1
|
Brown SR, Vomhof-DeKrey EE, Al-Marsoummi S, Beyer T, Lauckner B, Samson M, Sattar S, Brown ND, Basson MD. SLFN12 Expression Significantly Effects the Response to Chemotherapy Drugs in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3848. [PMID: 39594803 PMCID: PMC11593201 DOI: 10.3390/cancers16223848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Schlafen12 (SLFN12) is an intermediate human Schlafen protein shown to correlate with survivability in triple-negative breast cancer (TNBC). SLFN12 causes differential expressions of significant cancer genes, but how they change in response to chemotherapy remains unknown. Our aim is to identify the effect of chemotherapy on genes that improve TNBC outcomes and other SLFN family members following SLFN12 knockout or overexpression. METHODS We overexpressed SLFN12 using a lentiviral vector and knocked out SLFN12 (AdvShSLFN12) using a hairpin adenovirus in MDA-MB-231 TNBC cells. Cells were treated with camptothecin, paclitaxel, zoledronic acid, or carboplatin to evaluate the SLFN12 signature cancer genes associated with improved TNBC outcomes using qPCR. Additionally, cells were treated alone and in combination with AdvShSLFN12, IFN-α2 (known SLFN12 stimulator), carboplatin, and paclitaxel. After treatment, the viable cell numbers were analyzed utilizing a colorimetric crystal violet assay for cell viability. RESULTS The SLFN family and SLFN12 cancer signature gene mRNA expressions were analyzed by RT-qPCR. Treating SLFN12-overexpressing TNBC cells with chemotherapy agents resulted in the differential expressions of eight cancer-related genes. Notably, GJB3 was downregulated following treatment with each chemotherapeutic drug. Inducing SLFN12 with IFN-α2 resulted in decreased cell viability and increased SLFN12 mRNA levels following treatment with paclitaxel or carboplatin. CONCLUSIONS These results suggest that SLFN12 overexpression significantly affects the expressions of genes driving phenotypic changes in response to chemotherapy and influences additional SLFN family members following IFN-α2 treatment. This may contribute to improving the survival of patients with SLFN12 overexpression. Additionally, patient SLFN12 levels can be used as a factor when pursuing personalized chemotherapy treatments.
Collapse
Affiliation(s)
- Savannah R. Brown
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.R.B.); (E.E.V.-D.)
| | - Emilie Erin Vomhof-DeKrey
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.R.B.); (E.E.V.-D.)
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (T.B.); (B.L.); (M.S.); (S.S.); (N.D.B.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sarmad Al-Marsoummi
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (T.B.); (B.L.); (M.S.); (S.S.); (N.D.B.)
| | - Trysten Beyer
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (T.B.); (B.L.); (M.S.); (S.S.); (N.D.B.)
| | - Bo Lauckner
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (T.B.); (B.L.); (M.S.); (S.S.); (N.D.B.)
| | - Mckenzie Samson
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (T.B.); (B.L.); (M.S.); (S.S.); (N.D.B.)
| | - Sarah Sattar
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (T.B.); (B.L.); (M.S.); (S.S.); (N.D.B.)
| | - Nicholas D. Brown
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (T.B.); (B.L.); (M.S.); (S.S.); (N.D.B.)
| | - Marc D. Basson
- Department of Surgery, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- University Hospitals-NEOMED, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Xu K, Zhang Y, Cheng H, Chen W, Chen C, Zhang M, Song H, Wang F. Triple-negative breast cancer treatment with core-shell Magnetic@Platinium-Metal organic framework/epirubicin nano-platforms for chemo-photodynamic based combinational therapy: A review. Medicine (Baltimore) 2024; 103:e39845. [PMID: 39331917 PMCID: PMC11441927 DOI: 10.1097/md.0000000000039845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
The combination of chemotherapy and photodynamic therapy (PDT), enabled by core-shell nano-platforms, is a promising method to improve cancer therapy by overcoming hypoxia and boosting drug penetration in breast tumor. Core-shell magnetic (iron oxide: Fe3O4)@platinum-metal organic framework/epirubicin (abbreviated as M@Pt-MOF/EPI) nano-platform is considered an effective cancer therapeutic agent. Relatively small particle size, round shape, and specific response to pH, are the key features of these nanomaterials to be used as promising therapeutic agents. Chemotherapy and photodynamic therapy, when applied in addition to the anticancer effects of nanomaterials, further enhance the therapeutic efficacy. The extensive use, utilization, and efficacy of Core-Shell Magnetic@Platinium-Metal Organic Framework/epirubicin Nano-Platforms for chemo-photodynamic combination therapy in the treatment of several cancers, including triple-negative breast cancer, are examined in this in-depth investigation.
Collapse
Affiliation(s)
- Kangjie Xu
- Department of Central Laboratory, Binhai County People’s Hospital, Yancheng, China
| | - Yanhua Zhang
- Department of Obstetrics and Gynecology, Binhai County People’s Hospital, Yancheng, China
| | - Hui Cheng
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| | - Weipeng Chen
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| | - Cheng Chen
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| | - Minglei Zhang
- Department of Oncology, Binhai County People’s Hospital, Yancheng, China
| | - He Song
- Department of Rehabilitation Medicine, Kanda College of Nanjing Medical University, Lianyungang, China
| | - Feng Wang
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| |
Collapse
|
3
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
4
|
Anichina K, Lumov N, Bakov V, Yancheva D, Georgiev N. Recent Advances in the Application of Nitro(het)aromatic Compounds for Treating and/or Fluorescent Imaging of Tumor Hypoxia. Molecules 2024; 29:3475. [PMID: 39124883 PMCID: PMC11314162 DOI: 10.3390/molecules29153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This review delves into recent advancements in the field of nitro(het)aromatic bioreductive agents tailored for hypoxic environments. These compounds are designed to exploit the low-oxygen conditions typically found in solid tumors, making them promising candidates for targeted cancer therapies. Initially, this review focused on their role as gene-directed enzyme prodrugs, which are inert until activated by specific enzymes within tumor cells. Upon activation, these prodrugs undergo chemical transformations that convert them into potent cytotoxic agents, selectively targeting cancerous tissue while sparing healthy cells. Additionally, this review discusses recent developments in prodrug conjugates containing nitro(het)aromatic moieties, designed to activate under low-oxygen conditions within tumors. This approach enhances their efficacy and specificity in cancer treatment. Furthermore, this review covers innovative research on using nitro(het)aromatic compounds as fluorescent probes for imaging hypoxic tumors. These probes enable non-invasive visualization of low-oxygen regions within tumors, providing valuable insights for the diagnosis, treatment planning, and monitoring of therapeutic responses. We hope this review will inspire researchers to design and synthesize improved compounds for selective cancer treatment and early diagnostics.
