1
|
Loureiro LR, Pike S, Wuest M, Bergman CN, JØrgensen KR, Bergmann R, Feldmann A, Wuest F, Bachmann M. Tackling Prostate Cancer with Theranostic E5B9-Bombesin Target Modules (TMs): From Imaging to Treatment with UniCAR T-Cells. Int J Mol Sci 2025; 26:2686. [PMID: 40141329 PMCID: PMC11941939 DOI: 10.3390/ijms26062686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Target modules (TMs), intermediate molecules required for UniCAR T-cell therapy, are promising molecules for immunotheranostic approaches. In the current work, we developed TMs containing a monomeric or dimeric form of the antagonist bombesin peptide (BBN2) and assessed their potential for diagnostic imaging using positron emission tomography (PET) as well as immunotherapy in combination with UniCAR T-cells to target and image GRPR expression in prostate cancer. Synthesized monomeric and dimeric BBN2 TMs retained binding to GRPR in vitro. Both BBN2 TMs specifically activated and redirected UniCAR T-cells to eradicate PC3 and LNCaP cancer cells with high efficiency and in a comparable manner. UniCAR T-cells retained a non-exhausted memory phenotype favorable to their persistence and fitness. The 68Ga-labeled BBN2 TMs showed proof-of-target towards GRPR in PC3 and LNCaP xenografts with similar uptake profiles for both BBN2 TMs in dynamic PET experiments. Clearance occurred exclusively through renal elimination. A tremendously increased in vivo metabolic stability of the BBN2 TMs was observed compared to their counterparts without E5B9. Both monomeric and dimeric BBN2 TMs represent novel and promising immunotheranostic tools for application in prostate cancer with exceptionally high in vivo metabolic stability.
Collapse
Affiliation(s)
- Liliana R. Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (L.R.L.); (A.F.)
| | - Susan Pike
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; (S.P.); (M.W.); (C.N.B.); (K.R.J.)
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; (S.P.); (M.W.); (C.N.B.); (K.R.J.)
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Cody N. Bergman
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; (S.P.); (M.W.); (C.N.B.); (K.R.J.)
| | - Kira R. JØrgensen
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; (S.P.); (M.W.); (C.N.B.); (K.R.J.)
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary;
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (L.R.L.); (A.F.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; (S.P.); (M.W.); (C.N.B.); (K.R.J.)
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (L.R.L.); (A.F.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Pike S, Wuest M, Lopez-Campistrous A, Hu MY, Derda R, Wuest F, McMullen T. First-Generation Radiolabeled Cyclic Peptides for Molecular Imaging of Platelet-Derived Growth Factor Receptor α. Mol Pharm 2024; 21:4648-4663. [PMID: 39152916 DOI: 10.1021/acs.molpharmaceut.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Occult nodal spread and metastatic disease require longstanding imaging and biochemical assessments for thyroid cancer, a disease that has a propensity for diffuse, small-volume disease. We have developed a 64Cu-labeled platelet-derived growth factor receptor α (PDGFRA) antibody for immuno-PET of PDGFRA in metastatic papillary thyroid cancer (PTC). The present work describes the discovery of small cyclic PDGFRA-targeting peptides, their binding features, and radiolabeling with positron emitter gallium-68 (68Ga) for in vitro and in vivo characterization in thyroid cancer models. Phage-display technology with two separate libraries and seven different cell lines was used through three rounds of biopanning as well as flow cytometry and comparative analysis with recombinant protein to select specific peptide sequences. Phenotypic binding analysis was completed by using phosphorylation and cell migration assays. In vitro protein binding was analyzed with thermophoresis and flow cytometry using the fluorescent-labeled PDGFRA peptide. Peptide candidates were modified with the NOTA chelator for radiolabeling with 68Ga. In vitro cell uptake was studied in various thyroid cancer cell lines. In vivo studies of 68Ga-labeled peptides included metabolic stability and PET imaging. From the original library (1013 compounds), five different peptide groups were identified based on biopanning experiments with and without the α subunit of PDGFR, leading to ∼50 peptides. Subsequent phenotypic screening revealed two core peptide sequences (CP16 and CP18) that demonstrated significant changes in the level of PDGFRA phosphorylation and cell migration. Alanine scan sublibraries were created from these two lead peptide sequences, and peptides were radiolabeled using 68Ga-GaCl3 at pH 4.5, resulting in RCP > 95% within 34-40 min, including SPE purification. Cyclic peptide CP18.5 showed the strongest effects on cell migration, flow cytometry, and binding by visual interference color assay. 68Ga-labeled PDGFRA-targeting peptides showed elevated cell and tumor uptake in models of thyroid cancer, with 68Ga-NOTA-CP18.5 being the lead candidate. However, metabolic stability in vivo was compromised for 68Ga-NOTA-CP18.5 vs 68Ga-NOTA-CP18 but without impacting tumor uptake or clearance profiles. First-generation radiolabeled cyclic peptides have been developed as novel radiotracers, particularly 68Ga-NOTA-CP18.5, for the molecular imaging of PDGFRA in thyroid cancer.
