1
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Xu Y, Sun YQ, Yu M, Song DX, Liu B, Chen N, Yu L, Liu YJ, Wang HF. A novel Vestitain A from the ripe fruits of Embelia vestita Roxb. Nat Prod Res 2024; 38:2808-2817. [PMID: 37516922 DOI: 10.1080/14786419.2023.2239990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
A new compound, vestitain A (1), together with 11 known compounds were isolated from the ripe fruits of Embelia vestita Roxb., among them compounds 5,10-12 were isolated from this plant for the first time. Their structures were elucidated and characterized by detailed spectroscopic analysis. Further, the isolated new compound 1 was evaluated for its hypoglycemic effects in vivo. Our research showed that compound 1 could decrease the fasting blood glucose (FBG) by approximately 36.31% in diabetic rats at the high dose (800 mg/kg). By the Morris Water Maze experiments, we found that compound 1 had the effect of intervention on social behavior in diabetic rats, which might provide a reference basis for its development and utilization as a potential hypoglycemic drug.
Collapse
Affiliation(s)
- Ying Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yu-Qi Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Miao Yu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Dong-Xue Song
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Bing Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Ning Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Lei Yu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Ying-Jie Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Hai-Feng Wang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Tan J, He Y, Lin Y, Zhong Y, He S, Zuo J, Yang C. Synthesis of 2-amino-9 H-chromeno[2,3- d]thiazol-9-ones with anti-inflammatory activity via cascade reactions of 2-amino-3 iodochromones with amines and carbon disulfide. RSC Adv 2024; 14:3158-3162. [PMID: 38249667 PMCID: PMC10797327 DOI: 10.1039/d3ra07209f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
A simple and efficient synthetic approach to 2-amino-9H-chromeno[2,3-d]thiazol-9-ones via copper-promoted cascade reactions was developed. The reaction employed easily available 2-amino-3-iodochromones and amines as substrates and the targeting tricyclic compounds could be obtained with moderate to good yields. Even more important, several synthesized compounds exhibited potent anti-inflammatory activities, which suggested that this protocol may provide valuable hits for drug development in the future.
Collapse
Affiliation(s)
- Jiangtao Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| | - Yifan He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| | - Yu Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Yuanchen Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Shijun He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Jianping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A YuquanRoad Beijing 100049 China
| |
Collapse
|
5
|
Cao Y, Sun W, Liu C, Zhou Z, Deng Z, Zhang M, Yan M, Yin X, Zhu X. Resveratrol ameliorates diabetic encephalopathy through PDE4D/PKA/Drp1 signaling. Brain Res Bull 2023; 203:110763. [PMID: 37722608 DOI: 10.1016/j.brainresbull.2023.110763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Diabetic encephalopathy (DE) is a central nervous complication of diabetes mellitus which is characterized by cognitive impairment and neurochemical abnormalities. However, no effective approaches are available to prevent its progression and development. PDE4D serves many functions in the pathogenesis of neurodegenerative diseases involving PKA signaling. This study illustrated the role of PDE4D in DE and investigated whether resveratrol protected against DE via inhibiting PDE4D. db/db male mice and hippocampus cell line (HT22) were used to investigate the role of PDE4D and the protective effect of resveratrol on cognitive function under high glucose (HG). PDE4D overexpression or knockdown lentivirus and PKA specific inhibitor H89 were used to further identify the indispensable role of PDE4D/PKA signaling pathway in resveratrol's amelioration effect of neurotoxicity. Resveratrol attenuated cognitive impairment in db/db mice, reduced PDE4D protein, restored the impaired mitochondrial function in db/db mice. The in vitro study also confirmed the neuroprotective effect of resveratrol on neurotoxicity. PDE4D overexpression resulted in cell injury and downregulation of cAMP, PKA and pDrp1(Ser637) under normal condition. In contrast, PDE4D knockdown improved cell injury and elevated cAMP, PKA and pDrp1(Ser637) levels caused in HG-cultured HT22 cells. PDE4D over-expression blunted the improvement effects of resveratrol on PKA, pDrp1(Ser637) and mitochondrial function. Moreover, PKA inhibitor H89 blunted the inhibitory effects of resveratrol on pDrp1(Ser637) and mitochondrial function in HG-treated HT22. These data indicated that resveratrol may improve cognitive impairment in db/db mice by modulating mitochondrial function through the PDE4D dependent pathway.
