhang S, Lu Q, Sun Y, Tan S, Chen F, Tang L. Protective effects of n-Butanol extract and iridoid glycosides of Veronica ciliata Fisch. Against ANIT-induced cholestatic liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113432. [PMID: 33011367 DOI: 10.1016/j.jep.2020.113432] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Veronica ciliata Fisch. is a traditional medical herb that present in more than 100 types of Tibetan medicine prescriptions, most of which are used for liver disease therapy. Iridoid glycosides have been identified as the major active components of V.ciliata with a variety of biological activities. AIMS OF THE STUDY The aim of this study is to explore the protective effect and potential mechanism of n-Butanol extract (BE) and iridoid glycosides (IG) from V.ciliata against ɑ-naphthyl isothiocyanate (ANIT)-induced hepatotoxicity and cholestasis in mice. MATERIALS AND METHODS Mice were intragastrically (i.g.) given BE and IG at different dose or positive control ursodeoxycholic acid (UCDA) once a day for 14 consecutive days, and were treated with ANIT to cause liver injury on day 12th. Serum levels of hepatic injury markers and cholestasis indicators, liver index and liver histopathology were measured to evaluate the effect of BE and IG on liver injury caused by ANIT. The protein levels of tumor necrosis factor-α (TNF-α), nuclear factor kappa B(NF-κB), interleukin-6 (IL-6), Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), and the levels of oxidative stress indicators in liver tissue were investigated to reveal the underlying protective mechanisms of BE and IG against ANIT-induced hepatotoxicity and cholestasis. RESULTS The n-Butanol extract (BE) and iridoid glycosides (IG) isolated from V.ciliata significantly decreased serum level of cholestatic liver injury markers aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total bile acid (TBA), total bilirubin (TBIL), and direct bilirubin (DBIL) in ANIT-treated mice. Histopathology of the liver tissue showed that pathological damages were relieved upon BE and IG treatment. Meanwhile, the results indicated BE and IG notably restored relative liver weights, inhibited oxidative stress induced by ANIT through increasing hepatic level of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and decreasing hepatic content of malondialdehyde (MDA). Western blot revealed that BE and IG inhibited the expression of pro-inflammatory factors TGF-α, IL-6 and NF-κB. Furthermore, the decreased protein expression of bile acid transporters NTCP, BSEP, MRP2 were upregulated by BE and IG in a dose-dependent manner. CONCLUSION The results have demonstrated that BE and IG exhibited a dose-dependently protective effect against ANIT-induced liver injury with acute intrahepatic cholestasis in mice, which might be related to the regulation of oxidative stress, inflammatory response and bile acid transport. In addition, these findings pointed out that iridoid glycosides as main active components of V.ciliata play a critical role in hepatoprotective effect of V.ciliata.
Collapse
Affiliation(s)
- Wan Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Shiyan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Qiuxia Lu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Yiran Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Shancai Tan
- College of Pharmacy, Tongren Polytechnic College, Guizhou, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China.
| |
Collapse
|
15
|
Zhang MY, Wang JP, He K, Xia XM. Bsep expression in hilar cholangiocarcinoma of rat model. Sci Rep 2021; 11:2861. [PMID: 33536605 PMCID: PMC7858616 DOI: 10.1038/s41598-021-82636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Develop a rat model of hilar cholangiocarcinoma for detecting bile salt export pump (Bsep) expression in hilar cholangiocarcinoma tissues, in order to provide a new therapeutic target for the gene therapy of hilar cholangiocarcinoma. Sixty male Wistar rats (body weight, 190 ± 8 g) were randomly divided into three groups (the experimental group, the control group and the sham operation group, n = 20 each) as follows: The three groups were fed a standard diet, the experimental group was injected by cholangiocarcinoma QBC939 cell suspension along the hilar bile duct into the bile duct bifurcation with microsyringe, the control group was injected by normal saline, the sham operation group did not inject anything. Every day assess the rats’ mental state, diet, and motion by using Basso–Beattie–Bresnahan and combined behavioral score. At 4 weeks, one rat of the experimental group was sacrificed after it was administered anesthesia, and we recorded changes in hilar bile duct size, texture, and form. This procedure was repeated at 6 weeks. After 6 weeks, hilar cholangiocarcinoma developed only in the experimental group, thereby establishing an experimental model for studying QBC939-induced hilar cholangiocarcinoma. Tumor formation was confirmed by pathological examination, and hilar bile duct tissues were harvested from both the groups. A real-time polymerase chain reaction assay and an immunohistochemical assay were used to analyze the expression of Bsep in hilar bile duct tissues of each group. From the second week, the rats in experimental group began to eat less, and their body mass decreased compared with control group and sham operation group. After 6 weeks, we detected hilar cholangiocarcinoma in the hilar bile duct tissues of 18 rats (90%) in the experimental group. In the experimental group with hilar cholangiocarcinoma, we found that the levels of total cholesterol, total bilirubin, and direct bilirubin were higher compared with those in the control group and sham operation group. Simultaneously, muddy stones emerged from the bile ducts of rats in the experimental group. The Bsep/Gapdh mRNA ratio in hilar cholangiocarcinoma, control group and sham operation group differed markedly. Light microscopy revealed a granular pattern of Bsep protein expression which reacted with the anti-Bsep antibody. Each section was randomly divided into six regions, with 80 cells were observed in every region. Sections with > 10% positive cells were designated positive, Sections with < 10% positive cells were designated negative. Each group included 4800 cells. In the experimental group, 1200 cells (25%) were positive, in the control group, 3648 cells (76%) were positive and in the sham operation group 3598 cells (75%) were positive, and this difference was statistically significant. Bsep expression significantly decreased in hilar cholangiocarcinoma of rats than those in control group and sham operation group, suggesting that drugs targeting Bsep are a new strategy for hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Jie-Ping Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kai He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xian-Ming Xia
