1
|
Huang X, Ji M, Shang X, Zhang H, Zhang X, Zhou J, Yin T. Smart on-demand drug release strategies for cancer combination therapy. J Control Release 2025; 383:113782. [PMID: 40294796 DOI: 10.1016/j.jconrel.2025.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
In cancer therapy, enhancing therapeutic indices and patient compliance has been a central focus in recent drug delivery technology development. However, achieving a delicate balance between improving anti-tumor efficacy and minimizing toxicity to normal tissues remains a significant challenge. With the advent of smart on-demand drug release strategies, new opportunities have emerged. These strategies represent a promising approach to drug delivery, enabling precise control over the release of therapeutic agents in a programmed and spatiotemporal manner. Recent studies have focused on designing delivery systems capable of releasing multiple therapeutic agents sequentially, while achieving spatial resolution in vivo. Smart on-demand drug release strategies have demonstrated considerable potential in tumor combination therapy for achieving precision drug delivery and controlled release by responding to specific physiological signals or external physical stimuli in the tumor microenvironment. These strategies not only improve tumor targeting and reduce toxicity to healthy tissues but also enable sequential release in combination therapy, allowing multiple drugs to be released in a specific spatiotemporal order to enhance synergistic treatment effects. In this paper, we systematically reviewed the current research progress of smart on-demand drug release drug delivery strategies in anti-tumor combination therapy. We highlighted representative integrated drug delivery systems and discussed the challenges associated with their clinical application. Additionally, potential future research directions are proposed to further advance this promising field.
Collapse
Affiliation(s)
- Xiaolin Huang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Mengfei Ji
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinyu Shang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hengchuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
2
|
Erebor JO, Agboluaje EO, Perkins AM, Krishnakumar M, Ngwuluka N. Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy. Adv Pharm Bull 2024; 14:558-573. [PMID: 39494247 PMCID: PMC11530881 DOI: 10.34172/apb.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 11/05/2024] Open
Abstract
Hybrid nanocarriers have realized a growing interest in drug delivery research because of the potential of being able to treat, manage or cure diseases that previously had limited therapy or cure. Cancer is currently considered the second leading cause of death globally. This makes cancer therapy a major focus in terms of the need for efficacious and safe drug formulations that can be used to reduce the rate of morbidity and mortality globally. The major challenge encountered over the years with cancer chemotherapy is the non-selectivity of anticancer drugs, leading to severe adverse effects in patients. Multidrug resistance has also resulted in treatment failure in cancer chemotherapy over the years. Hybrid nanocarriers can be targeted to the site and offer co-delivery of two or more chemotherapeutics, thus leading to synergistic or additive results. This makes hybrid nanocarriers an extremely attractive type of drug delivery system for cancer therapy. Hybrid nanocarrier systems are also attracting attention as possible non-viral gene vectors that could have a higher level of transfection, and be efficacious, with the added advantage of being safer than viral vectors in clinical settings. An extensive review of various aspects of hybrid nanocarriers was discussed in this paper. It is envisaged that in the future, metastatic cancers, multi-drug resistant cancers, and low prognosis cancers like pancreatic cancers, will have a lasting solution via hybrid nanocarrier formulations with targeted co-delivery of therapeutics.
Collapse
Affiliation(s)
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences University of Georgia, 250 W. Green Street Athens, Georgia 30602- 5036 USA
| | - Ava M. Perkins
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo 3000 Arlington Ave, Toledo, OH 43614-2595 USA
| | - Megha Krishnakumar
- Catalent Pharma Solutions, 7330 Carroll Road, San Diego, California 92121-2363 USA
| | - Ndidi Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmacy, University of Jos, Pharmaceutical Sciences Gate, Bauchi Rd, 930001, Jos, Plateau State, Nigeria
| |
Collapse
|
3
|
Wang N, Zhang C, Wu J, Zhang D, Li J, Galvbu A, Tang L, Li Y, Li H, Tan S, Wang X. Carboxymethyl chitosan and octadecylamine-coated liposome-containing WPTS: design, optimization, and evaluation. J Liposome Res 2024; 34:124-134. [PMID: 37555618 DOI: 10.1080/08982104.2023.2246057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Liposomes (LPs) are a delivery system for stabilizing pharmaceuticals with limited use due to their propensity to congregate and fuse. A proposed method of addressing these problems is polymer coating. In this study, the potential of octadecylamine (ODA)-coated liposomes and carboxymethyl chitosan (CMCS/ODA-LPs) for enhancing Wacao pentacyclic triterpene saponin (WPTS) transport capacity was investigated. CMCS/ODA-LPs were produced by electrostatic adsorption and thin-film hydration. Response surface methodology (RSM) was employed to enhance the process and encapsulation efficiency (EE) for optimum drug encapsulation efficiency. The synthesized WPTS-CMCS/ODA-LPs were uniformly dispersed in a circular shape, and during 14 days of storage at 4 °C, the particle size and morphology did not significantly change. Vesicle size, zeta potential, polydispersity index (PDI), and entrapment efficiency (%) were 179.1 ± 7.31 nm, -29.6 ± 1.35 mV, 0.188 ± 0.052, and 75.62 ± 0.43, respectively. The hemolysis test revealed that WPTS-CMCS/ODA-LPs were sufficiently biocompatible. Compared to WPTS-LPs, WPTS-CMCS/ODA-LPs consistently showed a much more significant cytotoxic effect on cancer cells. Early and WPTS-CMCS/ODA-LPs-induced apoptosis resulted in almost seven times more cell death than the control. Compared to physiological pH 7.3, the pH-sensitive CMCS coupled LPs increased drug release at acidic pH 6.5. These findings suggest the efficacy of pH-sensitive CMCS/ODA-LPs as a medication delivery method for WPTS.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Junling Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - A Galvbu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Leimengyuan Tang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuting Tan