Collapse
Affiliation(s)
- Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Nikolay Lumov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Ventsislav Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Denitsa Yancheva
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Nikolai Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| |
Collapse
|
5
|
Gao P, Ha-Duong T, Nicolas J. Coarse-Grained Model-Assisted Design of Polymer Prodrug Nanoparticles with Enhanced Cytotoxicity: A Combined Theoretical and Experimental Study. Angew Chem Int Ed Engl 2024; 63:e202316056. [PMID: 38345287 DOI: 10.1002/anie.202316056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 03/12/2024]
Abstract
To achieve drug release from polymer prodrug nanoparticles, the drug-polymer linker must be accessible for cleavage to release the drug, which can occur under certain physiological conditions (e.g., presence of specific enzymes). Supramolecular organization of polymer prodrug nanoparticles is crucial as it greatly affects the location of the linker, its surface exposure/solvation and thus its cleavage to release the drug. Since experimental access to these data is not straightforward, new methodologies are critically needed to access this information and to accelerate the development of more effective polymer prodrug nanoparticles, and replace the time-consuming and resource-intensive traditional trial-and-error strategy. In this context, we reported here the use of a coarse-grained model to assist the design of polymer prodrug nanoparticles with enhanced cytotoxicity. By choosing the solvent accessible surface area as the critical parameter for predicting drug release and hence cytotoxicity of polymer prodrug nanoparticles, we developed an optimized polymer-drug linker with enhanced hydrophilicity and solvation. Our hypothesis was then experimentally validated by the synthesis of the corresponding polymer prodrugs based on two different drugs (gemcitabine and paclitaxel), which demonstrated greater performances in terms of drug release and cytotoxicity on two cancer cell lines. Interestingly, our methodology can be easily applied to other polymer prodrug structures, which would contribute to the development of more efficient drug delivery systems via in silico screening.
Collapse
Affiliation(s)
- Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| |
Collapse
|
6
|
Tsuji T, Tsunematsu H, Imanishi M, Denda M, Tsuchiya K, Otaka A. Enhanced tumor specific drug release by hypoxia sensitive dual-prodrugs based on 2-nitroimidazole. Bioorg Med Chem Lett 2023; 95:129484. [PMID: 37716415 DOI: 10.1016/j.bmcl.2023.129484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Hypoxia in cancer is important in the development of cancer-selective medicines. Here, a novel hypoxia-responsible dual-prodrug is described. We designed and synthesized 2-nitroimidazole derivatives which spontaneously release both a PYG inhibitor and gemcitabine under hypoxic conditions. One such derivative, a prodrug 9 was found to be stable against chemical and enzymatic hydrolysis, and upon chemical reduction of the nitro group on imidazole, successfully releases both drugs. In an in vitro proliferation assay using human pancreatic cells, compound 9 exhibited significant anti-proliferative effects in hypoxia but fewer effects in normoxia. Consequently, prodrug 9 should be useful for cancer treatment due to its improved cancer selectivity and potential to overcome drug resistance.
Collapse
Affiliation(s)
- Takashi Tsuji
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Honoka Tsunematsu
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaki Imanishi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Koichiro Tsuchiya
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| |
Collapse
|
7
|
Zhou Z, Guo W, Liu D, Micha JRN, Song Y, Han S. Multiparameter prediction model of immune checkpoint inhibitors combined with chemotherapy for non-small cell lung cancer based on support vector machine learning. Sci Rep 2023; 13:4469. [PMID: 36934139 PMCID: PMC10024716 DOI: 10.1038/s41598-023-31189-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The reliable predictive markers to identify which patients with advanced non-small cell lung cancer tumors (NSCLC) will achieve durable clinical benefit (DCB) for chemo-immunotherapy are needed. In this retrospective study, we collected radiomics and clinical signatures from 94 patients with advanced NSCLC treated with anti-PD-1/PD-L1 combined with chemotherapy from January 1, 2018 to May 31, 2022. Radiomics variables were extracted from pretreatment CT and selected by Spearman correlation coefficients and clinical features by Logistics regression analysis. We performed effective diagnostic algorithms principal components analysis (PCA) and support vector machine (SVM) to develop an early classification model among DCB and non-durable benefit (NDB) groups. A total of 26 radiomics features and 6 clinical features were selected, and then principal component analysis was used to obtain 6 principal components for SVM building. RC-SVM achieved prediction accuracy with AUC of 0.91 (95% CI 0.87-0.94) in the training set, 0.73 (95% CI 0.61-0.85) in the cross-validation set, 0.84 (95% CI 0.80-0.89) in the external validation set. The new method of RC-SVM model based on radiomics-clinical signatures provides a significant additive value on response prediction in patients with NSCLC preceding chemo-immunotherapy.