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| |
Collapse
|
16
|
Hayashi H, Osaka S, Sakabe K, Fukami A, Kishimoto E, Aihara E, Sabu Y, Mizutani A, Kusuhara H, Naritaka N, Zhang W, Huppert SS, Sakabe M, Nakamura T, Hu YC, Mayhew C, Setchell K, Takebe T, Asai A. Modeling Human Bile Acid Transport and Synthesis in Stem Cell-Derived Hepatocytes with a Patient-Specific Mutation. Stem Cell Reports 2021; 16:309-323. [PMID: 33450190 PMCID: PMC7878720 DOI: 10.1016/j.stemcr.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
The bile salt export pump (BSEP) is responsible for the export of bile acid from hepatocytes. Impaired transcellular transport of bile acids in hepatocytes with mutations in BSEP causes cholestasis. Compensatory mechanisms to regulate the intracellular bile acid concentration in human hepatocytes with BSEP deficiency remain unclear. To define pathways that prevent cytotoxic accumulation of bile acid in hepatocytes, we developed a human induced pluripotent stem cell-based model of isogenic BSEP-deficient hepatocytes in a Transwell culture system. Induced hepatocytes (i-Heps) exhibited defects in the apical export of bile acids but maintained a low intracellular bile acid concentration by inducing basolateral export. Modeling the autoregulation of bile acids on hepatocytes, we found that BSEP-deficient i-Heps suppressed de novo bile acid synthesis using the FXR pathway via basolateral uptake and export without apical export. These observations inform the development of therapeutic targets to reduce the overall bile acid pool in patients with BSEP deficiency. Human isogenic iPSCs were generated by CRISPR to study a truncating mutation of BSEP iPSC-derived hepatocytes recapitulate pathophysiology of BSEP deficiency in patients BSEP-deficient hepatocytes induce alternative basolateral bile acid export Activation of FXR suppresses de novo bile acid synthesis in BSEP-deficient hepatocytes
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Osaka
- Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Kokoro Sakabe
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aiko Fukami
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eriko Kishimoto
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eitaro Aihara
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yusuke Sabu
- Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Ayumu Mizutani
- Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | | | - Wujuan Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stacey S Huppert
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Masahide Sakabe
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Takahisa Nakamura
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christopher Mayhew
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kenneth Setchell
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Takanori Takebe
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Asai
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Ju Z, Ya J, Li X, Wang H, Zhao H. The effects of chronic cadmium exposure on Bufo gargarizans larvae: Histopathological impairment, gene expression alteration and fatty acid metabolism disorder in the liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105470. [PMID: 32199138 DOI: 10.1016/j.aquatox.2020.105470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) a highly toxic metal to human and wildlife health and it is hazardous to both terrestrial and aquatic life. In this study, we used RNA sequencing analysis to examine the effects of chronic cadmium exposure on liver lipid metabolism of Bufo gargarizans larvae. Tadpoles were exposed to cadmium concentrations at 0, 5, 10, 50, 100 and 200 μg L-1 from Gosner stage 26-42 of metamorphic climax. The results showed high dose cadmium (50, 100 and 200 μg L-1) caused obvious histological changes characterized by hepatocytes deformation, nuclear pyknosis, increasing melanomacrophage centers (MMCs) and aggregated lipid droplets. Moreover, transcriptome analysis showed that liver function was seriously affected by cadmium exposure. Furthermore, high dose cadmium significantly upregulated the mRNA expression of elongation of very-long-chain fatty acids 1 (ELOVL1), Mitochondrial trans-2-enoyl-CoA reductase (MECR), Trans-2, 3-enoyl-CoA reductase (TER) and Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) which are related with fatty acid synthesis. Meanwhile, mRNA levels of genes related with fat acid oxidation such as acetyl-CoA acyltransferase 2 (ACAA2) and enoyl-coenzyme A (CoA) hydratase short chain 1 (ECHS1) were significantly upregulated while the expression of Acyl-coA thioesterase 1 (ACOT1), 3-hydroxyacyl-CoA dehydrogenase (HADH), Palmitoyl-protein thioesterase 1(PPT1) and Acetyl-CoA acyltransferase 1(ACAA1) was significantly downregulated by high dose cadmium exposure. Furthermore, the mRNA level of ATP-binding cassette subfamily B member 11 (ABCB11) related with bile secretion was significantly decreased exposed to high dose cadmium. Our results suggested cadmium can cause liver dysfunction by inducing histopathological damages, genetic expression alterations and fatty acid metabolism disorder.