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Zhang W, Chen L, Zhang X, Gong P, Wang X, Xu Z, Nie G, Xu L. Functionalized nanohybrids with rod shape for improved chemo-phototherapeutic effect against cancer by sequentially generating singlet oxygen and carbon dioxide bubbles. Biomater Sci 2023; 11:6894-6905. [PMID: 37650600 DOI: 10.1039/d3bm00541k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The application of hybrid nanocarriers is expected to play an active role in improving treatment of chemotherapy and phototherapy. Herein, a nanohybrid with a core of mesoporous silica nanorods and shell of folate-functionalized zeolite imidazole framework (ZIF-8/FA) was synthesized via polydopamine (PDA)-mediated integration. A chemotherapeutic drug (DOX), bubble generator (NH4HCO3, ABC), and photosensitive agent (ICG) were simultaneously loaded into the delivery system to construct smart ZIF-8/FA-coated mesoporous silica nanorods (IDa-PRMSs@ZF). We found that ICG endowed the designed delivery system with a moderate photothermal conversion efficiency of 26.06% and the capacity to release 1O2. The produced hyperthermia caused ABC to decompose and further generate carbon dioxide bubbles, thereby facilitating DOX release, sequentially. Importantly, the underlying mechanism was also investigated using mathematical kinetic modeling. The tumor inhibition rate of IDa-PRMSs@ZF under NIR irradiation reached 83.8%. This study provides a promising strategy based on rod-shaped nanohybrids for effective combination antitumor therapy.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, China
| | - Lu Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, China
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, China
| | - Xiyu Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhiying Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Ganyu Nie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
5
|
Sun X, Zhao P, Lin J, Chen K, Shen J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:390-415. [PMID: 37457134 PMCID: PMC10344729 DOI: 10.20517/cdr.2023.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Cancer is currently one of the most intractable diseases causing human death. Although the prognosis of tumor patients has been improved to a certain extent through various modern treatment methods, multidrug resistance (MDR) of tumor cells is still a major problem leading to clinical treatment failure. Chemotherapy resistance refers to the resistance of tumor cells and/or tissues to a drug, usually inherent or developed during treatment. Therefore, an urgent need to research the ideal drug delivery system to overcome the shortcoming of traditional chemotherapy. The rapid development of nanotechnology has brought us new enlightenments to solve this problem. The novel nanocarrier provides a considerably effective treatment to overcome the limitations of chemotherapy or other drugs resulting from systemic side effects such as resistance, high toxicity, lack of targeting, and off-target. Herein, we introduce several tumor MDR mechanisms and discuss novel nanoparticle technology applied to surmount cancer drug resistance. Nanomaterials contain liposomes, polymer conjugates, micelles, dendrimers, carbon-based, metal nanoparticles, and nucleotides which can be used to deliver chemotherapeutic drugs, photosensitizers, and small interfering RNA (siRNA). This review aims to elucidate the advantages of nanomedicine in overcoming cancer drug resistance and discuss the latest developments.
Collapse
Affiliation(s)
- Xiangyu Sun
- Medicines and Equipment Department, Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Jierou Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Kun Chen
- Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
6
|
Wang Y, Li F, Xin J, Xu J, Yu G, Shi Q. Mesoporous Drug Delivery System: From Physical Properties of Drug in Solid State to Controlled Release. Molecules 2023; 28:molecules28083406. [PMID: 37110638 PMCID: PMC10145233 DOI: 10.3390/molecules28083406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mesoporous materials, which exhibit great potential in the control of polymorphs and delivery of poorly water-soluble drugs, have obtained considerable attention in the field of pharmaceutical science. The physical properties and release behaviors of amorphous or crystalline drugs may be affected by formulating them into mesoporous drug delivery systems. In the past few decades, an increasing amount of papers have been written about mesoporous drug delivery systems, which play a crucial role in improving the properties of drugs. Herein, mesoporous drug delivery systems are comprehensively reviewed in terms of their physicochemical characteristics, control of polymorphic forms, physical stability, in vitro performance, and in vivo performance. Moreover, the challenges and strategies of developing robust mesoporous drug delivery systems are also discussed.
Collapse
Affiliation(s)
- Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya 47500, Malaysia
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Guanghua Yu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
7
|
Long T, Tan W, Tian X, Tang Z, Hu K, Ge L, Mu C, Li X, Xu Y, Zhao L, Li D. Gelatin/alginate-based microspheres with sphere-in-capsule structure for spatiotemporal manipulative drug release in gastrointestinal tract. Int J Biol Macromol 2023; 226:485-495. [PMID: 36521695 DOI: 10.1016/j.ijbiomac.2022.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Microsphere with sphere-in-capsule structure is a multi-drugs delivery system to achieve the purpose of combination therapy. In this paper, we have prepared gelatin/alginate-based microspheres with sphere-in-capsule structure by a relatively fast, simple, and easily large-scale industrialized emulsification method for spatiotemporal manipulative drug release in gastrointestinal tract. Calcium alginate microspheres encapsulated with bovine serum albumin (BSA) were first prepared as inner microspheres, and then inner microspheres and ranitidine hydrochloride (RH) were co-encapsulated by gelatin microspheres to form double-layer microspheres with sphere-in-capsule structure. The size and distribution of microspheres can be easily controlled by emulsifying conditions. The microspheres with sphere-in-capsule structure displayed desirable encapsulation efficiency of BSA (61.52 %) and RH (56.07 %). The in vitro simulated drug release showed the spatiotemporal release feature of microspheres with sphere-in-capsule structure. In the specific simulated fluid, the release behavior and cumulative release of RH (sustainedly released 95 % in simulated gastric fluid) and BSA (rapidly released 73 % in simulated intestinal fluid) were different. The drug release mechanisms were analyzed to determine RH and BSA's release behavior. Overall, the microspheres with sphere-in-capsule structure have the potential application of spatiotemporal manipulative drug delivery in the gastrointestinal tract.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Weiwei Tan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiangmin Tian
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zongjian Tang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Keming Hu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Yongbin Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, 610041, PR China.