Collapse
Affiliation(s)
- Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Wen Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chang Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zihui Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Mingjie Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
6
|
Huan S, Yang Y, Wang D, Zhao Y, Zhang X, Zheng Y. Hippocampal proteins discovery of Panax quinquefolius and Acorus gramineus ameliorating cognitive impairment in diabetic rats. Psychopharmacology (Berl) 2023; 240:1759-1773. [PMID: 37306736 DOI: 10.1007/s00213-023-06393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
RATIONALE Early diagnosis of diabetic cognitive impairment (DCI) and investigation of effective medicines are significant to prevent or delay the occurrence of irreversible dementia. OBJECTIVES In this study, proteomics was applied to investigate the changes of hippocampal proteins after administration of Panax quinquefolius-Acorus gramineus (PQ-AG) to DCI rats, with a view to discover the differentially expressed proteins of PQ-AG action and elucidated the potential biological relationships. METHODS The model and PQ-AG group rats were injected intraperitoneally with streptozotocin, and the PQ-AG group rats were continuously administered with PQ-AG. Social interaction and Morris water maze were performed to evaluate the behavior of rats on the 17th week after the model was established, and DCI rats were screened out from the model group by a screening approach. The hippocampal protein differences were investigated with proteomics in DCI and PQ-AG-treated rats. RESULTS The learning and memory abilities and contact duration of DCI rats were improved after 16 weeks of PQ-AG administration. Altogether, 9 and 17 differentially expressed proteins were observed in control versus DCI rats and in DCI versus PQ-AG-treated rats, respectively. Three proteins were confirmed with western blotting analyses. These proteins were mainly involved in the pathways of JAK-STAT, apoptosis, PI3K/AKT, fork-head box protein O3, fructose, and mannose metabolism. CONCLUSIONS This suggested that PQ-AG ameliorated cognitive impairment of diabetic rats by influencing the above pathways and providing an experimental basis for the mechanism of DCI and PQ-AG.
Collapse
Affiliation(s)
- Shuai Huan
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin, 150076, China
| | - Yang Yang
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin, 150076, China
| | - Dongxue Wang
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin, 150076, China
| | - Ying Zhao
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin, 150076, China.
| | - Xiu Zhang
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin, 150076, China
| | - Yujia Zheng
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin, 150076, China
| |
Collapse
|
7
|
Zhang L, Li D, Yi P, Shi J, Guo M, Yin Q, Liu D, Zhuang P, Zhang Y. Peripheral origin exosomal microRNAs aggravate glymphatic system dysfunction in diabetic cognitive impairment. Acta Pharm Sin B 2023; 13:2817-2825. [PMID: 37521866 PMCID: PMC10372831 DOI: 10.1016/j.apsb.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 08/01/2023] Open
Abstract
Cognitive dysfunction is one of the common central nervous systems (CNS) complications of diabetes mellitus, which seriously affects the quality of life of patients and results in a huge economic burden. The glymphatic system dysfunction mediated by aquaporin-4 (AQP4) loss or redistribution in perivascular astrocyte endfeet plays a crucial role in diabetes-induced cognitive impairment (DCI). However, the mechanism of AQP4 loss or redistribution in the diabetic states remains unclear. Accumulating evidence suggests that peripheral insulin resistance target tissues and CNS communication affect brain homeostasis and that exosomal miRNAs are key mediators. Glucose and lipid metabolism disorder is an important pathological feature of diabetes mellitus, and skeletal muscle, liver and adipose tissue are the key target insulin resistance organs. In this review, the changes in exosomal miRNAs induced by peripheral metabolism disorders in diabetes mellitus were systematically reviewed. We focused on exosomal miRNAs that could induce low AQP4 expression and redistribution in perivascular astrocyte endfeet, which could provide an interorgan communication pathway to illustrate the pathogenesis of DCI. Furthermore, the mechanisms of exosome secretion from peripheral insulin resistance target tissue and absorption to the CNS were summarized, which will be beneficial for proposing novel and feasible strategies to optimize DCI prevention and/or treatment in diabetic patients.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongna Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengrong Yi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Mengqing Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingsheng Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pengwei Zhuang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
8
|