Collapse
Affiliation(s)
- Zongqi Ju
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Ya
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
18
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
19
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Garzel B, Hu T, Li L, Lu Y, Heyward S, Polli J, Zhang L, Huang SM, Raufman JP, Wang H. Metformin Disrupts Bile Acid Efflux by Repressing Bile Salt Export Pump Expression. Pharm Res 2020; 37:26. [PMID: 31907698 DOI: 10.1007/s11095-019-2753-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The bile salt export pump (BSEP), a key player in hepatic bile acid clearance, has been the center of research on drug-induced cholestasis. However, such studies focus primarily on the direct inhibition of BSEP, often overlooking the potential impact of transcriptional repression. This work aims to explore the disruption of bile acid efflux caused by drug-induced BSEP repression. METHODS BSEP activity was analyzed in human primary hepatocytes (HPH) using a traditional biliary-clearance experiment and a modified efflux assay, which includes a 72-h pretreatment prior to efflux measurement. Relative mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. RESULTS Metformin concentration-dependently repressed BSEP expression in HPH. Although metformin did not directly inhibit BSEP activity, longer metformin exposure reduced BSEP transport function in HPH by down-regulating BSEP expression. BSEP repression by metformin was found to be AMP-activated protein kinase-independent. Additional screening of 10 reported cholestatic non-BSEP inhibitors revealed that the anti-cancer drug tamoxifen also markedly repressed BSEP expression and reduced BSEP activity in HPH. CONCLUSIONS Repression of BSEP alone is sufficient to disrupt hepatic bile acid efflux. Metformin and tamoxifen appear to be prototypes of a class of BSEP repressors that may cause drug-induced cholestasis through gene repression instead of direct BSEP inhibition.
Collapse
Affiliation(s)
- Brandy Garzel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Tao Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Yuanfu Lu
- Key Laboratory of Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Scott Heyward
- BioIVT, 1450 S Rolling Road, Baltimore, Maryland, 21227, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, Maryland, 21201, USA.,VA Maryland Health Care System, 10 N. Greene Street, Baltimore, Maryland, 21201, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
21
|
Abstract
Cholestasis results in blockage of bile flow whether the point of obstruction occurs extrahepatically or intrahepatically. Bile acids are a primary constituent of bile, and thus one of the primary outcomes is acute retention of bile acids in hepatocytes. Bile acids are normally secreted into the biliary tracts and then released into the small bowel before recirculating back to the liver. Retention of bile acids has long been hypothesized to be a primary cause of the associated liver injury that occurs during acute or chronic cholestasis. Despite this, a surge of papers in the last decade have reported a primary role for inflammation in the pathophysiology of cholestatic liver injury. Furthermore, it has increasingly been recognized that both the constituency of individual bile acids that make up the greater pool, as well as their conjugation status, is intimately involved in their toxicity, and this varies between species. Finally, the role of bile acids in drug-induced cholestatic liver injury remains an area of increasing interest. The purpose of this review is to critically evaluate current proposed mechanisms of cholestatic liver injury, with a focus on the evolving role of bile acids in cell death and inflammation.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Chang JH, Sangaraju D, Liu N, Jaochico A, Plise E. Comprehensive Evaluation of Bile Acid Homeostasis in Human Hepatocyte Co-Culture in the Presence of Troglitazone, Pioglitazone, and Acetylsalicylic Acid. Mol Pharm 2019; 16:4230-4240. [DOI: 10.1021/acs.molpharmaceut.9b00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae H. Chang
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Dewakar Sangaraju
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Ning Liu
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Allan Jaochico
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Emile Plise
- Genentech, Inc, South San Francisco, California 94080, United States
| |
Collapse
|
23
|
Sissung TM, Huang PA, Hauke RJ, McCrea EM, Peer CJ, Barbier RH, Strope JD, Ley AM, Zhang M, Hong JA, Venzon D, Jackson JP, Brouwer KR, Grohar P, Glod J, Widemann BC, Heller T, Schrump DS, Figg WD. Severe Hepatotoxicity of Mithramycin Therapy Caused by Altered Expression of Hepatocellular Bile Transporters. Mol Pharmacol 2019; 96:158-167. [PMID: 31175181 PMCID: PMC6608607 DOI: 10.1124/mol.118.114827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Mithramycin demonstrates preclinical anticancer activity, but its therapeutic dose is limited by the development of hepatotoxicity that remains poorly characterized. A pharmacogenomics characterization of mithramycin-induced transaminitis revealed that hepatotoxicity is associated with germline variants in genes involved in bile disposition: ABCB4 (multidrug resistance 3) rs2302387 and ABCB11 [bile salt export pump (BSEP)] rs4668115 reduce transporter expression (P < 0.05) and were associated with ≥grade 3 transaminitis developing 24 hours after the third infusion of mithramycin (25 mcg/kg, 6 hours/infusion, every day ×7, every 28 days; P < 0.0040). A similar relationship was observed in a pediatric cohort. We therefore undertook to characterize the mechanism of mithramycin-induced acute transaminitis. As mithramycin affects cellular response to bile acid treatment by altering the expression of multiple bile transporters (e.g., ABCB4, ABCB11, sodium/taurocholate cotransporting polypeptide, organic solute transporter α/β) in several cell lines [Huh7, HepaRG, HepaRG BSEP (-/-)] and primary