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
8
|
Chen M, Song F, Wu N, Luo H, Cai X, Li Y. Corn‐like mSiO
2
@ZIF‐8 Composite Load with Curcumin for Target Cancer Drug‐Delivery System. ChemistrySelect 2022. [DOI: 10.1002/slct.202204213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Menglan Chen
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Fangxiang Song
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 Guizhou China
| | - Nian Wu
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Honghuan Luo
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Xiaoqin Cai
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Yan Li
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| |
Collapse
|
9
|
AbouAitah K, Soliman AAF, Swiderska-Sroda A, Nassrallah A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects. Pharmaceutics 2022; 14:pharmaceutics14122770. [PMID: 36559264 PMCID: PMC9785757 DOI: 10.3390/pharmaceutics14122770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan−cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non−small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan−cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St, Dokki, Giza 12622, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Amr Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Julita Smalc-Koziorowska
- Laboratory of Semiconductor Characterization, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| |
Collapse
|
10
|
Demir Duman F, Monaco A, Foulkes R, Becer CR, Forgan RS. Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine. ACS APPLIED NANO MATERIALS 2022; 5:13862-13873. [PMID: 36338327 PMCID: PMC9623548 DOI: 10.1021/acsanm.2c01632] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Codelivery of chemotherapeutics via nanomaterials has attracted much attention over the last decades due to improved drug delivery to tumor tissues, decreased systemic effects, and increased therapeutic efficacies. High porosities, large pore volumes and surface areas, and tunable structures have positioned metal-organic frameworks (MOFs) as promising drug delivery systems (DDSs). In particular, nanoscale Zr-linked MOFs such as MOF-808 offer notable advantages for biomedical applications such as high porosity, good stability, and biocompatibility. In this study, we report efficient dual drug delivery of floxuridine (FUDR) and carboplatin (CARB) loaded in MOF-808 nanoparticles to cancer cells. The nanoparticles were further functionalized by a poly(acrylic acid-mannose acrylamide) (PAAMAM) glycopolymer coating to obtain a highly selective DDS in cancer cells and enhance the therapeutic efficacy of chemotherapy. While MOF-808 was found to enhance the individual therapeutic effects of FUDR and CARB toward cancerous cells, combining FUDR and CARB was seen to cause a synergistic effect, further enhancing the cytotoxicity of the free drugs. Enhancement of CARB loading and therefore cytotoxicity of the CARB-loaded MOFs could be induced through a modified activation protocol, while coating of MOF-808 with the PAAMAM glycopolymer increased the uptake of the nanoparticles in cancer cells used in the study and offered a particularly significant selective drug delivery with high cytotoxicity in HepG2 human hepatocellular carcinoma cells. These results show how the enhancement of cytotoxicity is possible through both nanovector delivery and synergistic treatment, and that MOF-808 is a viable candidate for future drug delivery studies.
Collapse
Affiliation(s)
- Fatma Demir Duman
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
| | - Alessandra Monaco
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K.
| | - Rachel Foulkes
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K.
| | - Ross S. Forgan
- WestCHEM,
School of Chemistry, University of Glasgow,
University Avenue, Glasgow G12 8QQ, U.K.
- E-mail:
| |
Collapse
|
11
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
12
|
Fabrication of a magnetic nanocarrier for doxorubicin delivery based on hyperbranched polyglycerol and carboxymethyl cellulose: An investigation on the effect of borax cross-linker on pH-sensitivity. Int J Biol Macromol 2022; 203:80-92. [PMID: 35092736 DOI: 10.1016/j.ijbiomac.2022.01.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
A new core-shell pH-responsive nanocarrier was prepared based on magnetic nanoparticle (MNP) core. Magnetic nanoparticles were first modified with hyperbranched polyglycerol as the first shell. Then the magnetic core was decorated with doxorubicin anticancer drug (DOX) and covered with PEGylated carboxymethylcellulose as the second shell. Borax was used to partially cross-link organic shells in order to evaluate drug loading content and pH-sensitivity. The structure of nanocarrier, organic shell loadings, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HR-TEM and UV-Vis analyses. In vitro release investigations demonstrated that the use of borax as cross-linker between organic shells make the nanocarrier highly sensitive to pH so that more that 70% of DOX is released in acidic pH. A reverse pH-sensitivity was observed for the nanocarrier without borax cross-linker. The MTT assay determined that the nanocarrier exhibited excellent biocompatibility toward normal cells (HEK-293) and high toxicity against cancerous cells (HeLa). The nanocarrier also showed high hemocompatibility. Cellular uptake revealed high ability of nanocarrier toward HeLa cells comparable with free DOX. The results also suggested that low concentration of nanocarrier has a great potential for use as contrast agent in magnetic resonance imaging (MRI).
Collapse
|
13
|
Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022; 11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/06/2021] [Indexed: 12/13/2022]
Abstract
Advances in nanotechnology have enabled the rapid development of stimuli-responsive therapeutic nanomaterials for precision gas therapy. Hydrogen sulfide (H2 S) is a significant gaseous signaling molecule with intrinsic biochemical properties, which exerts its various physiological effects under both normal and pathological conditions. Various nanomaterials with H2 S-responsive properties, as new-generation therapeutic agents, are explored to guide therapeutic behaviors in biological milieu. The cross disciplinary of H2 S is an emerging scientific hotspot that studies the chemical properties, biological mechanisms, and therapeutic effects of H2 S. This review summarizes the state-of-art research on H2 S-related nanomedicines. In particular, recent advances in H2 S therapeutics for cancer, such as H2 S-mediated gas therapy and H2 S-related synergistic therapies (combined with chemotherapy, photodynamic therapy, photothermal therapy, and chemodynamic therapy) are highlighted. Versatile imaging techniques for real-time monitoring H2 S during biological diagnosis are reviewed. Finally, the biosafety issues, current challenges, and potential possibilities in the evolution of H2 S-based therapy that facilitate clinical translation to patients are discussed.
Collapse
Affiliation(s)
- He Ding
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Jinhu Chang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| |
Collapse
|
14
|
Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021; 19:387. [PMID: 34819084 PMCID: PMC8613963 DOI: 10.1186/s12951-021-01131-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Polydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. ![]()
Collapse
Affiliation(s)
- Menglu Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yifan Shan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Junyan Guo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Xuelong Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yuhua Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Miaolian Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yan Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Wei Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310004, Hangzhou, Zhejiang, People's Republic of China.