Arab HH, Khames A, Mohammad MK, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Gad AM. Meloxicam Targets COX-2/NOX1/NOX4/Nrf2 Axis to Ameliorate the Depression-like Neuropathology Induced by Chronic Restraint Stress in Rats. Pharmaceuticals (Basel) 2023; 16:848. [PMID: 37375795 PMCID: PMC10304337 DOI: 10.3390/ph16060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meloxicam has shown significant neuroprotection in experimental models of stroke, Alzheimer's disease, and Parkinson's disease. However, the potential of meloxicam to treat depression-like neuropathology in a chronic restraint stress (CRS) model and the associated molecular changes has been insufficiently explored. The current work aimed to explore the potential neuroprotective actions of meloxicam against CRS-evoked depression in rats. In the current experiments, animals received meloxicam (10 mg/kg/day; i.p.) for 21 days, and CRS was instigated by restraining the animals for 6 h/day during the same period. The sucrose preference test and the forced swimming test were used to explore the depression-linked anhedonia/despair, whereas the open-field test examined the animals' locomotor activity. The current findings revealed that CRS elicited typical depression behavioral anomalies in the animals, including anhedonia, despair, and diminished locomotor activity; these findings were reinforced with Z-normalization scores. These observations were corroborated by brain histopathological changes and increased damage scores. In CRS-exposed animals, serum corticosterone spiked, and the hippocampi revealed decreased monoamine neurotransmitter levels (norepinephrine, serotonin, and dopamine). Mechanistically, neuroinflammation was evident in stressed animals, as shown by elevated hippocampal TNF-α and IL-1β cytokines. Moreover, the hippocampal COX-2/PGE2 axis was activated in the rats, confirming the escalation of neuroinflammatory events. In tandem, the pro-oxidant milieu was augmented, as seen by increased hippocampal 8-hydroxy-2'-deoxyguanosine alongside increased protein expression of the pro-oxidants NOX1 and NOX4 in the hippocampi of stressed animals. In addition, the antioxidant/cytoprotective Nrf2/HO-1 cascade was dampened, as evidenced by the lowered hippocampal protein expression of Nrf2 and HO-1 signals. Interestingly, meloxicam administration mitigated depression manifestations and brain histopathological anomalies in the rats. These beneficial effects were elicited by meloxicam's ability to counteract the corticosterone spike and hippocampal neurotransmitter decrease while also inhibiting COX-2/NOX1/NOX4 axis and stimulating Nrf2/HO-1 antioxidant pathway. Together, the present findings prove the neuroprotective/antidepressant actions of meloxicam in CRS-induced depression by ameliorating hippocampal neuroinflammation and pro-oxidant changes, likely by modulating COX-2/NOX1/NOX4/Nrf2 axis.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82511, Egypt;
| | - Mostafa K. Mohammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sphinx University, New Assiut City 71515, Assiut, Egypt;
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amany M. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt;
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
9
|
Meloxicam Inhibits Apoptosis in Neurons by Deactivating Tumor Necrosis Factor Receptor Superfamily Member 25, Leading to the Decreased Cleavage of DNA Fragmentation Factor Subunit α in Alzheimer's Disease. Mol Neurobiol 2023; 60:395-412. [PMID: 36279100 DOI: 10.1007/s12035-022-03091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2022]
Abstract
Neuronal apoptosis is considered to be a critical cause of Alzheimer's disease (AD). Recently, meloxicam has shown neuroprotective effects; however, the inherent mechanisms are highly overlooked. Using APP/PS1 transgenic (Tg) mice as in vivo animal models, we found that meloxicam inhibits apoptosis in neurons by deactivating tumor necrosis factor receptor superfamily member 25 (TNFRSF25), leading to the suppression of the expression of fas-associated protein with death domain (FADD) and the cleavage of DNA fragmentation factor subunit α (DFFA) and cysteine aspartic acid protease-3 (caspase 3) via β-amyloid protein (Aβ)-depressing mechanisms. Moreover, the meloxicam treatment blocked the effects of β-amyloid protein oligomers (Aβo) on stimulating the synthesis of tumor necrosis factor α (TNF-α) and TNF-like ligand 1A (TL1A) in neuroblastoma (N) 2a cells. TNF-α and TL1A induce apoptosis in neurons via TNFR- and TNFRSF25-dependent caspase 3-activating mechanisms, respectively. Knocking down the expression of TNFRSF25 blocked the effects of TL1A on inducing apoptosis in neurons by deactivating the signaling cascades of FADD, caspase 3, and DFFA. Consistently, TNFRSF25 shRNA blocked the effects of Aβo on inducing neuronal apoptosis, which was corroborated by the efficacy of meloxicam in inhibiting Aβo-induced neuronal apoptosis. By ameliorating neuronal apoptosis, meloxicam improved memory loss in APP/PS1 Tg mice.
Collapse
|
10
|
Tian R, Liu X, Jing L, Yang L, Xie N, Hou Y, Tao H, Tao Y, Wu J, Meng X. Huang-Lian-Jie-Du decoction attenuates cognitive dysfunction of rats with type 2 diabetes by regulating autophagy and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115196. [PMID: 35337922 DOI: 10.1016/j.jep.2022.115196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du decoction (HLJDD) is a traditional Chinese formula that is efficacious in treating diabetes mellitus, Alzheimer's disease, and diabetic encephalopathy; the underlying mechanisms of HLJDD in diabetes-associated cognitive dysfunction remain unclear. AIM OF THE STUDY This study investigated the neuroprotective effects of HLJDD on cognitive function, and the possible underlying mechanisms in type 2 diabetes mellitus (T2DM) in a rat model of cognitive impairment. MATERIALS AND METHODS Twelve active ingredients in HLJDD were detected using high-performance liquid chromatography analysis. An animal model of cognitive dysfunction