Collapse
Affiliation(s)
- Zihan Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Respiratory and Critical Care Medicine, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Wenjie Guo
- College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dingqi Liu
- Department of Radiology, BenQ Medical Center, Nanjing, 210000, China
| | - Jose Ramon Nsue Micha
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Respiratory and Critical Care Medicine, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Yue Song
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Respiratory and Critical Care Medicine, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Shuhua Han
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Department of Respiratory and Critical Care Medicine, Southeast University Zhongda Hospital, Nanjing, 210009, China.
| |
Collapse
|
8
|
Nie Z, Vahdani Y, Cho WC, Bloukh SH, Edis Z, Haghighat S, Falahati M, Kheradmandi R, Jaragh-Alhadad LA, Sharifi M. 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. ARAB J CHEM 2022; 15:103966. [DOI: 10.1016/j.arabjc.2022.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Blood Stasis Syndrome Accelerates the Growth and Metastasis of Breast Cancer by Promoting Hypoxia and Immunosuppressive Microenvironment in Mice. J Immunol Res 2022; 2022:7222638. [PMID: 35711625 PMCID: PMC9197668 DOI: 10.1155/2022/7222638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Blood stasis syndromes (BSSs) are closely related to the occurrence and development of tumors, although the mechanism is still unclear. This study was aimed at exploring the effect and mechanism underlying different BSSs on tumor growth and metastasis. We established four BSS mouse models bred with breast cancer: qi deficiency and blood stasis (QDBS), cold coagulation blood stasis (CCBS), heat toxin and blood stasis (HTBS), and qi stagnation and blood stasis (QSBS). The results showed that microcirculation in the lower limb, abdominal wall, and tumor in situ decreased by varying degrees in the BSS groups. In addition, BSS promoted tumor growth and lung metastasis. The ratio of regulatory T cells in the tumor microenvironment was downregulated. Moreover, hypoxia-inducible factor 1-α, Wnt1, β-catenin, vascular endothelial growth factor, and Cyclin D1 levels increased in the tumors of BSS mice. In conclusion, BSS not only promoted the formation of a hypoxic and immunosuppressive microenvironment but also promoted the neovascularization.
Collapse
|
10
|
Nitroaromatic Hypoxia-Activated Prodrugs for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15020187. [PMID: 35215299 PMCID: PMC8878295 DOI: 10.3390/ph15020187] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The presence of “hypoxic” tissue (with O2 levels of <0.1 mmHg) in solid tumours, resulting in quiescent tumour cells distant from blood vessels, but capable of being reactivated by reoxygenation following conventional therapy (radiation or drugs), have long been known as a limitation to successful cancer chemotherapy. This has resulted in a sustained effort to develop nitroaromatic “hypoxia-activated prodrugs” designed to undergo enzyme-based nitro group reduction selectively in these hypoxic regions, to generate active drugs. Such nitro-based prodrugs can be classified into two major groups; those activated either by electron redistribution or by fragmentation following nitro group reduction, relying on the extraordinary difference in electron demand between an aromatic nitro group and its reduction products. The vast majority of hypoxia-activated fall into the latter category and are discussed here classed by the nature of their nitroaromatic trigger units.
Collapse
|
11
|
li X, Huo F, Zhang Y, Cheng F, Yin C. Enzyme-activated Prodrugs and Their Release Mechanisms for Treatment of Cancer. J Mater Chem B 2022; 10:5504-5519. [DOI: 10.1039/d2tb00922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-activated prodrugs have received a lot of attention in recent years. These prodrugs have low toxicity to cells before they are activated, and when they interact with specific enzymes, they...
Collapse
|
12
|
Zhang X, He C, Sun Y, Liu X, Chen Y, Chen C, Yan R, Fan T, Yang T, Lu Y, Luo J, Ma X, Xiang G. A smart O 2-generating nanocarrier optimizes drug transportation comprehensively for chemotherapy improving. Acta Pharm Sin B 2021; 11:3608-3621. [PMID: 34900540 PMCID: PMC8642619 DOI: 10.1016/j.apsb.2021.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Drug transportation is impeded by various barriers in the hypoxic solid tumor, resulting in compromised anticancer efficacy. Herein, a solid lipid monostearin (MS)-coated CaO2/MnO2 nanocarrier was designed to optimize doxorubicin (DOX) transportation comprehensively for chemotherapy enhancement. The MS shell of nanoparticles could be destroyed selectively by highly-expressed lipase within cancer cells, exposing water-sensitive cores to release DOX and produce O2. After the cancer cell death, the core-exposed nanoparticles could be further liberated and continue to react with water in the tumor extracellular matrix (ECM) and thoroughly release O2 and DOX, which exhibited cytotoxicity to neighboring cells. Small DOX molecules could readily diffuse through ECM, in which the collagen deposition was decreased by O2-mediated hypoxia-inducible factor-1 inhibition, leading to synergistically improved drug penetration. Concurrently, DOX-efflux-associated P-glycoprotein was also inhibited by O2, prolonging drug retention in cancer cells. Overall, the DOX transporting processes from nanoparticles to deep tumor cells including drug release, penetration, and retention were optimized comprehensively, which significantly boosted antitumor benefits.