human hepatocytes, we hypothesized that mithramycin inhibited bile-mediated activation of the farnesoid X receptor (FXR). FXR was downregulated in all hepatocyte cell lines and primary human hepatocytes (P < 0.0001), and mithramycin inhibited chenodeoxycholic acid- and GW4046-induced FXR-galactose-induced gene 4 luciferase reporter activity (P < 0.001). Mithramycin promoted glycochenodeoxycholic acid-induced cytotoxicity in ABCB11 (-/-) cells and increased the overall intracellular concentration of bile acids in primary human hepatocytes grown in sandwich culture (P < 0.01). Mithramycin is a FXR expression and FXR transactivation inhibitor that inhibits bile flow and potentiates bile-induced cellular toxicity, particularly in cells with low ABCB11 function. These results suggest that mithramycin causes hepatotoxicity through derangement of bile acid disposition; results also suggest that pharmacogenomic markers may be useful to identify patients who may tolerate higher mithramycin doses. SIGNIFICANCE STATEMENT: The present study characterizes a novel mechanism of drug-induced hepatotoxicity in which mithramycin not only alters farnesoid X receptor (FXR) and small heterodimer partner gene expression but also inhibits bile acid binding to FXR, resulting in deregulation of cellular bile homeostasis. Two novel single-nucleotide polymorphisms in bile flow transporters are associated with mithramycin-induced liver function test elevations, and the present results are the rationale for a genotype-directed clinical trial using mithramycin in patients with thoracic malignancies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- Adult
- Aged
- Antibiotics, Antineoplastic/adverse effects
- Cell Line, Tumor
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/metabolism
- Clinical Trials, Phase II as Topic
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Middle Aged
- Plicamycin/adverse effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Thoracic Neoplasms/drug therapy
- Thoracic Neoplasms/genetics
- Thoracic Neoplasms/metabolism
Collapse
Affiliation(s)
- Tristan M Sissung
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Phoebe A Huang
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Ralph J Hauke
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Edel M McCrea
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Cody J Peer
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Roberto H Barbier
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Jonathan D Strope
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Ariel M Ley
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Mary Zhang
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Julie A Hong
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - David Venzon
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Jonathan P Jackson
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Kenneth R Brouwer
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Patrick Grohar
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Jon Glod
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Brigitte C Widemann
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - Theo Heller
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - David S Schrump
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| | - William D Figg
- Clinical Pharmacology Program (T.M.S., C.J.P., W.D.F.), Molecular Pharmacology Section (P.A.H., R.J.H., E.M.M., R.H.B., J.D.S., A.M.L., W.D.F.), Biostatistics and Data Management Section (M.Z., J.A.H., D.V.), Pediatric Oncology Branch (P.G., J.G., B.C.W.), Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (D.S.S.), and Translational Hepatology Section (T.H.), Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland; and BioIVT, ADME-Tox Division, Durham, North Carolina (J.P.J., K.R.B.)
| |
Collapse
|
24
|
Liu-Kreyche P, Shen H, Marino AM, Iyer RA, Humphreys WG, Lai Y. Lysosomal P-gp-MDR1 Confers Drug Resistance of Brentuximab Vedotin and Its Cytotoxic Payload Monomethyl Auristatin E in Tumor Cells. Front Pharmacol 2019; 10:749. [PMID: 31379564 PMCID: PMC6650582 DOI: 10.3389/fphar.2019.00749] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are composed of an antibody linked to cytotoxic anticancer payloads. ADCs recognize tumor-specific cell surface antigens and are internalized into lysosomes where proteolytic enzymes release the cytotoxic payloads. Efflux transporters on plasma membrane that play a significant role on multi-drug resistance in chemotherapy can be internalized on lysosomal membrane and sequester the cytotoxic payloads. In the present study, ATP binding cassette (ABC) efflux transporters including breast cancer resistance protein (BCRP), P-glycoprotein (P-gp-MDR1), multidrug resistance protein (MRP) 2, MRP3 and MRP4 in lysosomal, and plasma membrane of tumor cells were quantified by targeted quantitative proteomics. The cytotoxicity of brentuximab vedotin and its cytotoxic payload monomethyl auristatin E (MMAE) to the tumor cell lines in the presence and absence of elacridar (P-gp-MDR1 inhibitor) or chloroquine (lysosomotropic agent) were evaluated. MMAE is a substrate for P-gp-MDR1, as the apparent efflux ratio in MDR1 transfected MDCK cell monolayers was 44.5, and elacridar abolished the MMAE efflux. Cell lines that highly express P-gp-MDR1 show higher EC50s toward the cell killing effects of MMAE. Co-incubation with chloroquine or elacridar resulted in left shift of MMAE EC50 by 2.9-16-fold and 4.2-22-fold, respectively. Similarly co-incubation with chloroquine or elacridar or in combination of chloroquine and elacridar increased cytotoxic effects of brentuximab vedotin by 2.8- to 21.4-fold on KM-H2 cells that express a specific tumor antigen CD30 and P-gp-MDR1. These findings demonstrate important roles of P-gp-MDR1 on cytotoxic effects of brentuximab vedotin and its payload MMAE. Collectively, ABC transporter-mediated drug extrusion and/or sequestration needs to be early assessed for selection of optimal payloads and linkers when developing ADCs.