| | - Longguang Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Kukkar P, Kim KH, Kukkar D, Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Zhang Z, Li S, Qiao D, Hu N, Gu Y, Deng Q, Wang S. Black Phosphorus Nanosheet Encapsulated by Zeolitic Imidazole Framework-8 for Tumor Multimodal Treatments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43855-43867. [PMID: 34494809 DOI: 10.1021/acsami.1c04001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black phosphorus (BP) nanosheet is easily oxidized by oxygen and water under ambient environment, thus, reliable BP passivation techniques for biomedical applications is urgently needed. A simple and applicable passivation strategy for biomedical applications was established by encapsulating BP nanosheet into zeolitic imidazole framework-8 (ZIF-8). The resulted BP nanosheet in ZIF-8 (BP@ZIF-8) shows not only satisfied chemical stability in both water and phosphate buffered saline (PBS), but also excellent biocompatibility. Notably, BP nanosheet endows the prepared BP@ZIF-8 with prominent photothermal conversion efficiency (31.90%). Besides passivation BP, ZIF-8 provides the BP@ZIF-8 with high drug loading amount (1353.3 mg g-1). Moreover, the loaded drug can be controlled release by pH stimuli. Both in vitro and in vivo researches verified the resulted BP@ZIF-8 an ideal candidate for tumor multimodal treatments.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sige Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Qiao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Nan Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Gu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiliang Deng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Radicchi MA, Báo SN. Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics 2021; 13:1167. [PMID: 34452128 PMCID: PMC8399799 DOI: 10.3390/pharmaceutics13081167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer, a group of diseases responsible for the second largest cause of global death, is considered one of the main public health problems today. Despite the advances, there are still difficulties in the development of more efficient cancer therapies and fewer adverse effects for the patients. In this context, nanobiotechnology, a materials science on a nanometric scale specified for biology, has been developing and acquiring prominence for the synthesis of nanocarriers that provide a wide surface area in relation to volume, better drug delivery, and a maximization of therapeutic efficiency. Among these carriers, the ones that stand out are those focused on the activation of the immune system. The literature demonstrates the importance of this system for anticancer therapy, given that the best treatment for this disease also activates the immune system to recognize, track, and destroy all remaining tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Sônia N. Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (G.C.N.B.L.); (K.L.R.P.); (A.L.G.S.); (M.M.S.); (M.A.R.)
| |
Collapse
|
18
|
Mollazadeh S, Sahebkar A, Shahlaei M, Moradi S. Nano drug delivery systems: Molecular dynamic simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
20
|
Wei X, Song M, Li W, Huang J, Yang G, Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Am J Cancer Res 2021; 11:6334-6354. [PMID: 33995661 PMCID: PMC8120214 DOI: 10.7150/thno.59342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Clinically, the primary cause of chemotherapy failure belongs to the occurrence of cancer multidrug resistance (MDR), which directly leads to the recurrence and metastasis of cancer along with high mortality. More and more attention has been paid to multifunctional nanoplatform-based dual-therapeutic combination to eliminate resistant cancers. In addition to helping both cargoes improve hydrophobicity and pharmacokinetic properties, increase bioavailability, release on demand and enhance therapeutic efficacy with low toxic effects, these smart co-delivery nanocarriers can even overcome drug resistance. Here, this review will not only present different types of co-delivery nanocarriers, but also summarize targeted and stimuli-responsive combination nanomedicines. Furthermore, we will focus on the recent progress in the co-delivery of dual-drug using such intelligent nanocarriers for surmounting cancer MDR. Whereas it remains to be seriously considered that there are some knotty issues in the fight against MDR of cancers via using co-delivery nanoplatforms, including limited intratumoral retention, the possible changes of combinatorial ratio under complex biological environments, drug release sequence from the nanocarriers, and subsequent free-drug resistance after detachment from the nanocarriers. It is hoped that, with the advantage of continuously developing nanomaterials, two personalized therapeutic agents in combination can be better exploited to achieve the goal of cooperatively combating cancer MDR, thus advancing the time to clinical transformation.
Collapse
|
21
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zou Y, Huang B, Cao L, Deng Y, Su J. Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005215. [PMID: 33251635 DOI: 10.1002/adma.202005215] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Indexed: 05/06/2023]
Abstract
Infectious or immune diseases have caused serious threat to human health due to their complexity and specificity, and emerging drug delivery systems (DDSs) have evolved into the most promising therapeutic strategy for drug-targeted therapy. Various mesoporous biomaterials are exploited and applied as efficient nanocarriers to loading drugs by virtue of their large surface area, high porosity, and prominent biocompatibility. Nanosized mesoporous nanocarriers show great potential in biomedical research, and it has become the research hotspot in the interdisciplinary field. Herein, recent progress and assembly mechanisms on mesoporous inorganic biomaterials (e.g., silica, carbon, metal oxide) are summarized systematically, and typical functionalization methods (i.e., hybridization, polymerization, and doping) for nanocarriers are also discussed in depth. Particularly, structure-activity relationship and the effect of physicochemical parameters of mesoporous biomaterials, including morphologies (e.g., hollow, core-shell), pore textures (e.g., pore size, pore volume), and surface features (e.g., roughness and hydrophilic/hydrophobic) in DDS application are overviewed and elucidated in detail. As one of the important development directions, advanced stimuli-responsive DDSs (e.g., pH, temperature, redox, ultrasound, light, magnetic field) are highlighted. Finally, the prospect of mesoporous biomaterials in disease therapeutics is stated, and it will open a new spring for the development of mesoporous nanocarriers.
Collapse
Affiliation(s)
- Yidong Zou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
23
|
Gao Y, Gao D, Shen J, Wang Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front Chem 2020; 8:598722. [PMID: 33330389 PMCID: PMC7732422 DOI: 10.3389/fchem.2020.598722] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy is an important anti-tumor treatment in clinic to date, however, the effectiveness of traditional chemotherapy is limited by its poor selectivity, high systemic toxicity, and multidrug resistance. In recent years, mesoporous silica nanoparticles (MSNs) have become exciting drug delivery systems (DDS) due to their unique advantages, such as easy large-scale production, adjustable uniform pore size, large surface area and pore volumes. While mesoporous silica-based DDS can improve chemotherapy to a certain extent, when used in combination with other cancer therapies MSN based chemotherapy exhibits a synergistic effect, greatly improving therapeutic outcomes. In this review, we discuss the applications of MSN DDS for a diverse range of chemotherapeutic combination anti-tumor therapies, including phototherapy, gene therapy, immunotherapy and other less common modalities. Furthermore, we focus on the characteristics of each nanomaterial and the synergistic advantages of the combination therapies. Lastly, we examine the challenges and future prospects of MSN based chemotherapeutic combination therapies.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Wu B, Fu J, Zhou Y, Luo S, Zhao Y, Quan G, Pan X, Wu C. Tailored core‒shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm Sin B 2020; 10:2198-2211. [PMID: 33304786 PMCID: PMC7715426 DOI: 10.1016/j.apsb.2020.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 01/10/2023] Open
Abstract
Malignant tumor has become an urgent threat to global public healthcare. Because of the heterogeneity of tumor, single therapy presents great limitations while synergistic therapy is arousing much attention, which shows desperate need of intelligent carrier for co-delivery. A core‒shell dual metal–organic frameworks (MOFs) system was delicately designed in this study, which not only possessed the unique properties of both materials, but also provided two individual specific functional zones for co-drug delivery. Photosensitizer indocyanine green (ICG) and chemotherapeutic agent doxorubicin (DOX) were stepwisely encapsulated into the nanopores of MIL-88 core and ZIF-8 shell to construct a synergistic photothermal/photodynamic/chemotherapy nanoplatform. Except for efficient drug delivery, the MIL-88 could be functioned as a nanomotor to convert the excessive hydrogen peroxide at tumor microenvironment into adequate oxygen for photodynamic therapy. The DOX release from MIL-88-ICG@ZIF-8-DOX nanoparticles was triggered at tumor acidic microenvironment and further accelerated by near-infrared (NIR) light irradiation. The in vivo antitumor study showed superior synergistic antitumor effect by concentrating the nanoparticles into dissolving microneedles as compared to intravenous and intratumoral injection of nanoparticles, with a significantly higher inhibition rate. It is anticipated that the multi-model synergistic system based on dual-MOFs was promising for further biomedical application.