in T2DM was induced via a high-sugar and high-fat diet combined with a low dose of streptozotocin. Sprague-Dawley rats were randomly divided into six groups: control, T2DM, metformin (0.34 g/kg/day), and HLJDD groups (3, 1.5, and 0.75 g/kg/day). All treatments were intragastrically administrated for nine continuous weeks after the development of T2DM. Body weight, food and water intake, fasting blood glucose, insulin sensitivity, and blood lipid levels were measured. Spatial learning and memory of the rats were assessed using the Morris water maze test. Hematoxylin and eosin and Nissl staining were performed to evaluate neuronal morphology and vitality. Glutathione, malondialdehyde, and superoxide dismutase levels were measured to determine the level of oxidative stress in the hippocampus. Transmission electron microscopy was performed to observe the synaptic morphology and structure of hippocampal neurons. IL-1β levels in the hippocampus and cerebrospinal fluid were determined. The protein expression of NLRP3, cleaved caspase-1, mature IL-1β, ATG7, P62, LC3, and brain-derived neurotrophic factor (BDNF) was determined using western blotting and immunofluorescence analysis. RESULTS HLJDD attenuated cognitive dysfunction in rats with T2DM as shown by the decreased escape latency, increased times crossing the platform and time spent in the target quadrant in the Morris water maze test (P < 0.05), improvement in hippocampal histopathological changes, and an elevated level of cell vitality. HLJDD treatment also reduced blood glucose and lipid levels, ameliorated oxidative stress, and downregulated IL-1β expression in the hippocampus and cerebrospinal fluid (P < 0.05). Moreover, HLJDD enhanced BDNF, ATG7, and LC3 protein expression and significantly inhibited the expression of P62, NLRP3, cleaved caspase-1, and mature IL-1β in the hippocampal CA1 region (P < 0.05). Immunofluorescence results further confirmed that the fluorescence intensity of NLRP3 and P62 in the hippocampus decreased after HLJDD intervention (P < 0.05). CONCLUSIONS HLJDD ameliorated cognitive dysfunction in T2DM rats. The neuroprotective effect is exerted via the modulation of glucose and lipid metabolism, upregulation of autophagy, and inhibition of NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ruimin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xianfeng Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Na Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Miranda HF, Noriega V, Sierralta F, Sotomayor‐Zárate R, Prieto JC. Risperidone in analgesia induced by paracetamol and meloxicam in experimental pain. Fundam Clin Pharmacol 2022; 36:494-500. [DOI: 10.1111/fcp.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Hugo F. Miranda
- Neuroscience Department, Faculty of Medicine University of Chile Santiago 8380000 Chile
| | - Viviana Noriega
- Faculty of Medicine, German Cinic University of Development Santiago 8380000 Chile
- Cardiovascular Department University of Chile Clinical Hospital Santiago 8380000 Chile
| | - Fernando Sierralta
- Pharmacology Program, ICBM, Faculty of Medicine University of Chile Santiago 8380000 Chile
| | - Ramón Sotomayor‐Zárate
- Laboratory of Neurochemistry and Neuropharmacology, Faculty of Sciences University of Valparaíso Valparaíso 8380000 Chile
| | - Juan Carlos Prieto
- Cardiovascular Department University of Chile Clinical Hospital Santiago 8380000 Chile
- Pharmacology Program, ICBM, Faculty of Medicine University of Chile Santiago 8380000 Chile
| |
Collapse
|
12
|
Live S. aureus and heat-killed S. aureus induce different inflammation-associated factors in bovine endometrial tissue in vitro. Mol Immunol 2021; 139:123-130. [PMID: 34481270 DOI: 10.1016/j.molimm.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/27/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is majorly involved in bovine mastitis; however, it weakly induces pro-inflammatory factors in mammary gland epithelial cells. We aimed to clarify the involvement of S. aureus in other inflammation types and its relationship with inflammatory factor secretion in bovine endometritis. We used live S. aureus (LSA)- and heat-killed S. aureus (HK-SA)-treated bovine endometrial tissue in vitro. The HK-SA-treated group showed significantly higher IL-6, IL-1β, TNF-α, CXCL1/2 and TLR2 expression than the LSA-infected group. Contrastingly, the LSA-infected group showed significantly higher PTGS2, mPGES-1, and EP4 expression than the HK-SA treated group. There was no significant between-group difference in hyaluronan-binding protein 1 expression, which suggested similar inflammatory responses. H&E results indicated that LSA and HK-SA induced shedding of endometrial gland epithelial cells. The LSA-infected group showed higher high-mobility group box 1 protein expression than the HK-SA treated groups, which indicated differences in signaling pathway activation. Further, the LSA-treated group had higher JNK and p38 MAPK levels while the HK-SA-treated group had higher IκB-α levels. There was no significant between-group difference in the ERK signaling pathway. Our findings indicate that the pathogen-associated molecular patterns (PAMPs) of S. aureus activate pro-inflammatory factor expression via the TLR2-ERK-NF-κB signaling pathway. Contrastingly, LSA induced PGE2 accumulation via the TLR2/MAPKs signaling pathway. This is the first report that S. aureus and the PAMPs of S. aureus activate different signaling pathways and that LSA mainly induce PGE2 accumulation rather than cytokine secretion.