Collapse
Affiliation(s)
- Susan Pike
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | | | - Mi Yao Hu
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Canada T6G 2N4
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Todd McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada T6G 2B7
| |
Collapse
|
3
|
Dalm S, Duan H, Iagaru A. Gastrin Releasing Peptide Receptors-targeted PET Diagnostics and Radionuclide Therapy for Prostate Cancer Management: Preclinical and Clinical Developments of the Past 5 Years. PET Clin 2024; 19:401-415. [PMID: 38644111 DOI: 10.1016/j.cpet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Each tumor has its own distinctive molecular identity. Treatment, therefore, should be tailored to this unique cancer phenotype. Theragnostics uses the same compound for targeted imaging and treatment, radiolabeled to an appropriate radionuclide, respectively. Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, and radiolabeled GRPR antagonists have shown high diagnostic performance at staging and biochemical recurrence. Several GRPR-targeting theragnostic compounds have been developed preclinically. Their translation into clinics is underway with 4 clinical trials recruiting participants with GRPR-expressing tumors.
Collapse
Affiliation(s)
- Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Heying Duan
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Wang L, Chen CC, Zhang Z, Kuo HT, Zhang C, Colpo N, Merkens H, Bénard F, Lin KS. Synthesis and Evaluation of Novel 68Ga-Labeled [D-Phe 6,Leu 13ψThz 14]bombesin(6-14) Analogs for Cancer Imaging with Positron Emission Tomography. Pharmaceuticals (Basel) 2024; 17:621. [PMID: 38794191 PMCID: PMC11124507 DOI: 10.3390/ph17050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers and is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake and/or metabolic instability observed for most reported GRPR-targeted radioligands might limit their clinical applications. Our group recently reported a GRPR-targeted antagonist tracer, [68Ga]Ga-TacsBOMB2 ([68Ga]Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13ψThz14-NH2), which showed a minimal pancreas uptake in a preclinical mouse model. In this study, we synthesized four derivatives with unnatural amino acid substitutions (Tle10-derived Ga-LW01158, NMe-His12-derived Ga-LW01160, α-Me-Trp8- and Tle10-derived Ga-LW01186, and Tle10- and N-Me-Gly11-derived Ga-LW02002) and evaluated their potential for detecting GRPR-expressing tumors with positron emission tomography (PET). The binding affinities (Ki(GRPR)) of Ga-LW01158, Ga-LW01160, Ga-LW01186, and Ga-LW02002 were 5.11 ± 0.47, 187 ± 17.8, 6.94 ± 0.95, and 11.0 ± 0.39 nM, respectively. [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 enabled clear visualization of subcutaneously implanted human prostate cancer PC-3 tumor xenografts in mice in PET images. Ex vivo biodistribution studies showed that [68Ga]Ga-LW01158 had the highest tumor uptake (11.2 ± 0.65 %ID/g) and good tumor-to-background uptake ratios at 1 h post-injection. Comparable in vivo stabilities were observed for [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 (76.5-80.7% remaining intact in mouse plasma at 15 min post-injection). In summary, the Tle10 substitution, either alone or combined with α-Me-Trp8 or NMe-Gly11 substitution, in Ga-TacsBOMB2 generates derivatives that retained good GRPR binding affinity and in vivo stability. With good tumor uptake and tumor-to-background imaging contrast, [68Ga]Ga-LW01158 is promising for detecting GRPR-expressing lesions with PET.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
5
|
Wang L, Kuo HT, Zhang Z, Zhang C, Chen CC, Chapple D, Wilson R, Colpo N, François Bénard, Lin KS. Unnatural amino acid substitutions to improve in vivo stability and tumor uptake of 68Ga-labeled GRPR-targeted TacBOMB2 derivatives for cancer imaging with positron emission tomography. EJNMMI Radiopharm Chem 2024; 9:8. [PMID: 38305955 PMCID: PMC10837402 DOI: 10.1186/s41181-024-00241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Overexpressed in various solid tumors, gastrin-releasing peptide receptor (GRPR) is a promising cancer imaging marker and therapeutic target. Although antagonists are preferable for the development of GRPR-targeted radiopharmaceuticals due to potentially fewer side effects, internalization of agonists may lead to longer tumor retention and better treatment efficacy. In this study, we systematically investigated unnatural amino acid substitutions to improve in vivo stability and tumor uptake of a previously reported GRPR-targeted agonist tracer, [68Ga]Ga-TacBOMB2 (68Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13-Thz14-NH2). RESULTS Unnatural amino acid substitutions were conducted for Gln7, Trp8, Ala9, Val10, Gly11 and His12, either alone or in combination. Out of 25 unnatural amino acid substitutions, tert-Leu10 (Tle10) and NMe-His12 substitutions were identified to be preferable modifications especially in combination. Compared with the previously reported [68Ga]Ga-TacBOMB2, the Tle10 and NMe-His12 derived [68Ga]Ga-LW01110 showed retained agonist characteristics and improved GRPR binding affinity (Ki = 7.62 vs 1.39 nM), in vivo stability (12.7 vs 89.0% intact tracer in mouse plasma at 15 min post-injection) and tumor uptake (5.95 vs 16.6 %ID/g at 1 h post-injection). CONCLUSIONS Unnatural amino acid substitution is an effective strategy to improve in vivo stability and tumor uptake of peptide-based radiopharmaceuticals. With excellent tumor uptake and tumor-to-background contrast, [68Ga]Ga-LW01110 is promising for detecting GRPR-expressing cancer lesions with PET. Since agonists can lead to internalization upon binding to receptors and foreseeable long tumor retention, our optimized GRPR-targeted sequence, [Tle10,NMe-His12,Thz14]Bombesin(7-14), is a promising template for use for the design of GRPR-targeted radiotherapeutic agents.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Devon Chapple
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Ryan Wilson
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada.