Collapse
Affiliation(s)
- Biyuan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sulan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Corresponding authors.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Liu G, Wang L, Liu J, Lu L, Mo D, Li K, Yang X, Zeng R, Zhang J, Liu P, Cai K. Engineering of a Core-Shell Nanoplatform to Overcome Multidrug Resistance via ATP Deprivation. Adv Healthc Mater 2020; 9:e2000432. [PMID: 32945146 DOI: 10.1002/adhm.202000432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Indexed: 12/22/2022]
Abstract
Inhibiting the function of P-glycoprotein (P-gp) transporter, which causes drug efflux through adenosine triphosphate (ATP)-dependent manner, has become an effective strategy to conquer multidrug resistance (MDR) of cancer cells. However, there remains challenges for effective co-delivery, sequential release of P-gp modulator and chemotherapeutic agent. In this work, a novel type of core-shell nanoparticle is reported. It can independently encapsulate a high amount (about 683 µg mg-1 ) of chemotherapeutic agent doxorubicin (DOX) in the mesoporous polydopamine (MPDA) core and glucose oxidase (GOx) in the zeolite imidazolate frameworks-8 (ZIF-8) shell, namely MPDA@ZIF-8/DOX+GOx. The fast release of GOx triggered by acid-sensitive degradation of the ZIF-8 shell consumes glucose to starve cancer cells for ATP deprivation and effective suppress ATP-dependent drug efflux in advance, and then effectively facilitates the accumulation of DOX in MCF-7/ADR cancer cells. Experiments in vitro and in vivo demonstrate that the fabricated nanosystem can dramatically improve anticancer effects for MDR through sequential release property and exhibit excellent biocompatibility. Overall, this work reveals new insights in the use of GOx for MDR treatment.
Collapse
Affiliation(s)
- Genhua Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Liucan Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Junjie Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Dong Mo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Xin Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Rui Zeng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Chongqing 400044 China
| |
Collapse
|
26
|
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. NANO TODAY 2020; 34:100914. [PMID: 32788923 PMCID: PMC7416836 DOI: 10.1016/j.nantod.2020.100914] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Faranak Elmi
- Department of Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Biology, Faculty of science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, 06800, Ankara, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, 06830, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
27
|
Abuçafy MP, da Silva BL, Oshiro-Junior JA, Manaia EB, Chiari-Andréo BG, Armando RAM, Frem RCG, Chiavacci LA. Advances in the use of MOFs for Cancer Diagnosis and Treatment: An Overview. Curr Pharm Des 2020; 26:4174-4184. [DOI: 10.2174/1381612826666200406153949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 01/04/2023]
Abstract
Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent
years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of
antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers
for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic
community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters
and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct
kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational
design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption
have already been comprehensively described in recent years; it is time to demonstrate their potential applications
in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due
to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics
of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery
systems and diagnostic agents.
Collapse
Affiliation(s)
- Marina P. Abuçafy
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - Bruna L. da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - João A. Oshiro-Junior
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - Eloisa B. Manaia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - Bruna G. Chiari-Andréo
- Department of Biological and Health Sciences, Universidade de Araraquara, UNIARA, Araraquara, SP, Brazil
| | - Renan A. M. Armando
- Institute of Chemistry, Department of Inorganic and General Chemistry, Sao Paulo State University-UNESP, SP, Brazil
| | - Regina C. G. Frem
- Institute of Chemistry, Department of Inorganic and General Chemistry, Sao Paulo State University-UNESP, SP, Brazil
| | - Leila A. Chiavacci
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| |
Collapse
|
28
|
Xu X, Liu Y, Guo Z, Song XZ, Qi X, Dai Z, Tan Z. Synthesis of surfactant-modified ZIF-8 with controllable microstructures and their drug loading and sustained release behaviour. IET Nanobiotechnol 2020; 14:595-601. [PMID: 33010135 PMCID: PMC8676437 DOI: 10.1049/iet-nbt.2020.0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/06/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Metal-organic frameworks (MOFs) as drug carriers have many advantages than traditional drug carriers and have received extensive attention from researchers. However, how to regulate the microstructure of MOFs to improve the efficiency of drug delivery and sustained release behaviour is still a big problem for the clinical application. Herein, the authors synthesise surfactant-modified ZIF-8 nanoparticles with different microstructures by using different types of surfactants to modify ZIF-8. The surfactant-modified ZIF-8 nanoparticles have the larger specific surface area and total micropore volumes than the original ZIF-8, which enables doxorubicin (DOX) to be more effectively loaded on the drug carriers and achieve controlled drug sustained release. Excellent degradation performance of ZIF-8 nanoparticles facilitates the metabolism of drug carriers. The formulation was evaluated for cytotoxicity, cellular uptake and intracellular location in the A549 human non-small-cell lung cancer cell line. ZIF-8/DOX nano drugs exhibit higher cytotoxicity towards cells in comparison with free DOX, suggesting the potential application in nano drugs to cancer chemotherapy.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| | - Ye Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| | - Zhaoming Guo
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| | - Xue-Zhi Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| | - Xiuyu Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| | - Zideng Dai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, People's Republic of China.