Collapse
Affiliation(s)
- Peggy Liu-Kreyche
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Lawrenceville, NJ, United States
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Lawrenceville, NJ, United States
| | - Anthony M Marino
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Lawrenceville, NJ, United States
| | - Ramaswamy A Iyer
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Lawrenceville, NJ, United States
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Lawrenceville, NJ, United States
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Lawrenceville, NJ, United States
| |
Collapse
|
25
|
Gijbels E, Vilas-Boas V, Deferm N, Devisscher L, Jaeschke H, Annaert P, Vinken M. Mechanisms and in vitro models of drug-induced cholestasis. Arch Toxicol 2019; 93:1169-1186. [PMID: 30972450 DOI: 10.1007/s00204-019-02437-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS, 66160, USA
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
26
|
Abstract
Cholestasis can be induced by obstruction of bile ducts or intrahepatic toxicity of drugs and chemicals. However, the mode of cell death during cholestasis, i.e., apoptosis or necrosis, has been controversial. There are fundamental reasons for the controversies, both of which are discussed here, namely the design of experiments and the use of parameters with limited specificity for a certain mode of cell death. Based on the assumption that cholestatic liver injury is caused by accumulation of bile acids, rodent (mainly rat) hepatocytes have been exposed to hydrophobic, glycine-conjugated bile acids, which resulted in apoptotic cell death. The problems with this experimental design are that in rodents bile acids are predominantly taurine conjugated and rodent hepatocytes are never exposed to these levels of glycine-conjugated bile acids. In contrast, taurine-conjugated bile acids trigger inflammatory gene activation in rodent hepatocytes and a necro-inflammatory injury in vivo. On the other hand, human hepatocytes are more resistant to glycine-conjugated bile acids and die by necrosis when exposed to high biliary levels of these bile acids. In this chapter, we describe multiple assays including the caspase activity assay, which is specific for apoptosis, and the general cell death assays alanine aminotransferase or lactate dehydrogenase activities in cell culture medium or plasma. An increase in these enzyme activities without caspase activity indicates necrotic cell death. Thus, both the experimental design and the selection of cell death parameters are critical for the relevance of the experiments for the human pathophysiology.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
27
|
Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019; 24:112-128. [DOI: 10.1016/j.drudis.2018.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
28
|
Fernández-Murga ML, Petrov PD, Conde I, Castell JV, Goméz-Lechón MJ, Jover R. Advances in drug-induced cholestasis: Clinical perspectives, potential mechanisms and in vitro systems. Food Chem Toxicol 2018; 120:196-212. [PMID: 29990576 DOI: 10.1016/j.fct.2018.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Despite growing research, drug-induced liver injury (DILI) remains a serious issue of increasing importance to the medical community that challenges health systems, pharmaceutical industries and drug regulatory agencies. Drug-induced cholestasis (DIC) represents a frequent manifestation of DILI in humans, which is characterised by an impaired canalicular bile flow resulting in a detrimental accumulation of bile constituents in blood and tissues. From a clinical point of view, cholestatic DILI generates a wide spectrum of presentations and can be a diagnostic challenge. The drug classes mostly associated with DIC are anti-infectious, anti-diabetic, anti-inflammatory, psychotropic and cardiovascular agents, steroids, and other miscellaneous drugs. The molecular mechanisms of DIC have been investigated since the 1980s but they remain debatable. It is recognised that altered expression and/or function of hepatobiliary membrane transporters underlies some forms of cholestasis, and this and other concomitant mechanisms are very likely in DIC. Deciphering these processes may pave the ways for diagnosis, prognosis and prevention, for which currently major gaps and caveats exist. In this review, we summarise recent advances in the field of DIC, including clinical aspects, the potential mechanisms postulated so far and the in vitro systems that can be useful to investigate and identify new cholestatic drugs.
Collapse
Affiliation(s)
- M Leonor Fernández-Murga
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Petar D Petrov
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Isabel Conde
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Jose V Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| | - M José Goméz-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
29
|
Saini N, Bakshi S, Sharma S. In-silico approach for drug induced liver injury prediction: Recent advances. Toxicol Lett 2018; 295:288-295. [PMID: 29981923 DOI: 10.1016/j.toxlet.2018.06.1216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Drug induced liver injury (DILI) is the prime cause of liver disfunction which may lead to mild non-specific symptoms to more severe signs like hepatitis, cholestasis, cirrhosis and jaundice. Not only the prescription medications, but the consumption of herbs and health supplements have also been reported to cause these adverse reactions resulting into high mortality rates and post marketing withdrawal of drugs. Due to the continuously increasing DILI incidences in recent years, robust prediction methods with high accuracy, specificity and sensitivity are of priority. Bioinformatics is the emerging field of science that has been used in the past few years to explore the mechanisms of DILI. The major emphasis of this review is the recent advances of in silico tools for the diagnostic and therapeutic interventions of DILI. These tools have been developed and widely used in the past few years for the prediction of pathways induced from both hepatotoxic as well as hepatoprotective Chinese drugs and for the identification of DILI specific biomarkers for prognostic purpose. In addition to this, advanced machine learning models have been developed for the classification of drugs into DILI causing and non-DILI causing. Moreover, development of 3 class models over 2 class offers better understanding of multi-class DILI risks and at the same time providing authentic prediction of toxicity during drug designing before clinical trials.