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada.
| |
Collapse
|
6
|
Tu Y, Han Z, Pan R, Zhou K, Tao J, Liu P, Han RPS, Gong S, Gu Y. Novel GRPR-Targeting Peptide for Pancreatic Cancer Molecular Imaging in Orthotopic and Liver Metastasis Mouse Models. Anal Chem 2023; 95:11429-11439. [PMID: 37465877 DOI: 10.1021/acs.analchem.3c01765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Despite advancements in pancreatic cancer treatment, it remains one of the most lethal malignancies with extremely poor diagnosis and prognosis. Herein, we demonstrated the efficiency of a novel peptide GB-6 labeled with a near-infrared (NIR) fluorescent dye 3H-indolium, 2-[2-[2-[(2-carboxyethyl)thio]-3-[2-[1,3-dihydro-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)-2H-indol-2-ylidene]ethylidene]-1-cyclohexen-1-yl]ethenyl]-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)-, inner salt (MPA) and radionuclide technetium-99m (99mTc) as targeting probes using the gastrin-releasing peptide receptor (GRPR) that is overexpressed in pancreatic cancer as the target. A short linear peptide with excellent in vivo stability was identified, and its radiotracer [99mTc]Tc-HYNIC-PEG4-GB-6 and the NIR probe MPA-PEG4-GB-6 exhibited selective and specific uptake by tumors in an SW1990 pancreatic cancer xenograft mouse model. The favorable biodistribution of the tracer [99mTc]Tc-HYNIC-PEG4-GB-6 in vivo afforded tumor-specific accumulation with high tumor-to-muscle and -bone contrasts and renal body clearance at 1 h after injection. The biodistribution analysis revealed that the tumor-to-pancreas and -intestine fluorescence signal ratios were 5.2 ± 0.3 and 6.3 ± 1.5, respectively, in the SW1990 subcutaneous xenograft model. Furthermore, the high signal accumulation in the orthotopic pancreatic and liver metastasis tumor models with tumor-to-pancreas and -liver fluorescence signal ratios of 7.66 ± 0.48 and 3.94 ± 0.47, respectively, enabled clear tumor visualization for intraoperative navigation. The rapid tumor targeting, precise tumor boundary delineation, chemical versatility, and high potency of the novel GB-6 peptide established it as a high-contrast imaging probe for the clinical detection of GRPR, with compelling additional potential in molecular-targeted therapy.
Collapse
Affiliation(s)
- Yuanbiao Tu
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rongbin Pan
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Kuncheng Zhou
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ji Tao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Peifei Liu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ray P S Han
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuaichang Gong
- Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Khalily MP, Soydan M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem Biol Drug Des 2023; 101:772-793. [PMID: 36366980 DOI: 10.1111/cbdd.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Peptides are increasingly present in all branches of medicine as innovative drugs, imaging agents, theragnostic, and constituent moieties of other sophisticated drugs such as peptide-drug conjugates. Due to new developments in chemical synthesis strategies, computational biology, recombinant technology, and chemical biology, peptide drug development has made a great progress in the last decade. Numerous natural peptides and peptide mimics have been obtained and studied, covering multiple therapeutic areas. Even though peptides have been investigated across the wide therapeutic spectrum, oncology, metabolism, and endocrinology are the most frequent medical indications of them. This review summarizes the current use of and the emerging new opportunities of peptides for diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Melek P Khalily
- Department of Basic Science and Health, Cannabis Research Institute, Yozgat Bozok University, Yozgat, Turkey
| | - Medine Soydan
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Nelson BJB, Andersson JD, Wuest F, Spreckelmeyer S. Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm Chem 2022; 7:27. [PMID: 36271969 PMCID: PMC9588110 DOI: 10.1186/s41181-022-00180-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background The radiometal gallium-68 (68Ga) is increasingly used in diagnostic positron emission tomography (PET), with 68Ga-labeled radiopharmaceuticals developed as potential higher-resolution imaging alternatives to traditional 99mTc agents. In precision medicine, PET applications of 68Ga are widespread, with 68Ga radiolabeled to a variety of radiotracers that evaluate perfusion and organ function, and target specific biomarkers found on tumor lesions such as prostate-specific membrane antigen, somatostatin, fibroblast activation protein, bombesin, and melanocortin. Main body These 68Ga radiopharmaceuticals include agents such as [68Ga]Ga-macroaggregated albumin for myocardial perfusion evaluation, [68Ga]Ga-PLED for assessing renal function, [68Ga]Ga-t-butyl-HBED for assessing liver function, and [68Ga]Ga-PSMA for tumor imaging. The short half-life, favourable nuclear decay properties, ease of radiolabeling, and convenient availability through germanium-68 (68Ge) generators and cyclotron production routes strongly positions 68Ga for continued growth in clinical deployment. This progress motivates the development of a set of common guidelines and standards for the 68Ga radiopharmaceutical community, and recommendations for centers interested in establishing 68Ga radiopharmaceutical production. Conclusion This review outlines important aspects of 68Ga radiopharmacy, including 68Ga production routes using a 68Ge/68Ga generator or medical cyclotron, standardized 68Ga radiolabeling methods, quality control procedures for clinical 68Ga radiopharmaceuticals, and suggested best practices for centers with established or upcoming 68Ga radiopharmaceutical production. Finally, an outlook on 68Ga radiopharmaceuticals is presented to highlight potential challenges and opportunities facing the community.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Jan D Andersson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.,Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
9
|
68Ga-Labeled [Leu 13ψThz 14]Bombesin(7-14) Derivatives: Promising GRPR-Targeting PET Tracers with Low Pancreas Uptake. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123777. [PMID: 35744904 PMCID: PMC9230575 DOI: 10.3390/molecules27123777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
The gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled receptor that is overexpressed in many solid cancers and is a promising target for cancer imaging and therapy. However, high pancreas uptake is a major concern in the application of reported GRPR-targeting radiopharmaceuticals, particularly for targeted radioligand therapy. To lower pancreas uptake, we explored Ga-complexed TacsBOMB2, TacsBOMB3, TacsBOMB4, TacsBOMB5, and TacsBOMB6 derived from a potent GRPR antagonist sequence, [Leu13ψThz14]Bombesin(7-14), and compared their potential for cancer imaging with [68Ga]Ga-RM2. The Ki(GRPR) values of Ga-TacsBOMB2, Ga-TacsBOMB3, Ga-TacsBOMB4, Ga-TacsBOMB5, Ga-TacsBOMB6, and Ga-RM2 were 7.08 ± 0.65, 4.29 ± 0.46, 458 ± 38.6, 6.09 ± 0.95, 5.12 ± 0.57, and 1.51 ± 0.24 nM, respectively. [68Ga]Ga-TacsBOMB2, [68Ga]Ga-TacsBOMB3, [68Ga]Ga-TacsBOMB5, [68Ga]Ga-TacsBOMB6, and [68Ga]Ga-RM2 clearly show PC-3 tumor xenografts in positron emission tomography (PET) images, while [68Ga]Ga-TacsBOMB5 shows the highest tumor uptake (15.7 ± 2.17 %ID/g) among them. Most importantly, the pancreas uptake values of [68Ga]Ga-TacsBOMB2 (2.81 ± 0.78 %ID/g), [68Ga]Ga-TacsBOMB3 (7.26 ± 1.00 %ID/g), [68Ga]Ga-TacsBOMB5 (1.98 ± 0.10 %ID/g), and [68Ga]Ga-TacsBOMB6 (6.50 ± 0.36 %ID/g) were much lower than the value of [68Ga]Ga-RM2 (41.9 ± 10.1 %ID/g). Among the tested [Leu13ψThz14]Bombesin(7-14) derivatives, [68Ga]Ga-TacsBOMB5 has the highest tumor uptake and tumor-to-background contrast ratios, which is promising for clinical translation to detect GRPR-expressing tumors. Due to the low pancreas uptake of its derivatives, [Leu13ψThz14]Bombesin(7-14) represents a promising pharmacophore for the design of GRPR-targeting radiopharmaceuticals, especially for targeted radioligand therapy application.
Collapse
|
10
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
11
|
Yuen R, West FG, Wuest F. Dual Probes for Positron Emission Tomography (PET) and Fluorescence Imaging (FI) of Cancer. Pharmaceutics 2022; 14:pharmaceutics14030645. [PMID: 35336019 PMCID: PMC8952779 DOI: 10.3390/pharmaceutics14030645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dual probes that possess positron emission tomography (PET) and fluorescence imaging (FI) capabilities are precision medicine tools that can be used to improve patient care and outcomes. Detecting tumor lesions using PET, an extremely sensitive technique, coupled with fluorescence-guided surgical resection of said tumor lesions can maximize the removal of cancerous tissue. The development of novel molecular probes is important for targeting different biomarkers as every individual case of cancer has different characteristics. This short review will discuss some aspects of dual PET/FI probes and explore the recently reported examples.