| |
Collapse
|
29
|
El‐Bindary AA, Toson EA, Shoueir KR, Aljohani HA, Abo‐Ser MM. Metal–organic frameworks as efficient materials for drug delivery: Synthesis, characterization, antioxidant, anticancer, antibacterial and molecular docking investigation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5905] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashraf A. El‐Bindary
- Chemistry Department, Faculty of Science Damietta University Damietta 34517 Egypt
| | - Elshahat A. Toson
- Chemistry Department, Faculty of Science Damietta University Damietta 34517 Egypt
| | - Kamel R. Shoueir
- Institute of Nanoscience and Nanotechnology Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Hind A. Aljohani
- Chemistry Department, College of Al Wajh Tabuk University Al Wajh 71491 Saudi Arabia
| | - Magy M. Abo‐Ser
- Chemistry Department, Faculty of Science Damietta University Damietta 34517 Egypt
| |
Collapse
|
30
|
Maleki A, Shahbazi M, Alinezhad V, Santos HA. The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Adv Healthc Mater 2020; 9:e2000248. [PMID: 32383250 DOI: 10.1002/adhm.202000248] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Indexed: 12/27/2022]
Abstract
The progressive development of zeolitic imidazolate frameworks (ZIFs), as a subfamily of metal-organic frameworks (MOFs), and their unique features, including tunable pore size, large surface area, high thermal stability, and biodegradability/biocompatibility, have made them attractive in the field of biomedicine, especially for drug delivery and biomineralization applications. The high porosity of ZIFs gives them the opportunity for encapsulating a high amount of therapeutic drugs, proteins, imaging cargos, or a combination of them to construct advanced multifunctional drug delivery systems (DDSs) with combined therapeutic and imaging capabilities. This review summarizes recent strategies on the design and fabrication of ZIF-based nansystems and their exploration in the biomedical field. First, recent developments for the adjustment of particle size, functionality, and morphology of ZIFs are discussed, which are important for achieving optimized therapeutic/theranostic nanosystems. Second, recent trends on the application of ZIF nanocarriers for the loading of diverse cargos, including anticancer medicines, antibiotic drugs, enzymes, proteins, photosensitizers, as well as imaging and photothermal agents, are investigated in order to understand how multifunctional DDSs can be designed based on the ZIF nanoparticles to treat different diseases, such as cancer and infection. Finally, prospects on the future research direction and applications of ZIF-based nanomedicines are discussed.
Collapse
Affiliation(s)
- Aziz Maleki
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical Sciences Zanjan 45139‐56184 Iran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| | - Mohammad‐Ali Shahbazi
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical Sciences Zanjan 45139‐56184 Iran
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki Helsinki FI‐00014 Finland
| | - Vajiheh Alinezhad
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life SciencesHiLIFEUniversity of Helsinki Helsinki FI‐00014 Finland
| |
Collapse
|
31
|
Abánades Lázaro I, Wells CJR, Forgan RS. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew Chem Int Ed Engl 2020; 59:5211-5217. [PMID: 31950568 PMCID: PMC7154787 DOI: 10.1002/anie.201915848] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging as leading candidates for nanoscale drug delivery, as a consequence of their high drug capacities, ease of functionality, and the ability to carefully engineer key physical properties. Despite many anticancer treatment regimens consisting of a cocktail of different drugs, examples of delivery of multiple drugs from one MOF are rare, potentially hampered by difficulties in postsynthetic loading of more than one cargo molecule. Herein, we report a new strategy, multivariate modulation, which allows incorporation of up to three drugs in the Zr MOF UiO-66 by defect-loading. The drugs are added to one-pot solvothermal synthesis and are distributed throughout the MOF at defect sites by coordination to the metal clusters. This tight binding comes with retention of crystallinity and porosity, allowing a fourth drug to be postsynthetically loaded into the MOFs to yield nanoparticles loaded with cocktails of drugs that show enhancements in selective anticancer cytotoxicity against MCF-7 breast cancer cells in vitro. We believe that multivariate modulation is a significant advance in the application of MOFs in biomedicine, and anticipate the protocol will also be adopted in other areas of MOF chemistry, to easily produce defective MOFs with arrays of highly functionalised pores for potential application in gas separations and catalysis.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Connor J. R. Wells
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Ross S. Forgan
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| |
Collapse
|
32
|
An P, Fan F, Gu D, Gao Z, Hossain AMS, Sun B. Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy. J Control Release 2020; 321:734-743. [PMID: 32145265 DOI: 10.1016/j.jconrel.2020.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME)-responsive nanoformulations that catalyze a cascade of intracellular redox reactions showed promise for tumor treatment with high specificity and efficiency. In this study, we report Cu2+-doped zeolitic imidazolate frameworks-coated polydopamine nanoparticles (PDA@Cu/ZIF-8 NPs) for glutathione-triggered and photothermal-reinforced sequential catalytic therapy against breast cancer. In the TME, the PDA@Cu/ZIF-8 NPs could initially react with antioxidant glutathione (GSH), inducing GSH depletion and Cu+ generation. Whereafter, the generated Cu+ would catalyze local H2O2 to produce highly toxic hydroxyl radicals (·OH) through an efficient Fenton-like reaction even in weakly acidity. Importantly, the PDA could exert excellent photothermal conversion effect to simultaneously accelerate GSH consumption and improve the Fenton-like reaction for further expanding the intracellular oxidative stress, which innovatively achieves a synergistic photothermal-chemodynamic therapy for highly efficient anticancer treatment.
Collapse
Affiliation(s)
- Peijing An
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Fengying Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Shanghai 201210, PR China
| | - Dihai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Zhiguo Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | | | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China.
| |
Collapse
|
33
|
Karimi Alavijeh R, Akhbari K. Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin. Inorg Chem 2020; 59:3570-3578. [PMID: 32091212 DOI: 10.1021/acs.inorgchem.9b02756] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this study was the investigation of the potential of MIL-101(Fe) for load and sustained release of curcumin (CCM), as an anticancer drug, with pH stimulus. The reasons for choosing this type of metal-organic framework (MOF) are its high surface area, acceptable stability in a water medium, and its biocompatible components (iron and terephthalic acid) with low toxicity to normal cells. The obtained results from UV-vis analysis confirmed that this MOF is a smart carrier with a higher release rate in acidic pH (pH 5), which is a condition similar to that in cancer cells, than that at pH 7.4 (in normal cells). Therefore, this MOF is a pH-stimulus-controlled release carrier with 56.3% drug loading content and sustained drug release over 22 days. In order to evaluate the cell viability after treatment with free CCM, MIL-101(Fe), and MIL-101(Fe)@CCM, the cytotoxicity investigation using MTT assays was performed against HeLa and HEK 293 cell lines up to 48 h. Obtained results showed that MIL-101(Fe)@CCM exhibited more cell growth inhibition effect on HeLa cells in comparison with HEK 293. One of the reasons for the high loading and sustained release of CCM was surface adsorption of this drug and its interactions with open metal sites in MIL-101(Fe). In the end, the kinetic models of drug release were evaluated, and the obtained results showed that in this case diffusion is the main driving force for the drug release process.