Collapse
|
13
|
Cui L, Qu Y, Cai H, Wang H, Dong J, Li J, Qian C, Li J. Meloxicam Inhibited the Proliferation of LPS-Stimulated Bovine Endometrial Epithelial Cells Through Wnt/β-Catenin and PI3K/AKT Pathways. Front Vet Sci 2021; 8:637707. [PMID: 34307514 PMCID: PMC8299055 DOI: 10.3389/fvets.2021.637707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Meloxicam is a non-steroidal anti-inflammatory drug and has been used to relieve pain and control inflammation in cows with metritis and endometritis. Meloxicam has been found to be effective in inhibiting tissue or cell growth when it is used as an anti-inflammatory therapy. However, the influence of meloxicam on bovine endometrial regeneration has not been reported. This study was to research the effect of meloxicam (0.5 and 5 μM) on the proliferation of primary bovine endometrial epithelial cells (BEECs) stimulated by Escherichia coli lipopolysaccharide. The cell viability, cell cycle, and cell proliferation were evaluated by Cell Counting Kit-8, flow cytometry, and cell scratch test, respectively. The mRNA transcriptions of prostaglandin-endoperoxide synthase 1 (PTGS1) and PTGS2, Toll-like receptor 4, and proliferation factors were detected using quantitative reverse-transcription polymerase chain reaction. The activations of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways were determined using western blot and immunofluorescence. As a result, co-treatment of meloxicam and lipopolysaccharide inhibited (P < 0.05) the cell cycle progression and reduced (P < 0.05) the cell healing rate and the mRNA level of proliferation factors as compared with the cells treated with lipopolysaccharide alone. Meloxicam decreased (P < 0.05) the lipopolysaccharide-induced PTGS2 gene expression. Neither lipopolysaccharide nor meloxicam changed PTGS1 mRNA abundance (P > 0.05). Meloxicam inhibited (P < 0.05) the lipopolysaccharide-activated Wnt/β-catenin pathway by reducing (P < 0.05) the protein levels of β-catenin, c-Myc, cyclin D1, and glycogen synthase kinase-3β and prevented the lipopolysaccharide-induced β-catenin from entering the nucleus. Meloxicam suppressed (P < 0.05) the phosphorylation of PI3K and AKT. In conclusion, meloxicam alone did not influence the cell cycle progression or the cell proliferation in BEEC but caused cell cycle arrest and inhibited cell proliferation in lipopolysaccharide-stimulated BEEC. This inhibitory effect of meloxicam was probably mediated by Wnt/β-catenin and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| | - Yang Qu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| | - Hele Cai
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, China
| |
Collapse
|
14
|
Zhang JH, Zhang JF, Song J, Bai Y, Deng L, Feng CP, Xu XY, Guo HX, Wang Y, Gao X, Gu Y, Jin C, Zheng JF, Zhen Z, Su H. Effects of Berberine on Diabetes and Cognitive Impairment in an Animal Model: The Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1399-1415. [PMID: 34137676 DOI: 10.1142/s0192415x21500658] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a group of metabolic disorders with an increased risk of developing cognitive impairment and dementia. The hippocampus in the forebrain contains an abundance of insulin receptors related to cognitive function and plays an important role in the pathophysiology of neurodegenerative disorders. Berberine from traditional Chinese medicine has been used to treat diabetes and diabetic cognitive impairment, although its related mechanisms are largely unknown. In this study, a STZ diabetes rat model feeding with a high-fat diet was used to test the effects of berberine compared with metformin. Oral glucose tolerance and hyperinsulinemic-euglycemic clamp were used for glucose metabolism and insulin resistance. The Morris water maze was used to observe the compound effects on cognitive impairment. Serum and hippocampal [Formula: see text]-amyloid peptide (A[Formula: see text], Tau and phosphorylated Tau protein deposition in the hippocampi were measured. The TUNEL assay was used to detect the neuronal apoptosis, supported by histomorphological changes and transmissional electron microscopy (TEM) image. Our data showed that the diabetic rats had a significantly cognitive impairment. In addition to improving glucose metabolism and reducing insulin resistance, berberine significantly improved the cognitive function in the rat. Berberine also effectively decreased the expression of hippocampal tau protein, phosphorylated Tau, and increased insulin receptor antibodies. Moreover, berberine downregulated the abnormal phosphorylation of A[Formula: see text] and Tau protein and improved hippocampal insulin signaling. The TUNEL assay confirmed that berberine reduced hippocampal neuronal apoptosis supported by TEM. Thus, berberine significantly improved the cognitive function in diabetic rats by changing the peripheral and central insulin resistance. The reduction of neuronal injury, A[Formula: see text] deposition, abnormal phosphorylation of Tau protein, and neuronal apoptosis in the hippocampus were observed as the related mechanisms of action.