Collapse
Key Words
- CTGF, connective tissue growth factor
- CaO2
- Chemotherapy
- DOX, doxorubicin
- DSPE-PEG2000, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
- ECM, extracellular matrix
- EPR, enhanced permeability and retention
- FBS, fetal bovine serum
- HA, hyaluronic acid
- HAase, hyaluronidase
- HIF-1
- HIF-1α, hypoxia-inducible factor 1α
- Hypoxia
- MCTS, multicellular tumor spheroids
- MS, monostearin
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- MnO2
- NP, nanoparticle
- Nanoparticle
- OA, oleic acid
- P-gp, P-glycoprotein
- PDT, photodynamic therapy
- TEM, transmission electron microscopy
- TME, tumor microenvironment
- Transportation
- Tumor
Collapse
|
13
|
Galectin-1 Expression Is Associated with the Response and Survival Following Preoperative Chemoradiotherapy in Locally Advanced Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133147. [PMID: 34201887 PMCID: PMC8268777 DOI: 10.3390/cancers13133147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Galectin-1 has been found to be involved in therapeutic resistance in a variety of cancers. However, the prognostic significance of galectin-1 expression in patients with locally advanced esophageal squamous cell carcinoma (ESCC) treated with chemoradiotherapy remains unknown. Immunohistochemically, we observed that galectin-1 overexpression in pretreatment biopsied specimens was significantly associated with a lower pathological complete response rate, worse overall survival and disease-free survival in 93 patients with locally advanced ESCC receiving preoperative chemoradiotherapy. Our findings suggest that galectin-1 may be a potential therapeutic target for patients with ESCC treated with preoperative chemoradiotherapy. Abstract The galectin-1 has been found to be involved in poor outcomes after treatment of a variety of cancers. To the best of our knowledge, however, the significance of galectin-1 expression in the sensitivity to chemoradiotherapy (CCRT) of patients with locally advanced esophageal squamous cell carcinoma (ESCC) remains unclear. Expression levels of galectin-1 were evaluated by immunohistochemistry and correlated with the treatment outcome in 93 patients with locally advanced ESCC who received preoperative CCRT between 1999 and 2012. Galectin-1 expression was significantly associated with the pathological complete response (pCR). The pCR rates were 36.1% and 13.0% (p = 0.01) in patients with low and high galectin-1 expression, respectively. Univariate analyses revealed that galectin-1 overexpression, clinical 7th American Joint Committee on Cancer (AJCC) stage III and a positive surgical margin were significant factors of worse overall survival and disease-free survival. In multivariate analyses, galectin-1 overexpression and a positive surgical margin represented the independent adverse prognosticators. Therefore, galectin-1 expression both affects the pCR and survival in patients with locally advanced ESCC receiving preoperative CCRT. Our results suggest that galectin-1 may be a potentially therapeutic target for patients with ESCC treated with preoperative CCRT.
Collapse
|
14
|
Luo X, Li A, Chi X, Lin Y, Liu X, Zhang L, Su X, Yin Z, Lin H, Gao J. Hypoxia-Activated Prodrug Enabling Synchronous Chemotherapy and HIF-1α Downregulation for Tumor Treatment. Bioconjug Chem 2021; 32:983-990. [PMID: 33847488 DOI: 10.1021/acs.bioconjchem.1c00131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The overexpression of HIF-1α in solid tumors due to hypoxia is closely related to drug resistance and consequent treatment failure. Herein, we constructed a hypoxia-activated prodrug named as YC-Dox. This prodrug could be activated under hypoxic conditions and undergo self-immolation to release doxorubicin (Dox) and YC-1 hemisuccinate (YCH-1), which could execute chemotherapy and result in HIF-1α downregulation, respectively. This prodrug is capable of specifically releasing Dox and YCH-1 in response to hypoxia, leading to a substantial synergistic potency and a remarkable cytotoxic selectivity (>8-fold) for hypoxic cancer cells over normoxic healthy cells. The in vivo experiments reveal that this prodrug can selectively aim at hypoxic cancer cells and avoid undesired targeting of normal cells, leading to elevated therapeutic efficacy for tumor treatment and minimized adverse effects on normal tissues.
Collapse
Affiliation(s)
- Xiangjie Luo
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Yaying Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lifan Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Xinhui Su
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
UCA1 Overexpression Promotes Hypoxic Breast Cancer Cell Proliferation and Inhibits Apoptosis via HIF-1 α Activation. JOURNAL OF ONCOLOGY 2021; 2021:5512156. [PMID: 34054950 PMCID: PMC8123984 DOI: 10.1155/2021/5512156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The noncoding RNA termed urothelial carcinoma-associated 1 (UCA1) is an oncogenic lncRNA involved in promoting the growth of several tumors through various pathways. The aim of this study was to explore the expression of UCA1 in hypoxic breast cancer and its impact on tumorigenesis in low levels of oxygen. Here, we show that UCA1 is upregulated in a number of hypoxic (1% O2) breast cancer cells. In addition, UCA1 expression is significantly overexpressed in breast cancer tissues compared to matched normal cells. UCA1 knockdown in hypoxia inhibits breast cancer proliferation and induces apoptosis. The knockdown of hypoxia-inducible transcription factor 1α (HIF-1α) but not HIF-2α significantly decreases the expression of UCA1 in hypoxia. Overall, these findings indicate that UCA1 is a hallmark of hypoxic breast cancer and its expression is positively regulated by HIF-1α.
Collapse
|
16
|
Chen S, Yu S, Du Z, Huang X, He M, Long S, Liu J, Lan Y, Yang D, Wang H, Li S, Chen A, Hao Y, Su Y, Wang C, Luo S. Synthesis of Mitochondria-Anchored Nitroimidazoles with a Versatile NIR Fluorophore for Hypoxic Tumor-Targeting Imaging and Chemoradiotherapy. J Med Chem 2021; 64:3381-3391. [PMID: 33688738 DOI: 10.1021/acs.jmedchem.0c02250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nitroimidazoles are one of the most common radiosensitizers investigated to combat hypoxia-induced resistance to cancer radiotherapy. However, due to poor selectivity distinguishing cancer cells from normal cells, effective doses of radiosensitization are much closer to the doses of toxicity induced by nitroimidazoles, limiting their clinical application. In this work, a tumor-targeting near-infrared (NIR) cyanine dye (IR-808) was utilized as a targeting ligand and an NIR fluorophore tracer to chemically conjugate with different structures of hypoxia-affinic nitroimidazoles. One of the NIR fluorophore-conjugated nitroimidazoles (808-NM2) was identified to preferentially accumulate in hypoxic tumor cells, sensitively outline the tumor contour, and effectively inhibit tumor growth synergistically by chemotherapy and radiotherapy. More importantly, nitroimidazoles were successfully taken into cancer cell mitochondria via 808-NM2 conjugate to exert the synergistic effect of chemoradiotherapy. Regarding the important roles of mitochondria on cancer cell survival and metastasis under hypoxia, 808-NM2 may be hopeful to fight against hypoxic tumors.