Collapse
Affiliation(s)
- Neha Saini
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shikha Bakshi
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
30
|
Petrov PD, Fernández-Murga ML, López-Riera M, Goméz-Lechón MJ, Castell JV, Jover R. Predicting drug-induced cholestasis: preclinical models. Expert Opin Drug Metab Toxicol 2018; 14:721-738. [PMID: 29888962 DOI: 10.1080/17425255.2018.1487399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Collapse
Affiliation(s)
- Petar D Petrov
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - M Leonor Fernández-Murga
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - Mireia López-Riera
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - M José Goméz-Lechón
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Jose V Castell
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| | - Ramiro Jover
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
31
|
Deep Transcriptomic Analysis of Black Rockfish (Sebastes schlegelii) Provides New Insights on Responses to Acute Temperature Stress. Sci Rep 2018; 8:9113. [PMID: 29904092 PMCID: PMC6002380 DOI: 10.1038/s41598-018-27013-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
In the present study, we conducted an RNA-Seq analysis to characterize the genes and pathways involved in acute thermal and cold stress responses in the liver of black rockfish, a viviparous teleost that has the ability to cope with a wide range of temperature changes. A total of 584 annotated differentially expressed genes (DEGs) were identified in all three comparisons (HT vs NT, HT vs LT and LT vs NT). Based on an enrichment analysis, DEGs with a potential role in stress accommodation were classified into several categories, including protein folding, metabolism, immune response, signal transduction, molecule transport, membrane, and cell proliferation/apoptosis. Considering that thermal stress has a greater effect than cold stress in black rockfish, 24 shared DEGs in the intersection of the HT vs LT and HT vs NT groups were enriched in 2 oxidation-related gene ontology (GO) terms. Nine important heat-stress-reducing pathways were significantly identified and classified into 3 classes: immune and infectious diseases, organismal immune system and endocrine system. Eight DEGs (early growth response protein 1, bile salt export pump, abcb11, hsp70a, rtp3, 1,25-dihydroxyvitamin d(3) 24-hydroxylase, apoa4, transcription factor jun-b-like and an uncharacterized gene) were observed among all three comparisons, strongly implying their potentially important roles in temperature stress responses.
Collapse
|
32
|
Rodrigues RM, Kollipara L, Chaudhari U, Sachinidis A, Zahedi RP, Sickmann A, Kopp-Schneider A, Jiang X, Keun H, Hengstler J, Oorts M, Annaert P, Hoeben E, Gijbels E, De Kock J, Vanhaecke T, Rogiers V, Vinken M. Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol 2018; 92:1939-1952. [PMID: 29761207 DOI: 10.1007/s00204-018-2214-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/26/2018] [Indexed: 11/24/2022]
Abstract
Bosentan is well known to induce cholestatic liver toxicity in humans. The present study was set up to characterize the hepatotoxic effects of this drug at the transcriptomic, proteomic, and metabolomic levels. For this purpose, human hepatoma-derived HepaRG cells were exposed to a number of concentrations of bosentan during different periods of time. Bosentan was found to functionally and transcriptionally suppress the bile salt export pump as well as to alter bile acid levels. Pathway analysis of both transcriptomics and proteomics data identified cholestasis as a major toxicological event. Transcriptomics results further showed several gene changes related to the activation of the nuclear farnesoid X receptor. Induction of oxidative stress and inflammation were also observed. Metabolomics analysis indicated changes in the abundance of specific endogenous metabolites related to mitochondrial impairment. The outcome of this study may assist in the further optimization of adverse outcome pathway constructs that mechanistically describe the processes involved in cholestatic liver injury.
Collapse
Affiliation(s)
- Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | | | - Umesh Chaudhari
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Xiaoqi Jiang
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Hector Keun
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund, Dortmund, Germany
| | - Marlies Oorts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
33
|
Ye H, Nelson LJ, Gómez del Moral M, Martínez-Naves E, Cubero FJ. Dissecting the molecular pathophysiology of drug-induced liver injury. World J Gastroenterol 2018; 24:1373-1385. [PMID: 29632419 PMCID: PMC5889818 DOI: 10.3748/wjg.v24.i13.1373] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) has become a major topic in the field of Hepatology and Gastroenterology. DILI can be clinically divided into three phenotypes: hepatocytic, cholestatic and mixed. Although the clinical manifestations of DILI are variable and the pathogenesis complicated, recent insights using improved preclinical models, have allowed a better understanding of the mechanisms that trigger liver damage. In this review, we will discuss the pathophysiological mechanisms underlying DILI. The toxicity of the drug eventually induces hepatocellular damage through multiple molecular pathways, including direct hepatic toxicity and innate and adaptive immune responses. Drugs or their metabolites, such as the common analgesic, acetaminophen, can cause direct hepatic toxicity through accumulation of reactive oxygen species and mitochondrial dysfunction. The innate and adaptive immune responses play also a very important role in the occurrence of idiosyncratic DILI. Furthermore, we examine common forms of hepatocyte death and their association with the activation of specific signaling pathways.