Collapse
Affiliation(s)
| | - Jin-Feng Zhang
- Jingmen Hospital of Traditional Chinese Medicine, Jingmen 448000, P. R. China
| | - Jun Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yu Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Lan Deng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Chun-Peng Feng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xin-Yao Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Hong-Xia Guo
- Langfang Normal University, Langfang 065000, P. R. China
| | - Yi Wang
- Tianjin Anding Hospital, Tianjin 300222, P. R. China
| | - Xin Gao
- Tianjin Anding Hospital, Tianjin 300222, P. R. China
| | - Yan Gu
- Tianjin Third Central Hospital, Tianjin 300170, P. R. China
| | - Chuan Jin
- Tianjin Binhai New Area Dagang Hospital, Tianjin 300270, P. R. China
| | - Jun-Fu Zheng
- Tianjin Binhai New Area TCM Hospital, Tianjin 300451, P. R. China
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Hao Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
15
|
Shi H, Sun X, Kong A, Ma H, Xie Y, Cheng D, Wong CKC, Zhou Y, Gu J. Cadmium induces epithelial-mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111480. [PMID: 33254385 DOI: 10.1016/j.ecoenv.2020.111480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Environmental or occupational exposure of Cadmium (Cd) is concerned to be a threat to human health. The kidney is main target of Cd accumulation, which increases the risk of renal cell carcinoma (RCC). In addition, low content of Cd had been determined in kidney cancer, however, the roles of presence of Cd in renal tumors progression are still unclear. The present study is proposed to determine the effect of low-dose Cd exposure on the renal cancer cells and aimed to clarify the underlying mechanisms. The cell viability, cytotoxicity, and the migratory effect of low-dose Cd on the renal cancer cells were detected. Moreover, the roles of reactive oxygen species (ROS), Ca2+, and cyclic AMP (cAMP)/protein kinase A (PKA)-cyclooxygenase2 (COX2) signaling, as well as COX2 catalytic product prostaglandin E2 (PGE2) on cell migration and invasion were identified. Our results suggested that low dose Cd exposure promoted migration of renal cancer Caki-1 cells, which was not dependent on Cd-induced ROS and intracellular Ca2+ levels. Cd exposure induced cAMP/PKA-COX2, which mediated cell migration and invasion, and decreased expressions of epithelial-mesenchymal transition (EMT) marker, E-cadherin, but increased expressions of N-cadherin and Vimentin. Moreover, Cd-induced secretion of PGE2 feedback on activation of cAMP/PKA-COX2 signaling, also promoted EMT, migration and invasion of renal cancer Caki-1 cells. This study might contribute to understanding of the mechanism of Cd-induce progression of renal cancer and future studies on the prevention and therapy of renal cell carcinomas.
Collapse
Affiliation(s)
- Haifeng Shi
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Xi Sun
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Anqi Kong
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Haiyan Ma
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Yimin Xie
- Affiliated Hospital of Jiangsu University-Yixing Hospital, Jiangsu, Yixing 214200, China
| | - Dongrui Cheng
- General Hospital of Nanjing Military Region, East Zhongshan Road 305, Xuanwu District, Jiangsu, Nanjing 210002, China
| | | | - Yang Zhou
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China.
| |
Collapse
|
16
|
Guo Y, Gan X, Zhou H, Zhou H, Pu S, Long X, Ren C, Feng T, Tang H. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation. Life Sci 2020; 263:118582. [PMID: 33058911 DOI: 10.1016/j.lfs.2020.118582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Depression is a common aspect of the modern lifestyle, and most patients are recalcitrant to the current antidepressants. Fingolimod (FTY720), a sphingosine analogue approved for the treatment of multiple sclerosis, has a significant neuroprotective effect on the central nervous system. The aim of this study was to determine the potential therapeutic effect of FTY720 on the behavior and cognitive function of rats exposed daily to chronic unpredictable mild stress (CUMS), and elucidate the underlying mechanisms. The 42-day CUMS modeling induced depression-like behavior as indicated by the scores of sugar water preference, forced swimming, open field and Morris water maze tests. Mechanistically, CUMS caused significant damage to the hippocampal neurons, increased inflammation and oxidative stress, activated the NF-κB/NLRP3 axis, and skewed microglial polarization to the M1 phenotype. FTY720 not only alleviated neuronal damage and oxidative stress, but also improved the depression-like behavior and cognitive function of the rats. It also inhibited NF-κB activation and blocked NLRP3 inflammasome assembly by down-regulating NLRP3, ACS and caspase-1. Furthermore, FTY720 inhibited the microglial M1 polarization markers iNOS and CD16, and promoted the M2 markers Arg-1 and CD206. This in turn reduced the levels of TNF-α, IL-6 and IL-1β, and increased that of IL-10 in the hippocampus. In conclusion, FTY720 protects hippocampal neurons from stress-induced damage and alleviates depressive symptoms by inhibiting neuroinflammation. Our study provides a theoretical basis for S1P receptor modulation in treating depression.