Collapse
Affiliation(s)
- Sha Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Songtao Yu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Zaizhi Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Xie Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Meng He
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Shuang Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Yu Lan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Dong Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Hao Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Shuhui Li
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - An Chen
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Changning Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| |
Collapse
|
17
|
Saqib M, Arthur-Baidoo E, Ončák M, Denifl S. Electron Attachment Studies with the Potential Radiosensitizer 2-Nitrofuran. Int J Mol Sci 2020; 21:ijms21238906. [PMID: 33255344 PMCID: PMC7727711 DOI: 10.3390/ijms21238906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrofurans belong to the class of drugs typically used as antibiotics or antimicrobials. The defining structural component is a furan ring with a nitro group attached. In the present investigation, electron attachment to 2-nitrofuran (C4H3NO3), which is considered as a potential radiosensitizer candidate for application in radiotherapy, has been studied in a crossed electron-molecular beams experiment. The present results indicate that low-energy electrons with kinetic energies of about 0-12 eV effectively decompose the molecule. In total, twelve fragment anions were detected within the detection limit of the apparatus, as well as the parent anion of 2-nitrofuran. One major resonance region of ≈0-5 eV is observed in which the most abundant anions NO2-, C4H3O-, and C4H3NO3- are detected. The experimental results are supported by ab initio calculations of electronic states in the resulting anion, thermochemical thresholds, connectivity between electronic states of the anion, and reactivity analysis in the hot ground state.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Eugene Arthur-Baidoo
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Milan Ončák
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Correspondence: (M.O.); (S.D.)
| | - Stephan Denifl
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Correspondence: (M.O.); (S.D.)
| |
Collapse
|
18
|
Chang M, Hou Z, Wang M, Wang M, Dang P, Liu J, Shu M, Ding B, Al Kheraif AA, Li C, Lin J. Cu 2 MoS 4 /Au Heterostructures with Enhanced Catalase-Like Activity and Photoconversion Efficiency for Primary/Metastatic Tumors Eradication by Phototherapy-Induced Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907146. [PMID: 32162784 DOI: 10.1002/smll.201907146] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Photoimmunotherapy can not only effectively ablate the primary tumor but also trigger strong antitumor immune responses against metastatic tumors by inducing immunogenic cell death. Herein, Cu2 MoS4 (CMS)/Au heterostructures are constructed by depositing plasmonic Au nanoparticles onto CMS nanosheets, which exhibit enhanced absorption in near-infrared (NIR) region due to the newly formed mid-gap state across the Fermi level based on the hybridization between Au 5d orbitals and S 3p orbitals, thus resulting in more excellent photothermal therapy and photodynamic therapy (PDT) effect than single CMS upon NIR laser irradiation. The CMS and CMS/Au can also serve as catalase to effectively relieve tumor hypoxia, which can enhance the therapeutic effect of O2 -dependent PDT. Notably, the NIR laser-irradiated CMS/Au can elicit strong immune responses via promoting dendritic cells maturation, cytokine secretion, and activating antitumor effector T-cell responses for both primary and metastatic tumors eradication. Moreover, CMS/Au exhibits outstanding photoacoustic and computed tomography imaging performance owing to its excellent photothermal conversion and X-ray attenuation ability. Overall, the work provides an imaging-guided and phototherapy-induced immunotherapy based on constructing CMS/Au heterostructures for effectively tumor ablation and cancer metastasis inhibition.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, P. R. China
| | - Man Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Jianhua Liu
- Department of Radiology, the Second Hospital of Jilin University, Changchun, 130022, P. R. China
| | - Mengmeng Shu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Abdulaziz A Al Kheraif
- Dental Health department College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
19
|
Zhou M, Xie Y, Xu S, Xin J, Wang J, Han T, Ting R, Zhang J, An F. Hypoxia-activated nanomedicines for effective cancer therapy. Eur J Med Chem 2020; 195:112274. [PMID: 32259703 DOI: 10.1016/j.ejmech.2020.112274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia, a common characteristic in solid tumors, is found in phenotypically aggressive cancers that display resistance to typical cancer interventions. Due to its important role in tumor progression, tumor hypoxia has been considered as a primary target for cancer diagnosis and treatment. An advantage of hypoxia-activated nanomedicines is that they are inactive in normoxic cells. In hypoxic tumor tissues and cells, these nanomedicines undergo reduction by activated enzymes (usually through 1 or 2 electron oxidoreductases) to produce cytotoxic substances. In this review, we will focus on approaches to design nanomedicines that take advantage of tumor hypoxia. These approaches include: i) inhibitors of hypoxia-associated signaling pathways; ii) prodrugs activated by hypoxia; iii) nanocarriers responsive to hypoxia, and iv) bacteria mediated hypoxia targeting therapy. These strategies have guided and will continue to guide nanoparticle design in the near future. These strategies have the potential to overcome tumor heterogeneity to improve the efficiency of radiotherapy, chemotherapy and diagnosis.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Yuqi Xie
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Shujun Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Tao Han
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University, Chengdu, 611130, PR China
| | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY, 10065, USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
20
|
He W, Xiao W, Zhang X, Sun Y, Chen Y, Chen Q, Fang X, Du S, Sha X. Pulmonary-Affinity Paclitaxel Polymer Micelles in Response to Biological Functions of Ambroxol Enhance Therapeutic Effect on Lung Cancer. Int J Nanomedicine 2020; 15:779-793. [PMID: 32099365 PMCID: PMC7007785 DOI: 10.2147/ijn.s229576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Cancer chemotherapy effect has been largely limited by cell autophagy and little drug accumulation at the action sites. Herein, we designed an intelligent strategy involving paclitaxel (PTX) polymer micelles in response to biological functions of ambroxol (Ax). The amphiphilic polymers polyethyleneglycol-polylactic acid (PEG-PLA) and Pluronic P105 were selected as nanocarriers to encapsulate PTX to form into lung affinity PEG-PLA/P105/PTX micelles. Ax which can up-regulate the secretion of pulmonary surfactant (PS) and inhibit autophagy was hired to change the microenvironment of the lung, thereby promoting the lung accumulation and increasing cell-killing sensitivity of the micelles. Methods The physical and chemical properties of the micelles were characterized including size, morphology, critical micellar concentration (CMC) and in vitro drug release behavior. The therapeutic effects of the combination regimen were characterized both in vitro and in vivo including study on Ax in promoting the secretion of pulmonary surfactant, in vitro cytotoxicity, cellular uptake, Western blotting, in vivo biodistribution, in vivo pharmacokinetics and in vivo antitumor efficacy. Results The PEG-PLA/P105/PTX micelles showed a particle size of 16.7 ± 0.5 nm, a nearly round shape, small CMC and sustained drug release property. Moreover, the in vitro results indicated that Ax could increase PS and LC3 protein secretion and enhance the cytotoxicity of PEG-PLA/P105/PTX micelles toward A549 cells. The in vivo results indicated that the combination therapeutic regimen could promote the micelles to distribute in lung and enhance the therapeutic effect on lung cancer. Conclusion This multifunctional approach of modulating the tumor microenvironment to enhance drug transportation and cell-killing sensitivity in the action sites might offer a new avenue for effective lung cancer treatment.