Collapse
Affiliation(s)
- Richard Yuen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
| | - Frederick G. West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Frank Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, University of Alberta—Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Correspondence:
| |
Collapse
|
12
|
Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Water-Soluble Chitosan Conjugated DOTA-Bombesin Peptide Capped Gold Nanoparticles as a Targeted Therapeutic Agent for Prostate Cancer. Nanotechnol Sci Appl 2021; 14:69-89. [PMID: 33776426 PMCID: PMC7987316 DOI: 10.2147/nsa.s301942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Functionalization of water-soluble chitosan (WSCS) nanocolloids with, gold nanoparticles (AuNPs), and LyslLys3 (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-bombesin 1–14 (DOTA-BBN) peptide affords an innovative pathway to produce prostate tumor cell-specific nanomedicine agents with potential applications in molecular imaging and therapy. Methods The preparation involves the production and full characterization of water-soluble chitosan (WSCS), via gamma (γ) rays (80 kGy) irradiation, followed by DOTA-BBN conjugation for subsequent use as an effective template toward the synthesis of tumor cell-specific AuNPs-WSCS-DOTA-BBN. Results The WSCS-DOTA-BBN polymeric nanoparticles (86 ± 2.03 nm) served multiple roles as reducing and stabilizing agents in the overall template synthesis of tumor cell-targeted AuNPs. The AuNPs capped with WSCS and WSCS-DOTA-BBN exhibited average Au-core diameter of 17 ± 8 nm and 20 ± 7 nm with hydrodynamic diameters of 56 ± 1 and 67± 2 nm, respectively. The AuNPs-WSCS-DOTA-BBN showed optimum in vitro stability in biologically relevant solutions. The targeted AuNPs showed selective affinity toward GRP receptors overexpressed in prostate cancer cells (PC-3 and LNCaP). Discussion The AuNPs-WSCS-DOTA-BBN displayed cytotoxicity effects against PC-3 and LNCaP cancer cells, with concomitant safety toward the HAECs normal cells. The AuNPs-WSCS-DOTA-BBN showed synergistic targeting toward tumor cells with selective cytotoxicity of AuNPs towards PC-3 and LNCaP cells. Our investigations provide compelling evidence that AuNPs functionalized with WSCS-DOTA-BBN is an innovative nanomedicine approach for use in molecular imaging and therapy of GRP receptor-positive tumors. The template synthesis of AuNPs-WSCS-DOTA-BBN serves as an excellent non-radioactive surrogate for the development of the corresponding 198AuNPs theragnostic nanoradiopharmaceutical for use in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Theeranan Tangthong
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.,Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Thananchai Piroonpan
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Velaphi C Thipe
- Laboratório de Ecotoxicologia - Centro de Química e Meio Ambiente - Instituto de Pesquisas Energéticase Nucleares (IPEN) - Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, Brasil.,Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kavita Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA.,Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.,Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
13
|
Yuen R, Wagner M, Richter S, Dufour J, Wuest M, West FG, Wuest F. Design, synthesis, and evaluation of positron emission tomography/fluorescence dual imaging probes for targeting facilitated glucose transporter 1 (GLUT1). Org Biomol Chem 2021; 19:3241-3254. [PMID: 33885579 DOI: 10.1039/d1ob00199j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increased energy metabolism followed by enhanced glucose consumption is a hallmark of cancer. Most cancer cells show overexpression of facilitated hexose transporter GLUT1, including breast cancer. GLUT1 is the main transporter for 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), the gold standard of positron emission tomography (PET) imaging in oncology. The present study's goal was to develop novel glucose-based dual imaging probes for their use in tandem PET and fluorescence (Fl) imaging. A glucosamine scaffold tagged with a fluorophore and an 18F-label should confer selectivity to GLUT1. Out of five different compounds, 2-deoxy-2-((7-sulfonylfluoro-2,1,3-benzoxadiazol-4-yl)amino)-d-glucose (2-FBDG) possessed favorable fluorescent properties and a similar potency as 2-deoxy-2-((7-nitro-2,1,3-benzoxadiazol-4-yl)amino)-d-glucose (2-NBDG) in competing for GLUT1 transport against 2-[18F]FDG in breast cancer cells. Radiolabeling with 18F was achieved through the synthesis of prosthetic group 7-fluoro-2,1,3-benzoxadiazole-4-sulfonyl [18F]fluoride ([18F]FBDF) followed by the reaction with glucosamine. The radiotracer was finally analyzed in vivo in a breast cancer xenograft model and compared to 2-[18F]FDG. Despite favourable in vitro fluorescence imaging properties, 2-[18F]FBDG was found to lack metabolic stability in vivo, resulting in radiodefluorination. Glucose-based 2-[18F]FBDG represents a novel dual-probe for GLUT1 imaging using FI and PET with the potential for further structural optimization for improved metabolic stability in vivo.
Collapse
Affiliation(s)
- Richard Yuen