Collapse
Affiliation(s)
- Hui Ye
- Department of Immunology, Ophtalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| | - Leonard J Nelson
- Institute for BioEngineering (Human Liver Tissue Engineering), School of Engineering, Faraday Building, The University of Edinburgh, The Kingâs Buildings, Mayfield Road, Edinburgh EH9 3 JL, Scotland, United Kingdom
| | - Manuel Gómez del Moral
- Department of Cell Biology, Complutense University School of Medicine, Madrid 28040, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophtalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| |
Collapse
|
34
|
Burbank MG, Sharanek A, Burban A, Mialanne H, Aerts H, Guguen-Guillouzo C, Weaver RJ, Guillouzo A. From the Cover: MechanisticInsights in Cytotoxic and Cholestatic Potential of the Endothelial Receptor Antagonists Using HepaRG Cells. Toxicol Sci 2018; 157:451-464. [PMID: 28369585 DOI: 10.1093/toxsci/kfx062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several endothelin receptor antagonists (ERAs) have been developed for the treatment of pulmonary arterial hypertension (PAH). Some of them have been related to clinical cases of hepatocellular injury (sitaxentan [SIT]) and/or cholestasis (bosentan [BOS]). We aimed to determine if ambrisentan (AMB) and macitentan (MAC), in addition to BOS and SIT, could potentially cause liver damage in man by use of human HepaRG cells. Our results showed that like BOS, MAC-induced cytotoxicity and cholestatic disorders characterized by bile canaliculi dilatation and impairment of myosin light chain kinase signaling. Macitentan also strongly inhibited taurocholic acid and carboxy-2',7'-dichlorofluorescein efflux while it had a much lower inhibitory effect on influx activity compared to BOS and SIT. Moreover, these three drugs caused decreased intracellular accumulation and parallel increased levels of total bile acids (BAs) in serum-free culture media. In addition, all drugs except AMB variably deregulated gene expression of BA transporters. In contrast, SIT was hepatotoxic without causing cholestatic damage, likely via the formation of reactive metabolites and AMB was not hepatotoxic. Together, our results show that some ERAs can be hepatotoxic and that the recently marketed MAC, structurally similar to BOS, can also cause cholestatic alterations in HepaRG cells. The absence of currently known or suspected cases of cholestasis in patients suffering from PAH treated with MAC is rationalized by the lower therapeutic doses and Cmax, and longer receptor residence time compared to BOS.
Collapse
Affiliation(s)
- Matthew Gibson Burbank
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France.,Biologie Servier, Gidy, France
| | - Ahmad Sharanek
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France
| | - Audrey Burban
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France
| | | | | | | | | | - André Guillouzo
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France
| |
Collapse
|
35
|
Notenboom S, Weigand KM, Proost JH, van Lipzig MM, van de Steeg E, van den Broek PH, Greupink R, Russel FG, Groothuis GM. Development of a mechanistic biokinetic model for hepatic bile acid handling to predict possible cholestatic effects of drugs. Eur J Pharm Sci 2018; 115:175-184. [DOI: 10.1016/j.ejps.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
36
|
Rao Z, Zhang F, Zhang XY, Zhang GQ, Ma YR, Zhou Y, Qin HY, Wu XA, Wei YH. Multicomponent determination of traditional Chinese medicine preparation yin-zhi-huang injection by LC-MS/MS for screening of its potential bioactive candidates using HepaRG cells. Biomed Chromatogr 2017; 32. [PMID: 28755504 DOI: 10.1002/bmc.4057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Zhi Rao
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| | - Fan Zhang
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| | - Xiao-Yi Zhang
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Guo-Qiang Zhang
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| | - Yan-Rong Ma
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| | - Yan Zhou
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| | - Hong-Yan Qin
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| | - Xin-An Wu
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| | - Yu-Hui Wei
- Department of Pharmacy; the First Hospital of Lanzhou University; Lanzhou China
| |
Collapse
|
37
|
Kotsampasakou E, Montanari F, Ecker GF. Predicting drug-induced liver injury: The importance of data curation. Toxicology 2017; 389:139-145. [PMID: 28652195 PMCID: PMC6422282 DOI: 10.1016/j.tox.2017.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/10/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry due to insufficient means of prevention/prediction. In the current work we present a 2-class classification model for DILI, generated with Random Forest and 2D molecular descriptors on a dataset of 966 compounds. In addition, predicted transporter inhibition profiles were also included into the models. The initially compiled dataset of 1773 compounds was reduced via a 2-step approach to 966 compounds, resulting in a significant increase (p-value < 0.05) in model performance. The models have been validated via 10-fold cross-validation and against three external test sets of 921, 341 and 96 compounds, respectively. The final model showed an accuracy of 64% (AUC 68%) for 10-fold cross-validation (average of 50 iterations) and comparable values for two test sets (AUC 59%, 71% and 66%, respectively). In the study we also examined whether the predictions of our in-house transporter inhibition models for BSEP, BCRP, P-glycoprotein, and OATP1B1 and 1B3 contributed in improvement of the DILI mode. Finally, the model was implemented with open-source 2D RDKit descriptors in order to be provided to the community as a Python script.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Floriane Montanari