Collapse
Affiliation(s)
- Wenxiu He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Center for Medical Research and Innovation, Shanghai Pudong Hospital, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Xiulei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Center for Medical Research and Innovation, Shanghai Pudong Hospital, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yali Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Center for Medical Research and Innovation, Shanghai Pudong Hospital, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yiting Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Center for Medical Research and Innovation, Shanghai Pudong Hospital, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qinyue Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Center for Medical Research and Innovation, Shanghai Pudong Hospital, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Center for Medical Research and Innovation, Shanghai Pudong Hospital, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Shilin Du
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Center for Medical Research and Innovation, Shanghai Pudong Hospital, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.,The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
21
|
Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater 2020; 101:43-68. [PMID: 31518706 DOI: 10.1016/j.actbio.2019.09.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Recent findings suggest that the cellular and extracellular materials surrounding the cancerous cells from an atypical tumor microenvironment (TM) play a pivotal role in the process of tumor initiation and progression. TM comprises an intricate system involving diverse cell types including endothelial cells, pericytes, smooth muscle cells, fibroblasts, various inflammatory cells, dendritic cells, and cancer stem cells (CSCs). The TM-forming cells dynamically interact with the cancerous cells through various signaling mechanisms and pathways. The existence of this dynamic cellular communication is responsible for creating an environment suitable for sustaining a reasonably high cellular proliferation. Presently, researchers are showing interest to use these TM conditions to mediate effective targeting measures for cancer therapy. The use of nanotherapeutics-based combination therapy; stimuli-responsive nanotherapeutics targeting acidic pH, hypoxic environment; and nanoparticle-induced hyperthermia are some of the approaches that are under intense investigation for cancer therapy. This review discusses TM and its role in cancer progression and crosstalk understanding, opportunities, and epigenetic modifications involved therein to materialize the capability of nanotherapeutics to target cancer by availing TM. STATEMENT OF SIGNIFICANCE: This article presents various recent reports, proof-of-concept studies, patents, and clinical trials on the concept of tumor microenvironment for mediating the cancer-specific delivery of nanotechnology-based systems bearing anticancer drug and diagnostics. We highlight the potential of tumor microenvironment; its role in disease progression, opportunities, challenges, and allied treatment strategies for effective cancer therapy by conceptual understanding of tumor microenvironment and epigenetic modifications involved. Specifically, nanoparticle-based approaches to target various processes related to tumor microenvironment (pH responsive, hypoxic environment responsive, targeting of specific cells involved in tumor microenvironment, etc.) are dealt in detail.
Collapse
|
22
|
Koo S, Bobba KN, Cho MY, Park HS, Won M, Velusamy N, Hong KS, Bhuniya S, Kim JS. Molecular Theranostic Agent with Programmed Activation for Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2019; 2:4648-4655. [DOI: 10.1021/acsabm.9b00722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Nithya Velusamy
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
23
|
Chu X, Xiang M, Feng L, Liu H, Zhou C. Prolyl hydroxylase 3 involvement in lung cancer progression under hypoxic conditions: association with hypoxia-inducible factor-1α and pyruvate kinase M2. J Thorac Dis 2019; 11:3941-3950. [PMID: 31656668 DOI: 10.21037/jtd.2019.08.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Previous studies have suggested that the functions of prolyl hydroxylase 3 (PHD3) in tumor growth, apoptosis and angiogenesis are essentially dependent on hypoxia-inducible factor (HIF)-1α signaling. Nevertheless, whether PHD3 represents a promising tumor suppressor target remains to be clarified. To provide insight into the therapeutic potential of PHD3 in lung cancer, this study examined the effects of PHD3 expression on HIF-1α and pyruvate kinase M2 (PKM2), as well as on lung cancer cell proliferation, migration, and invasion. Methods The model of hypoxia was established in A549 and SK-MES-1 cells with 200 µM CoCl2 treatment, and verified by western blot and immunocytochemical staining. The expression levels of PKM2 and HIF-1α were determined by western blot after overexpression or depletion of PHD3 in A549 and SK-MES-1 cells. In addition, cell viability, migration and invasion were measured, respectively. Results Establishment of hypoxia in A549 and SK-MES-1 cells resulted in significant decreases in PHD3 expression and remarkable increase in PKM2 expression in 24 hrs. Overexpression of PHD3 in A549 and SK-MES-1 cells decreased HIF-1α and PKM2 expression. In contrast, PHD3 knockdown increased HIF-1α and PKM2 (P<0.05). In addition, the viability, migration and invasion of A549 and SK-MES-1 cells were significantly decreased with PHD3 overexpression, but dramatically increased with PHD3 depletion (P<0.05). Conclusions PHD3 is involved in lung cancer progression, and might be a promising therapeutic target for cancers.