Collapse
Affiliation(s)
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
34
|
Abánades Lázaro I, Wells CJR, Forgan RS. Multivariate Modulation of the Zr MOF UiO‐66 for Defect‐Controlled Combination Anticancer Drug Delivery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915848] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Isabel Abánades Lázaro
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Connor J. R. Wells
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Ross S. Forgan
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black Building University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
35
|
Wang Q, Sun Y, Li S, Zhang P, Yao Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv 2020; 10:37600-37620. [PMID: 35515141 PMCID: PMC9057214 DOI: 10.1039/d0ra07950b] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Metal–organic frameworks have the properties of high porosity, variable pore sizes, and easy modification as drug delivery systems. In particular, ZIF-8 based on Zn2+ has been extensively studied in the medical field due to its low toxicity and good biocompatibility. This review introduces the preparation and functional modification of ZIF-8, and its application in drug delivery, focusing on the single-stimulus and multi-stimulus response release of drugs in ZIF-8 materials, the integrated role of diagnosis and treatment with ZIF-8 in cancer treatment, and its application in the synergistic therapy of multiple cancer treatment methods. We summarize the latest developments of ZIF-8 in the field of drug delivery and tumor therapy, and present the main challenges that remain to be resolved in the ZIF-8 drug delivery system. Synthesis and modification of ZIF-8 and its application in drug delivery, stimulus response-controlled drug release and tumor therapy.![]()
Collapse
Affiliation(s)
- Qiuxiang Wang
- Institute of Materia Medica
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
| | - Yue Sun
- Institute of Materia Medica
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
| | - Shangfei Li
- Institute of Materia Medica
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
| | - Pingping Zhang
- Institute of Materia Medica
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
| | - Qingqiang Yao
- Institute of Materia Medica
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
| |
Collapse
|
36
|
Liu Z, Wu Q, He J, Vriesekoop F, Liang H. Crystal-Seeded Growth of pH-Responsive Metal-Organic Frameworks for Enhancing Encapsulation, Stability, and Bioactivity of Hydrophobicity Compounds. ACS Biomater Sci Eng 2019; 5:6581-6589. [PMID: 33423477 DOI: 10.1021/acsbiomaterials.9b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zeolitic imidazolate framework-L (ZIF-L) could effectively improve the stability, controlled release, and anticancer activity of natural hydrophobicity drugs in drug delivery systems (DDSs). A simple and universal strategy was developed to prepare the curcumin-loaded ZIF-L (CCM@ZIF-L) by the antisolvent coprecipitation method, which was different from the traditional approaches. The microcrystal molecules of curcumin were used as the core of ZIF-L growth to form CCM@ZIF-L, which has a very high drug encapsulation efficiency of 98.21% and a regular leaf or cruciate flower-like structure. The formation of CCM@ZIF-L with a distinct composite structure was supported by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared, powder X-ray diffraction, and zeta-potential. Because of the protective effect of ZIF-L, CCM@ZIF-L exhibited excellent stability and about a 5-fold increase in temperature stability over free curcumin. CCM@ZIF-L exhibited controlled drug release behavior in simulated in vitro tumor microenvironments (almost 81.2% drug release over a period of 72 h). Furthermore, confocal laser scanning microscopy results and cytotoxicity experiments confirmed that the encapsulated curcumin showed a significant improvement in cellular uptake and anticancer activity against A549 cancer cells. Moreover, the curcumin encapsulated in ZIF-L exhibited remarkable cellular antioxidant activity based on MGC-803 cell models. This work presents a novel approach to solve the drug loading problem by employing ZIF-L and exhibits enormous potential of ZIF-L as an effective DDS in cancer treatments.
Collapse
Affiliation(s)
- Zexun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiao Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Frank Vriesekoop
- Department of Food Technology and Innovation, Harper Adams University, Newport TF10 8NB, Shropshire, England
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
37
|
Shao M, Chang C, Liu Z, Chen K, Zhou Y, Zheng G, Huang Z, Xu H, Xu P, Lu B. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids Surf B Biointerfaces 2019; 183:110427. [DOI: 10.1016/j.colsurfb.2019.110427] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/13/2023]
|
38
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Rojas S, Arenas-Vivo A, Horcajada P. Metal-organic frameworks: A novel platform for combined advanced therapies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Li M, Luo Z, Peng Z, Cai K. Cascade-amplification of therapeutic efficacy: An emerging opportunity in cancer treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1555. [PMID: 31016872 DOI: 10.1002/wnan.1555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
Increasing research evidence reveals that cancer is complex disease involving many biological factors, processes and systems, which may severely limit the actual efficacy of conventional monotonic anticancer approaches. To overcome these obstacles in cancer treatment, a new strategy has been proposed by combining multiple synergistic therapeutic modalities accessing different but inherently related targets and acting sequentially. A major benefit of this strategy is that the multi-target mechanism could result in a cascade-amplification effect leading to enhanced anticancer activity. In this review, we provide a critical discussion on the application of cascade-amplification strategy in the treatment of various cancer indications, focusing on the rational combination of therapeutic agents and their mechanisms of action. A concise yet comprehensive analysis on the potential therapeutic benefit of this strategy was also included. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Menghuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,Department of Biotechnology, School of Life Science, Chongqing University, Chongqing, China
| | - Zhong Luo
- Department of Biotechnology, School of Life Science, Chongqing University, Chongqing, China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
41
|
Xing Y, Ding T, Wang Z, Wang L, Guan H, Tang J, Mo D, Zhang J. Temporally Controlled Photothermal/Photodynamic and Combined Therapy for Overcoming Multidrug Resistance of Cancer by Polydopamine Nanoclustered Micelles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13945-13953. [PMID: 30907570 DOI: 10.1021/acsami.9b00472] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Currently, the simple integration of multiple therapeutic agents within a single nanostructure for combating multidrug resistance (MDR) tumors yet remains a challenge. Herein, we report a photoresponsive nanocluster (NC) system prepared by installing polydopamine (PDA) nanoparticle clusters on the surface of d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) (a drug efflux inhibitor) micelles solubilized with IR780 (a photosensitizer) to achieve a combined chemotherapy (CT)/photothermal therapy (PTT)/photodynamic therapy (PDT) for drug-resistant breast cancer. Mediated by the fluorescence resonance energy transfer and radical scavenging properties of PDA, NC shows prominently quenched fluorescence emission (∼78%) and inhibited singlet oxygen generation (∼67%) upon exposure to near-infrared (NIR) light (808 nm, 0.5 W cm-2), favoring a highly efficient PTT module. Meanwhile, the photothermal heat can also boost the release of doxorubicin hydrochloride whose intracellular accumulation can be greatly enhanced by TPGS. Interestingly, the first NIR irradiation and subsequent incubation (∼24 h) can induce the gradual relocation and disintegration of PDA nanoparticles, thereby leading to activated PDT therapy under the second irradiation. Upon the temporally controlled sequential application of PTT/PDT, the developed NC exhibited a great potential to treat MDR cancer both in vitro and in vivo. These findings suggest that complementary interactions among PTT/PDT/CT modalities can enhance the efficiency of the combined therapy for MDR tumor.