- Department of Chemistry, 11227 Saskatchewan Drive University of Alberta, Edmonton, AB, Canada T6G 2G2.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ferguson S, Wuest M, Richter S, Bergman C, Dufour J, Krys D, Simone J, Jans HS, Riauka T, Wuest F. A comparative PET imaging study of 44gSc- and 68Ga-labeled bombesin antagonist BBN2 derivatives in breast and prostate cancer models. Nucl Med Biol 2020; 90-91:74-83. [PMID: 33189947 DOI: 10.1016/j.nucmedbio.2020.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Radiolabeled peptides play a central role in nuclear medicine as radiotheranostics for targeted imaging and therapy of cancer. We have recently proposed the use of metabolically stabilized GRPR antagonist BBN2 for radiolabeling with 18F and 68Ga and subsequent PET imaging of GRPRs in prostate cancer. The present work studied the impact of 44gSc- and 68Ga-labeled DOTA complexes attached to GRPR antagonist BBN2 on the in vitro GRPR binding affinity, and their biodistribution and tumor uptake profiles in MCF7 breast and PC3 prostate cancer models. METHODS DOTA-Ava-BBN2 was radiolabeled with radiometals 68Ga and 44gSc. Gastrin-releasing peptide receptor (GRPR) affinities of peptides were assessed in PC3 prostate cancer cells. GRPR expression profiles were studied in human breast cancer tissue samples and MCF7 breast cancer cells. PET imaging of 68Ga- and 44gSc-labeled peptides was performed in MCF7 and PC3 xenografts as breast and prostate cancer models. RESULTS Radiopeptides [68Ga]Ga-DOTA-Ava-BBN2 and [44gSc]Sc-DOTA-Ava BBN2 were prepared in radiochemical yields of 70-80% (decay-corrected), respectively. High binding affinities were found for both peptides (IC50 = 15 nM (natGa) and 5 nM (natSc)). Gene expression microarray analysis revealed high GRPR mRNA expression levels in estrogen receptor (ER)-positive breast cancer, which was further confirmed with Western blot and immunohistochemistry. However, PET imaging showed only low tumor uptake of both radiotracers in MCF7 xenografts ([68Ga]Ga-DOTA-BBN2 (SUV60min 0.27 ± 0.06); [44gSc]Sc-DOTA-BBN2 (SUV60min 0.20 ± 0.03)). In contrast, high tumor uptake and retention were found for both radiopeptides in PC3 tumors ([68Ga]Ga-DOTA-BBN2 (SUV60min 0.46 ± 0.07); [44gSc]Sc-DOTA-BBN2 (SUV60min 0.51 ± 0.11)). CONCLUSIONS Comparison of 68Ga- and 44gSc-labeled DOTA-Ava-BBN2 peptides revealed slight but noticeable differences of the radiometal with an impact on the in vitro GRPR receptor binding properties in PC3 cells. No differences were found in their in vivo biodistribution profiles in MCF7 and PC3 xenografts. Radiopeptides [68Ga]Ga-DOTA-Ava-BBN2 and [44gSc]Sc-DOTA-Ava-BBN2 displayed comparable tumor uptake and retention profiles with rapid blood and renal clearance profiles in both tumor models. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE The favorable PET imaging performance of [44gSc]Sc-DOTA-Ava-BBN2 in prostate cancer should warrant the development of an [43Sc]Sc-DOTA-Ava-BBN2 analog for clinical translation which comes with a main γ-line of much lower energy and intensity compared to 44gSc.
Collapse
Affiliation(s)
- Simon Ferguson
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Susan Richter
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Daniel Krys
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Simone
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Hans-Sonke Jans
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Terence Riauka
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Krieger K, Wängler B, Schirrmacher R, Wängler C. Identification of a Suitable Peptidic Molecular Platform for the Development of NPY(Y 1 )R-Specific Imaging Agents. ChemMedChem 2020; 15:1652-1660. [PMID: 32681597 PMCID: PMC7540589 DOI: 10.1002/cmdc.202000430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Indexed: 11/30/2022]
Abstract
NPY(Y1 )R (neuropeptide Y receptor subtype 1) is an important target structure for tumor-specific imaging and therapy as this receptor subtype is overexpressed in very high density and incidence especially in human breast cancer. Targeting this receptor with radiolabeled truncated analogues of the endogenous ligand NPY (neuropeptide Y) has, however, not yet resulted in satisfactory imaging results when using positron emission tomography (PET). This can be attributed to the limited stability of these PET imaging agents caused by their fast proteolytic degradation. Although highly promising NPY analogues were developed, their stability has only been investigated in very few cases. In this systematical work, we comparatively determined the stability of the five most promising truncated analogues of NPY that were developed over the last years, showing the highest receptor affinities and subtype selectivities. The stability of the peptides was assessed in human serum as well as in a human liver microsomal stability assay; these gave complementary results, thus demonstrating the necessity to perform both assays and not just conventional serum stability testing. Of the tested peptides, only [Lys(lauroyl)27 ,Pro30 ,Lys(DOTA)31 ,Bip32 ,Leu34 ]NPY27-36 showed high stability against peptidase degradation; thus this is the best-suited truncated NPY analogue for the development of NPY(Y1 )R-specific imaging agents.
Collapse
Affiliation(s)
- Korbinian Krieger
- Biomedical Chemistry Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Ralf Schirrmacher
- Division of Oncological Imaging, Department of OncologyUniversity of Alberta11560 University AvenueEdmontonAB T6G 1Z2Canada
| | - Carmen Wängler
- Biomedical Chemistry Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| |
Collapse
|
16
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
17
|