Collapse
Affiliation(s)
- Xiao Chu
- Department of Thoracic Surgery, Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Ming Xiang
- Department of Thoracic Surgery, Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Liang Feng
- Department of Thoracic Surgery, Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Hui Liu
- Department of Thoracic Surgery, Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Chao Zhou
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai 200030, China
| |
Collapse
|
24
|
Cheng W, Wang S, Yang Z, Tian X, Hu Y. Design, synthesis, and biological study of 4-[(2-nitroimidazole-1 H-alkyloxyl)aniline]-quinazolines as EGFR inhibitors exerting cytotoxicities both under normoxia and hypoxia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3079-3089. [PMID: 31695326 PMCID: PMC6717862 DOI: 10.2147/dddt.s209481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022]
Abstract
Purpose In order to get novel EGFR inhibitors exerting more potency in tumor hypoxia than in normoxia. Methods A series of 4-[(2-nitroimidazole-1H-alkyloxyl)aniline]-quinazolines were designed and synthesized, and their in vitro cytotoxicity and EGFR inhibitory activity were evaluated. Molecule docking study was performed for the representative compound. Results The structure-activity relationship (SAR) studies revealed that compounds bearing both meta-chloride and para-(2-nitroimidazole-1H-alkyloxy) groups on the aniline displayed potent inhibitory activities both in enzymatic and cellular levels. The most promising compound 16i potently inhibited EGFR with an IC50 value of 0.12 μM. Meanwhile, it manifested more potent cytotoxicity than the positive control lapatinib under tumor normoxia and hypoxia conditions (IC50 values of 1.59 and 1.09 μM against A549 cells, 2.46 and 1.35 μM against HT-29 cells, respectively). The proposed binding model of 16i in complex with EGFR was displayed by the docking results. Conclusion This study provides insights for developing hypoxia-activated kinase inhibitors.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongzhou Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
25
|
Matsushita K, Okuda T, Mori S, Konno M, Eguchi H, Asai A, Koseki J, Iwagami Y, Yamada D, Akita H, Asaoka T, Noda T, Kawamoto K, Gotoh K, Kobayashi S, Kasahara Y, Morihiro K, Satoh T, Doki Y, Mori M, Ishii H, Obika S. A Hydrogen Peroxide Activatable Gemcitabine Prodrug for the Selective Treatment of Pancreatic Ductal Adenocarcinoma. ChemMedChem 2019; 14:1384-1391. [DOI: 10.1002/cmdc.201900324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Katsunori Matsushita
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
- Department of Frontier Science for Cancer and ChemotherapyGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takumi Okuda
- Graduate School of Pharmaceutical SciencesOsaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Shohei Mori
- Graduate School of Pharmaceutical SciencesOsaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and ChemotherapyGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Medical Data ScienceGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Ayumu Asai
- Department of Frontier Science for Cancer and ChemotherapyGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Medical Data ScienceGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Jun Koseki
- Department of Frontier Science for Cancer and ChemotherapyGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Medical Data ScienceGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Daisaku Yamada
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
- Present address: Department of Digestive SurgeryOsaka International Cancer Institute 3-1-69 Otemae, Chuo-ku Osaka Osaka 541-8567 Japan
| | - Hirofumi Akita
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Tadafumi Asaoka
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Takehiro Noda
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Koichi Kawamoto
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
- Present address: Kinki Regional Bureau of Health and WelfareMinistry of Health, Labour and Welfare 4-1-76 Nonin Bashi, Chuo-ku Osaka Osaka 540-0008 Japan
| | - Kunihito Gotoh
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Shogo Kobayashi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical SciencesOsaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) 7-6-8 Saito-Asagi Ibaraki Osaka 567-0085 Japan
| | - Kunihiko Morihiro
- Graduate School of Pharmaceutical SciencesOsaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) 7-6-8 Saito-Asagi Ibaraki Osaka 567-0085 Japan
- Present address: Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and ChemotherapyGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
| | - Masaki Mori
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan)
- Present address: Department of Surgery and ScienceGraduate School of Medical SciencesKyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
| | - Hideshi Ishii
- Department of Medical Data ScienceGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical SciencesOsaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) 7-6-8 Saito-Asagi Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
26
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
A hypoxic environment can be defined as a region of the body or the whole body that is deprived of oxygen. Hypoxia is a feature of many diseases, such as cardiovascular disease, tissue trauma, stroke, and solid cancers. A loss of oxygen supply usually results in cell death; however, when cells gradually become hypoxic, they may survive and continue to thrive as described for conditions that promote metastatic growth. The role of hypoxia in these pathogenic pathways is therefore of great interest, and understanding the effect of hypoxia in regulating these mechanisms is fundamentally important. This chapter gives an extensive overview of these mechanisms. Moreover, given the challenges posed by tumor hypoxia we describe the current methods to simulate and detect hypoxic conditions followed by a discussion on current and experimental therapies that target hypoxic cells.
Collapse
Affiliation(s)
- Elizabeth Bowler
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK.