Collapse
Affiliation(s)
- Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Xiaohong Gan
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Xia Long
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Tao Feng
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Hongmei Tang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China.
| |
Collapse
|
17
|
Yin Q, Chen J, Ma S, Dong C, Zhang Y, Hou X, Li S, Liu B. Pharmacological Inhibition of Galectin-3 Ameliorates Diabetes-Associated Cognitive Impairment, Oxidative Stress and Neuroinflammation in vivo and in vitro. J Inflamm Res 2020; 13:533-542. [PMID: 32982368 PMCID: PMC7508034 DOI: 10.2147/jir.s273858] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background In diabetes, cognitive impairment is linked with oxidative stress and neuroinflammation. As the only chimeric member of the galectin family, galectin-3 (Gal3) induces neuroinflammation and cognitive impairment in models of Alzheimer’s disease (AD); however, its role in diabetes-associated cognitive impairment is not established. Methodology Here, we investigated the effects of Gal3 inhibition on cognitive impairment and the possible underlying molecular events in diabetes. We investigated the effects of the Gal3 inhibitor modified citrus pectin (MCP; 100 mg/kg/day oral for 6 weeks) in vivo in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic rats. Additionally, the effects of MCP on high glucose (HG)-stimulated BV-2 microglial cells were investigated in vitro. Results We found that MCP attenuated memory impairment in diabetic rats in the Morris water maze test and reduced insulin resistance, oxidative stress, and neuroinflammation. In HG-stimulated BV-2 microglial cells, MCP increased cell viability and decreased oxidative stress and the production of proinflammatory cytokines. Conclusion The results of this study indicate that the inhibition of Gal3 by MCP ameliorates diabetes-associated cognitive impairment, oxidative stress, and neuroinflammation, suggesting that Gal3 could be a potential new target for therapeutic intervention to prevent cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China.,School of Medicine, Shandong University, Jinan 250021, People's Republic of China.,Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Jian Chen
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Chuanfang Dong
- Department of Geriatrics, Jinan Hospital, Jinan, Shandong 250013, People's Republic of China
| | - Yue Zhang
- School of Medicine, Shandong University, Jinan 250021, People's Republic of China.,Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Xunyao Hou
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Shangbin Li
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China.,Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, People's Republic of China.,Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China
| |
Collapse
|
18
|
Ma S, Li S, Lv R, Hou X, Nie S, Yin Q. Prevalence of mild cognitive impairment in type 2 diabetes mellitus is associated with serum galectin-3 level. J Diabetes Investig 2020; 11:1295-1302. [PMID: 32196999 PMCID: PMC7477520 DOI: 10.1111/jdi.13256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS/INTRODUCTION Galectin-3 (Gal3) contributes to insulin resistance, inflammation and obesity, the three risk factors for mild cognitive impairment (MCI) in type 2 diabetes mellitus patients. MATERIALS AND METHODS A total of 134 hospitalized type 2 diabetes mellitus patients were assessed by the Montreal Cognitive Assessment method, and divided into 65 MCI and 69 controls. Levels of variables, Gal3 and Aβ42, were investigated in relation with cognitive function in both type 2 diabetes mellitus patients with MCI and high-fat diet/streptozotocin induced type 2 diabetes mellitus rats. RESULTS Significantly higher levels of serum Gal3 and lower levels of plasma Aβ42 (all P < 0.05) were found in the MCI type 2 diabetes mellitus group as compared with the non-MCI type 2 diabetes mellitus control. Partial correlation analysis showed that Gal3 is negatively correlated with both MMSE score (r = -0.51, P < 0.01) and Montreal Cognitive Assessment score (r = -0.47, P < 0.001) after adjustment for glycated hemoglobin, homoeostasis model assessment of insulin resistance and Aβ42 in all type 2 diabetes mellitus patients, with a stronger effect seen in the MCI type 2 diabetes mellitus group after further analysis with MCI strata. A simple logistic regression model showed that Gal3 and Aβ42 are significantly associated with MCI type 2 diabetes mellitus patients after adjustment with the covariates sex, age, body mass index, glycated hemoglobin, homoeostasis model assessment of insulin resistance and antidiabetic drugs. Serum and brain Gal3 levels were significantly increased in high-fat diet/streptozotocin diabetic rats, which correlate to the impairment of learning and memory ability. Gal3 inhibitor modified citrus pectin decreased serum and brain Gal3 levels in diabetic rats, accompanied by the amelioration of learning and memory impairment. CONCLUSIONS Gal3 might be associated with cognitive impairment in type 2 diabetes mellitus, and serum Gal3 level might be a new risk factor of MCI in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shangbin Li
- Department of GeriatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Department of GeriatricShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Renjun Lv
- Department of Geriatric NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xunyao Hou
- Department of GeriatricShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Shanjing Nie
- Department of Geriatric NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Qingqing Yin
- Department of Geriatric NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
19
|
Metformin regulates astrocyte reactivity in Parkinson's disease and normal aging. Neuropharmacology 2020; 175:108173. [PMID: 32497590 DOI: 10.1016/j.neuropharm.2020.108173] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to motor symptoms. Despite the remarkable improvements in the management of PD in recent decades, many patients remain significantly disabled. Metformin is a primary medication for the management of type 2 diabetes. We previously showed that co-treatment with metformin and 3,4-dihydroxyphenyl-l-alanine (l-DOPA) prevented the development of l-DOPA-induced dyskinesia in a 6-hydroxydopamine (6-OHDA)-lesioned animal model of PD. However, effects of metformin on PD- and aging-induced genes in reactive astrocytes remain unknown. In this study, we assessed the effect of metformin on motor function, neuroprotection, and reactive astrocytes in the 6-OHDA-induced PD animal model. In addition, the effects of metformin on the genes expressed by specific types of astrocytes were analyzed in PD model and aged mice. Here, we showed that metformin treatment effectively improves the motor symptoms in the 6-OHDA-induced PD mouse model, whereas metformin had no effect on tyrosine hydroxylase-positive neurons. The activation of AMPK and BDNF signaling pathways was induced by metformin treatment on the 6-OHDA-lesioned side of the striatum. Metformin treatment caused astrocytes to alter reactive genes in a PD animal model. Moreover, aging-induced genes in reactive astrocytes were effectively regulated or suppressed by metformin treatment. Taken together, these results suggest that metformin should be evaluated for the treatment of Parkinson's disease and related neurologic disorders characterized by astrocyte activation.