Collapse
Affiliation(s)
- Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| | - Liucan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| | - Haidi Guan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| | - Dong Mo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China
| |
Collapse
|
42
|
Sun K, Ding T, Xing Y, Mo D, Zhang J, Rosenholm JM. Hybrid mesoporous nanorods with deeply grooved lateral faces toward cytosolic drug delivery. Biomater Sci 2019; 7:5301-5311. [DOI: 10.1039/c9bm01251f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hybrid mesoporous nanorods with six twisted sharp edges can induce effective penetration of intracellular barriers and cytosolic delivery of membrane-impermeable drugs through curvature effects.
Collapse
Affiliation(s)
- Kaiyao Sun
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Dong Mo
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory
- Faculty of Science and Engineering
- Åbo Akademi University
- Turku 20520
- Finland
| |
Collapse
|
43
|
Diao L, Shen A, Yang Y, Tao J, Hu Y. CD44-targeted hyaluronic acid–curcumin reverses chemotherapeutics resistance by inhibiting P-gp and anti-apoptotic pathways. RSC Adv 2019; 9:40873-40882. [PMID: 35540044 PMCID: PMC9076387 DOI: 10.1039/c9ra08202f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 01/20/2023] Open
Abstract
Chemotherapeutic drug resistance poses a great challenge in cancer therapy.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Pharmaceutical College
| | - Ao Shen
- The University of Queensland
- Brisbane 4072
- Australia
| | - Yunxu Yang
- Zhejiang Pharmaceutical College
- Ningbo
- China
| | - Jin Tao
- Zhejiang Pharmaceutical College
- Ningbo
- China
| | - Ying Hu
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Pharmaceutical College
| |
Collapse
|
44
|
Vilaça N, Gallo J, Fernandes R, Figueiredo F, Fonseca AM, Baltazar F, Neves IC, Bañobre-López M. Synthesis, characterization and in vitro validation of a magnetic zeolite nanocomposite with T2-MRI properties towards theranostic applications. J Mater Chem B 2019. [DOI: 10.1039/c9tb00078j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study focusses on the development of a magnetic zeolite nanocomposite as a suitable platform towards the design of a theranostic system. Herein, we explored its ability to act as a T2-MRI contrast enhancer when magnetic nanoparticles are incorporated in its structure.
Collapse
Affiliation(s)
- Natália Vilaça
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - Juan Gallo
- INL – Advanced (magnetic) Theranostic Nanostructures Lab
- Life Sciences Department
- International Iberian Nanotechnology Laboratory
- Avenida Mestre José Veiga
- Braga
| | - Rui Fernandes
- i3S – Instituto de Investigação e Inovação em Saúde and HEMS/IBMC – Histology and Electron Microscopy Service
- Universidade do Porto
- 4200-135 Porto
- Portugal
| | - Francisco Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde and HEMS/IBMC – Histology and Electron Microscopy Service
- Universidade do Porto
- 4200-135 Porto
- Portugal
| | - António M. Fonseca
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)
- School of Medicine
- University of Minho
- Campus de Gualtar
- Braga
| | - Isabel C. Neves
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - Manuel Bañobre-López
- INL – Advanced (magnetic) Theranostic Nanostructures Lab
- Life Sciences Department
- International Iberian Nanotechnology Laboratory
- Avenida Mestre José Veiga
- Braga
| |
Collapse
|
45
|
Fu JJ, Chen MY, Li JX, Zhou JH, Xie SN, Yuan P, Tang B, Liu CC. Injectable hydrogel encapsulating Cu 2MnS 2 nanoplates for photothermal therapy against breast cancer. J Nanobiotechnology 2018; 16:83. [PMID: 30368238 PMCID: PMC6204054 DOI: 10.1186/s12951-018-0409-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In order to explore the possibility of treating breast cancer by local photo-therapy, a photothermal agents loaded in situ hydrogel was established. In detail, The Cu2MnS2 nanoplates were prepared by one-pot synthesis and, the thermosensitive Pluronic F127 was used as the hydrogel matrix. The Cu2MnS2 nanoplates and the hydrogel were characterized by morphous, particle size, serum stability, photothermal performance upon repeated 808 nm laser irradiation as well as the rheology features. The therapeutic effects of the Cu2MnS2 nanoplates and the hydrogel were evaluated qualitatively and quantitatively in 4T1 mouse breast cancer cells. The retention, photothermal efficacy, therapeutic effects and systemic toxicity of the hydrogel were assessed in tumor bearing mouse model. RESULTS The Cu2MnS2 nanoplates with a diameter of about 35 nm exhibited satisfying serum stability, photo-heat conversion ability and repeated laser exposure stability. The hydrogel encapsulation did not negatively influence the above features of the photothermal agent. The nanoplates loaded in situ hydrogel shows a phase transition at body temperature and, as a result, a long retention in vivo. CONCLUSIONS The photothermal agent embedded hydrogel played a promising photothermal therapeutic effects in tumor bearing mouse model with low systemic toxicity after peritumoral administration.
Collapse
Affiliation(s)
- Ji-jun Fu
- Department of Medical Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700 China
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Ming-yue Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Jie-xia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Jun-hua Zhou
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, 515041 Guangdong Province China
| | - Sheng-nan Xie
- School of Pharmaceutical Sciences, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198 Jiangsu China
| | - Ping Yuan
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Bo Tang
- School of Pharmacy, Nantong University, No. 19 Qixiu Road, Nantong, 226001 Jiangsu Province China
| | - Cheng-cheng Liu
- Department of Medical Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700 China
| |
Collapse
|