| | - Michael R Ladomery
- Faculty Health and Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
28
|
Abstract
The nitro group is considered to be a versatile and unique functional group in medicinal chemistry. Despite a long history of use in therapeutics, the nitro group has toxicity issues and is often categorized as a structural alert or a toxicophore, and evidence related to drugs containing nitro groups is rather contradictory. In general, drugs containing nitro groups have been extensively associated with mutagenicity and genotoxicity. In this context, efforts toward the structure-mutagenicity or structure-genotoxicity relationships have been undertaken. The current Perspective covers various aspects of agents that contain nitro groups, their bioreductive activation mechanisms, their toxicities, and approaches to combat their toxicity issues. In addition, recent advances in the field of anticancer, antitubercular and antiparasitic agents containing nitro groups, along with a patent survey on hypoxia-activated prodrugs containing nitro groups, are also covered.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| |
Collapse
|
29
|
Zhou Y, Maiti M, Sharma A, Won M, Yu L, Miao LX, Shin J, Podder A, Bobba KN, Han J, Bhuniya S, Kim JS. Azo-based small molecular hypoxia responsive theranostic for tumor-specific imaging and therapy. J Control Release 2018; 288:14-22. [DOI: 10.1016/j.jconrel.2018.08.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
|
30
|
Chen S, Chen X, Li W, Shan T, Lin WR, Ma J, Cui X, Yang W, Cao G, Li Y, Wang L, Kang Y. Conversion of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition is mediated by oxygen concentration in pancreatic cancer cells. Oncol Lett 2018; 15:7144-7152. [PMID: 29731878 PMCID: PMC5921234 DOI: 10.3892/ol.2018.8219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is accompanied by a two-stage process of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). Currently, the exact mechanisms underlying EMT-MET conversion are unclear. In the present study, the mechanisms by which primary sites (hypoxic) and homing sites (normoxic or hyperoxic) participate in EMT-MET conversion were evaluated. Pancreatic cancer cells were grown under different oxygenation conditions. Cell morphology and epithelial (E)-cadherin and vimentin expression were examined. Transwell chambers were used to examine tumor invasiveness, and scratch assays were performed to examine cell migration. Reverse transcription-polymerase chain reaction and western blot analysis were used to quantitate the mRNA and protein expression of E-cadherin, vimentin, Snail and hypoxia-inducible factor (HIF)-1α. BxPc-3 and Panc-1 cells grown under hypoxic conditions demonstrated increased partial EMT, reduced E-cadherin expression, and increased vimentin expression, compared with cells grown under normoxic or hyperoxic conditions. Cells grown under hypoxic conditions also indicated increased migration and invasiveness. HIF-1α mRNA and protein expression was increased in cells grown under hypoxic conditions. These changes were reversed when a specific inhibitor of the HIF-1α receptor was used to block HIF-1α signaling. Differences in oxygen concentration at primary sites and homing sites are important in the EMT-MET process, and the underlying mechanism may involve HIF-1α-Snail signaling.
Collapse
Affiliation(s)
- Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Li
- The Institute for Population and Development Studies, School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wan Run Lin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijuan Cui
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Li Wang
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Functional polymer-based siRNA delivery carrier that recognizes site-specific biosignals. J Control Release 2017; 267:90-99. [PMID: 28923764 DOI: 10.1016/j.jconrel.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Responsive molecular designs to specific biosignals in microenvironments endow site-specific functionalities with associated polymers. Thus, the construction of small interfering RNA (siRNA) carriers with functional polymers enables smart programs that are triggered by sequential biosignals in a pathway to the targeted cytosol for effective gene silencing. In this review, we explain rational strategies for the design of functional polymers with responsiveness to biosignals and describe the examples of smart carriers for siRNA delivery.
Collapse
|
32
|
The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci 2017; 18:ijms18071586. [PMID: 28754000 PMCID: PMC5536073 DOI: 10.3390/ijms18071586] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.
Collapse
|
33
|
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol 2017; 233:2019-2031. [PMID: 28198007 DOI: 10.1002/jcp.25859] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Hypoxia, a characteristic feature of tumors, is indispensable to tumor angiogenesis, metastasis, and multi drug resistance. Hypoxic avascular regions, deeply embedded inside the tumors significantly hinder delivery of therapeutic agents. The low oxygen tension results in resistance to the current applied anti-cancer therapeutics including radiotherapy, chemotherapy, and photodynamic therapy, the efficacy of which is firmly tied to the level of tumor oxygen supply. However, emerging data indicate that nanocarriers/nanodrugs can offer substantial benefits to improve the efficacy of current therapeutics, through modulation of tumor hypoxia. This review aims to introduce the most recent advances made in nanocarrier mediated targeting of tumor hypoxia. The first part is dedicated to the approaches by which nanocarriers could be designed to target/leverage hypoxia. These approaches include i) inhibiting Hypoxia Inducer Factor (HIF-1α); ii) hypoxia activated prodrugs/linkers; and iii) obligate anaerobe mediated targeting of tumor hypoxia. The second part, details novel nanosystems proposed to modulate tumor hypoxia through tumor oxygenation. These methods seek to lessen tumor hypoxia through vascular normalization, or reoxygenation therapy. The reoxygenation of tumor could be accomplished by: i) generation of oxygen filled nanocarriers; ii) natural/artificial oxygen nanocarriers; and iii) oxygen generators. The efficacy of each approach and their potential in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Delshad Ahmadi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Baran N, Konopleva M. Molecular Pathways: Hypoxia-Activated Prodrugs in Cancer Therapy. Clin Cancer Res 2017; 23:2382-2390. [PMID: 28137923 DOI: 10.1158/1078-0432.ccr-16-0895] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
Hypoxia is a known feature of aggressive solid tumors as well as a critical hallmark of the niche in aggressive hematologic malignances. Hypoxia is associated with insufficient response to standard therapy, resulting in disease progression and curtailed patients' survival through maintenance of noncycling cancer stem-like cells. A better understanding of the mechanisms and signaling pathways induced by hypoxia is essential to overcoming these effects. Recent findings demonstrate that bone marrow in the setting of hematologic malignancies is highly hypoxic, and that progression of the disease is associated with expansion of hypoxic niches and stabilization of the oncogenic hypoxia-inducible factor-1alpha (HIF1α). Solid tumors have also been shown to harbor hypoxic areas, maintaining survival of cancer cells via the HIF1α pathway. Developing new strategies for targeting hypoxia has become a crucial approach in modern cancer therapy. The number of preclinical and clinical trials targeting low-oxygen tumor compartments or the hypoxic bone marrow niche via hypoxia-activated prodrugs is increasing. This review discusses the development of the hypoxia-activated prodrugs and their applicability in treating both hematologic malignancies and solid tumors. Clin Cancer Res; 23(10); 2382-90. ©2017 AACR.
Collapse
Affiliation(s)
- Natalia Baran
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|