Nelson BJB, Wilson J, Richter S, Duke MJM, Wuest M, Wuest F. Taking cyclotron 68Ga production to the next level: Expeditious solid target production of 68Ga for preparation of radiotracers. Nucl Med Biol 2020; 80-81:24-31. [PMID: 32004935 DOI: 10.1016/j.nucmedbio.2020.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Gallium-68 is an important radionuclide for positron emission tomography (PET) with steadily increasing applications of 68Ga-based radiopharmaceuticals for clinical use. Current 68Ga sources are primarily 68Ge/68Ga-generators, along with successful attempts of 68Ga production using a cyclotron. This study evaluated cyclotron 68Ga production and automated separation using expeditiously manufactured solid targets, demonstrates an order of magnitude improvement in yield compared to 68Ge/68Ga generators, and presents a convenient alternative to existing cyclotron production processes. A comparison of radiolabeling and preclinical PET imaging was performed with both cyclotron and generator produced 68Ga. METHODS 100 mg enriched 68Zn (99.3% 68Zn, 0.48% 67Zn, 0.1% 66Zn) pellets pressed on silver discs were bombarded for 20-75 min using 12.5 MeV proton beam energies and 10-30 μA currents. 68Ga was separated using an automated TRASIS AllinOne synthesizer employing AG 50W-X8 and UTEVA resins. Post-separation recovery of the 68Zn by electrolysis yielded 76.7 ± 4.3%. Radionuclidic purity of cyclotron-produced 68Ga was investigated with gamma spectroscopy using a HPGe-detector. Radiolabeling was investigated using the macrocyclic chelator DOTA and the bombesin-derived peptide NOTA-BBN2. PET imaging was performed using [68Ga]Ga-NOTA-BBN2 in a PC3 xenograft model. RESULTS 600 μA·min fresh and recycled quadruplet 68Zn target irradiations (n = 8) at 12.5 MeV and 30 μA yielded 13.9 ± 1.0 GBq 68Ga; 2200 μA·min irradiations (n = 3) yielded 37.5 ± 1.9 GBq 68Ga. HPGe analysis showed EOB 0.0074% and 0.0084% of total activity of 66Ga and 67Ga, respectively. Metal impurities were 0.06 ± 0.03 μg/GBq Zn, 0.13 ± 0.007 μg/GBq Fe, and 0.02 ± 0.01 μg/GBq Al for cyclotron 68Ga. Cyclotron and 68Ge/68Ga generator 68Ga respective DOTA and NOTA-BBN2 labeling incorporations were 99.4 ± 0.0% and 99.3 ± 0.2%, and 90.4 ± 1.5% and 93.0 ± 3.6% determined by radio-thin layer chromatography (radio-TLC). Preclinical PET imaging comparison between generator and cyclotron produced 68Ga showed identical radiotracer tumor uptake and biodistribution profiles in PC3 tumor bearing mice. CONCLUSIONS Cyclotron 68Ga production provides highly scalable production with equivalent or superior quality 68Ga to a 68Ge/68Ga generator, while providing identical biodistribution and tumor uptake profiles. Our described targetry is simpler and more cost-effective than existing liquid and solid targetry, enabling a turnkey production system for multi-facility distribution of cyclotron produced 68Ga. The manufacturing simplicity described has potential applications for producing other radiometals such as 44Sc. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Our cost-effective method of solid target 68Ga production can enhance 68Ga production capabilities to meet the high demand for 68Ga-radiopharmaceuticals for research and clinical use.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Susan Richter
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - M John M Duke
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
18
|
Lahooti A, Shanehsazzadeh S, Laurent S. Preliminary studies of 68Ga-NODA-USPION-BBN as a dual-modality contrast agent for use in positron emission tomography/magnetic resonance imaging. NANOTECHNOLOGY 2020; 31:015102. [PMID: 31519003 DOI: 10.1088/1361-6528/ab4446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to propose a new dual-modality nanoprobe for positron emission tomography/magnetic resonance imaging (PET/MRI) for the early diagnosis of breast cancer. For synthesis of the nanoprobe, polyethylene glycol-coated ultra-small superparamagnetic iron-oxide nanoparticles (USPION) armed with NODA-GA chelate and grafted with bombesin (BBN) were radiolabeled with 68Ga. After characterization, in vitro studies to evaluate the cell binding affinity of the nanoprobe were done by performing Perl's Prussian blue cell staining and MRI imaging. Finally, for in vivo studies, magnetic resonance images were taken in SCID mice bearing breast cancer tumor pre- and post-injection, and a multimodal nanoScan PET/computed tomography was used to perform preclinical imaging of the radiolabeled nanoparticles. Afterwards, a biodistribution study was done on sacrificed mice. The results showed that the highest r1 and r2 values were measured for USPIONs at 20 and 60 MHz, respectively. From the in vitro studies, the optical density of the cells after incubation increased with the increase of the iron concentration and the duration of incubation. However, the T2 values decreased when the iron concentration increased. Furthermore, from in vivo studies, the T2 and signal intensity decreased during the elapsed time post-injection in the tumor area. In this study, the in vitro studies showed that the affinity of cancer cells to nanoprobe increases meaningfully after conjugation with BBN, and also by increasing the duration of incubation and the iron concentration. Meanwhile, the in vivo results confirmed that the blood clearance of the nanoprobe happened during the first 120 min post-injection of the radiolabeled nanoprobe and also confirmed the targeting ability of that to a gastrin-releasing peptide receptor positive tumor.