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
38
|
Starokozhko V, Greupink R, van de Broek P, Soliman N, Ghimire S, de Graaf IAM, Groothuis GMM. Rat precision-cut liver slices predict drug-induced cholestatic injury. Arch Toxicol 2017; 91:3403-3413. [PMID: 28391356 PMCID: PMC5608839 DOI: 10.1007/s00204-017-1960-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/21/2017] [Indexed: 01/23/2023]
Abstract
Drug-induced cholestasis (DIC) is one of the leading manifestations of drug-induced liver injury (DILI). As the underlying mechanisms for DIC are not fully known and specific and predictive biomarkers and pre-clinical models are lacking, the occurrence of DIC is often only reported when the drug has been approved for registration. Therefore, appropriate models that predict the cholestatic potential of drug candidates and/or provide insight into the mechanism of DIC are highly needed. We investigated the application of rat precision-cut liver slices (PCLS) to predict DIC, using several biomarkers of cholestasis: hepatocyte viability, intracellular accumulation of total as well as individual bile acids and changes in the expression of genes known to play a role in cholestasis. Rat PCLS exposed to the cholestatic drugs chlorpromazine, cyclosporine A and glibenclamide for 48 h in the presence of a 60 μM physiological bile acid (BA) mix reflected various changes associated with cholestasis, such as decrease in hepatocyte viability, accumulation and changes in the composition of BA and changes in the gene expression of Fxr, Bsep and Ntcp. The toxicity of the drugs was correlated with the accumulation of BA, and especially DCA and CDCA and their conjugates, but to a different extent for different drugs, indicating that BA toxicity is not the only cause for the toxicity of cholestatic drugs. Moreover, our study supports the use of several biomarkers to test drugs for DIC. In conclusion, our results indicate that PCLS may represent a physiological and valuable model to identify cholestatic drugs and provide insight into the mechanisms underlying DIC.
Collapse
Affiliation(s)
- Viktoriia Starokozhko
- Division of Pharmacokinetics Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra van de Broek
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nashwa Soliman
- Division of Pharmacokinetics Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Samiksha Ghimire
- Division of Pharmacokinetics Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Inge A M de Graaf
- Division of Pharmacokinetics Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M M Groothuis
- Division of Pharmacokinetics Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
Kang L, Si L, Rao J, Li D, Wu Y, Wu S, Wu M, He S, Zhu W, Wu Y, Xu J, Li G, Huang J. Polygoni Multiflori Radix derived anthraquinones alter bile acid disposition in sandwich-cultured rat hepatocytes. Toxicol In Vitro 2017; 40:313-323. [PMID: 28161596 DOI: 10.1016/j.tiv.2017.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023]
Abstract
Hepatic adverse reaction associated with Polygoni Multiflori Radix (PMR) has been frequently reported in recent years. Highly-enriched anthraquinones (AQs) in PMR, such as emodin, chrysophanol and physcion, have been found to be hepatotoxic. In the present study, sandwich-cultured rat hepatocytes (SCRHs) were employed to investigate the effect of individual and combined AQs on the disposition of endogenous bile acids (BAs) and exogenous probe substrates including deuterium-labeled taurocholate (d5-TCA), glycochenodeoxycholic acid (d4-GCDCA) and 5 (and 6)-carboxy-2',7'-dichlorofluorescein (CDF). Emodin and chrysophanol significantly inhibited bile salt export pump and multidrug resistance-associated protein 2 (Mrp2), respectively, as evidenced by decreased biliary excretion index (BEI) of d5-TCA and CDF. Moreover, basolateral efflux transporters were inhibited by all individual and combined AQs. As a result, cellular accumulation of total and specific endogenous BAs were significantly elevated by individual AQs, alone or combined. In addition, down-regulation of Mrps in both gene and protein levels by AQs served as another critical contributing factor for BA accumulation in SCRHs. To be noted, subsequent adaptive gene regulation, including reduced Ntcp expression, upregulated Bsep levels, and downregulated Cyp8b1, alleviated, to a certain extent, but not prevented from toxic BA accumulation. In summary, all three AQs of interest are likely to alter BA disposition through direct inhibition of BA transporters as well as regulated expression of BA transporters and enzymes.
Collapse
Affiliation(s)
- Li Kang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Rao
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minghui Wu
- Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
| | - Sijie He
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenwen Zhu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
40
|
Greene T, Lin TY, Andrisani OM, Lin CC. Comparative study of visible light polymerized gelatin hydrogels for 3D culture of hepatic progenitor cells. J Appl Polym Sci 2016. [DOI: 10.1002/app.44585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tanja Greene
- Department of Biomedical Engineering; Indiana University-Purdue University Indianapolis; Indianapolis Indiana 46202
| | - Tsai-Yu Lin
- Department of Biomedical Engineering; Indiana University-Purdue University Indianapolis; Indianapolis Indiana 46202
| | - Ourania M. Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research; Purdue University; West Lafayette Indiana 47907
| | - Chien-Chi Lin
- Department of Biomedical Engineering; Indiana University-Purdue University Indianapolis; Indianapolis Indiana 46202
| |
Collapse
|