Collapse
Affiliation(s)
- Afsaneh Lahooti
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000, Mons, Belgium
| | | | | |
Collapse
|
19
|
Lau J, Rousseau E, Zhang Z, Uribe CF, Kuo HT, Zeisler J, Zhang C, Kwon D, Lin KS, Bénard F. Positron Emission Tomography Imaging of the Gastrin-Releasing Peptide Receptor with a Novel Bombesin Analogue. ACS OMEGA 2019; 4:1470-1478. [PMID: 30775647 PMCID: PMC6372246 DOI: 10.1021/acsomega.8b03293] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The gastrin-releasing peptide receptor (GRPR), a G protein-coupled receptor, is overexpressed in solid malignancies and particularly in prostate cancer. We synthesized a novel bombesin derivative, [68Ga]Ga-ProBOMB1, evaluated its pharmacokinetics and potential to image GRPR expression with positron emission tomography (PET), and compared it with [68Ga]Ga-NeoBOMB1. ProBOMB1 (DOTA-pABzA-DIG-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ψ(CH2N)-Pro-NH2) was synthesized by solid-phase peptide synthesis. The polyaminocarboxylate chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to the N-terminal and separated from the GRPR-targeting sequence by a p-aminomethylaniline-diglycolic acid (pABzA-DIG) linker. The binding affinity to GRPR was determined using a cell-based competition assay, whereas the agonist/antagonist property was determined with a calcium efflux assay. ProBOMB1 was radiolabeled with 68GaCl3. PET imaging and biodistribution studies were performed in male immunocompromised mice bearing PC-3 prostate cancer xenografts. Blocking experiments were performed with coinjection of [d-Phe6,Leu-NHEt13,des-Met14]bombesin(6-14). Dosimetry calculations were performed with OLINDA software. ProBOMB1 and the nonradioactive Ga-ProBOMB were obtained in 1.1 and 67% yield, respectively. The K i value of Ga-ProBOMB1 for GRPR was 3.97 ± 0.76 nM. Ga-ProBOMB1 behaved as an antagonist for GRPR. [68Ga]Ga-ProBOMB1 was obtained in 48.2 ± 10.9% decay-corrected radiochemical yield with 121 ± 46.9 GBq/μmol molar activity and >95% radiochemical purity. Imaging/biodistribution studies showed that the excretion of [68Ga]Ga-ProBOMB1 was primarily through the renal pathway. At 1 h postinjection (p.i.), PC-3 tumor xenografts were clearly delineated in PET images with excellent contrast. The tumor uptake for [68Ga]Ga-ProBOMB1 was 8.17 ± 2.57 percent injected dose per gram (% ID/g) and 9.83 ± 1.48% ID/g for [68Ga]Ga-NeoBOMB1, based on biodistribution studies at 1 h p.i. This corresponded to tumor-to-blood and tumor-to-muscle uptake ratios of 20.6 ± 6.79 and 106 ± 57.7 for [68Ga]Ga-ProBOMB1 and 8.38 ± 0.78 and 39.0 ± 12.6 for [68Ga]Ga-NeoBOMB1, respectively. Blockade with [d-Phe6,Leu-NHEt13,des-Met14]bombesin(6-14) significantly reduced the average uptake of [68Ga]Ga-ProBOMB1 in tumors by 62%. The total absorbed dose was lower for [68Ga]Ga-ProBOMB1 in all organs except for bladder compared with [68Ga]Ga-NeoBOMB1. Our data suggest that [68Ga]Ga-ProBOMB1 is an excellent radiotracer for imaging GRPR expression with PET. [68Ga]Ga-ProBOMB1 achieved a similar uptake as [68Ga]Ga-NeoBOMB1 in tumors, with enhanced contrast and lower whole-body absorbed dose.
Collapse
Affiliation(s)
- Joseph Lau
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Etienne Rousseau
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
- Département
de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Carlos F. Uribe
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Hsiou-Ting Kuo
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Jutta Zeisler
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Daniel Kwon
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
- Department
of Radiology, University of British Columbia, 2211 Wesbrook Mall, V6T 1Z7 Vancouver, British Columbia, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
- Department
of Radiology, University of British Columbia, 2211 Wesbrook Mall, V6T 1Z7 Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Pirisedigh A, Blais V, Ait-Mohand S, Abdallah K, Holleran BJ, Leduc R, Dory YL, Gendron L, Guérin B. Synthesis and Evaluation of a 64Cu-Conjugate, a Selective δ-Opioid Receptor Positron Emission Tomography Imaging Agent. Org Lett 2017; 19:2018-2021. [DOI: 10.1021/acs.orglett.7b00575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Azadeh Pirisedigh
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Véronique Blais
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Samia Ait-Mohand
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Khaled Abdallah
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brian J. Holleran
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Richard Leduc
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
22
|
Mansour N, Dumulon-Perreault V, Ait-Mohand S, Paquette M, Lecomte R, Guérin B. Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [64Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists. J Labelled Comp Radiopharm 2017; 60:200-212. [DOI: 10.1002/jlcr.3491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Nematallah Mansour
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Véronique Dumulon-Perreault
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Michel Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| |
Collapse
|
23
|
Ferreira CDA, Fuscaldi LL, Townsend DM, Rubello D, Barros ALBD. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 2016; 87:58-72. [PMID: 28040598 DOI: 10.1016/j.biopha.2016.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
Despite efforts, cancer is still one of the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths each year, according to the World Health Organization. Among the strategies to reduce cancer progression and improving its management, implementing early detection technologies is crucial. Based on the fact that several types of cancer cells overexpress surface receptors, small molecule ligands, such as peptides, have been developed to allow tumor identification at earlier stages. Allied with imaging techniques such as PET and SPECT, radiolabeled peptides play a pivotal role in nuclear medicine. Bombesin, a peptide of 14 amino acids, is an amphibian homolog to the mammalian gastrin-releasing peptide (GRP), that has been extensively studied as a targeting ligand for diagnosis and therapy of GRP positive tumors, such as breast, pancreas, lungs and prostate cancers. In this context, herein we provide a review of reported bombesin derivatives radiolabeled with a multitude of radioactive isotopes for diagnostic purposes in the preclinical setting. Moreover, since animal models are highly relevant for assessing the potential of clinical translation of this radiopeptides, a brief report of the currently used GRP-positive tumor-bearing animal models is described.
Collapse
Affiliation(s)
| | - Leonardo Lima Fuscaldi
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, NeuroRadiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André Luís Branco de Barros
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|