Collapse
|
20
|
|
21
|
Dai T, Cui C, Qi X, Cheng Y, He Q, Zhang X, Luo X, Yang C. Regioselective synthesis of substituted thiazoles via cascade reactions from 3-chlorochromones and thioamides. Org Biomol Chem 2020; 18:6162-6170. [DOI: 10.1039/d0ob01019g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An efficient and regioselective strategy to synthesize substituted thiazoles via a cascade reaction in an environmentally benign medium was developed.
Collapse
Affiliation(s)
- Tianzi Dai
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Chen Cui
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xueyu Qi
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yanshu Cheng
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Qian He
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xiaomin Luo
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Chunhao Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
22
|
DeMarco GJ, Nunamaker EA. A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies. Comp Med 2019; 69:520-534. [PMID: 31896389 PMCID: PMC6935697 DOI: 10.30802/aalas-cm-19-000041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to balance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particular immune function or model are incomplete or don't exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function.
Collapse
Key Words
- cb,endocannabinoid receptor
- cd,crohn disease
- cfa, complete freund adjuvant
- cgrp,calcitonin gene-related peptide
- cox,cyclooxygenase
- ctl, cytotoxic t-lymphocytes
- damp,damage-associated molecular pattern molecules
- drg,dorsal root ganglion
- dss, dextran sodium sulphate
- ecs,endocannabinoid system
- ibd, inflammatory bowel disease
- ifa,incomplete freund adjuvant
- las, local anesthetics
- pamp,pathogen-associated molecular pattern molecules
- pge2, prostaglandin e2
- p2y, atp purine receptor y
- p2x, atp purine receptor x
- tnbs, 2,4,6-trinitrobenzene sulphonic acid
- trp, transient receptor potential ion channels
- trpv, transient receptor potential vanilloid
- tg,trigeminal ganglion
- uc,ulcerative colitis
Collapse
Affiliation(s)
- George J DeMarco
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts;,
| | | |
Collapse
|
23
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
24
|
Lakstygal AM, de Abreu MS, Lifanov DA, Wappler-Guzzetta EA, Serikuly N, Alpsyshov ET, Wang D, Wang M, Tang Z, Yan D, Demin KA, Volgin AD, Amstislavskaya TG, Wang J, Song C, Alekseeva P, Kalueff AV. Zebrafish models of diabetes-related CNS pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:48-58. [PMID: 30476525 DOI: 10.1016/j.pnpbp.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood. Novel translational models and new model organisms are therefore essential to more fully study the impact of DM on CNS. The zebrafish (Danio rerio) is a powerful novel model species to study metabolic and CNS disorders. Here, we discuss how DM alters brain functions and behavior in zebrafish, and summarize their translational relevance to studying DM-related CNS pathogenesis in humans. We recognize the growing utility of zebrafish models in translational DM research, as they continue to improve our understanding of different brain pathologies associated with DM, and may foster the discovery of drugs that prevent or treat these diseases.
Collapse
Affiliation(s)
- Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Dmitry A Lifanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; School of Pharmacy, Southwest University, Chongqing, China
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Polina Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Ural Federal University, Ekaterinburg, Russia; Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; ZENEREI Research Center, Slidell, LA, USA.
| |
Collapse
|
25
|
Li Y, Chen Q, Ran D, Wang H, Du W, Luo Y, Jiang W, Yang Y, Yang J. Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein. Free Radic Biol Med 2019; 134:239-247. [PMID: 30659940 DOI: 10.1016/j.freeradbiomed.2019.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
This study was designed to investigate the neuroprotective effects of baicalein and the effect of the cortical 12/15-lipoxygenase (12/15-LOX) pathway on diabetic cognitive dysfunction. Our results showed that spatial learning and memory ability, as well as cortex neurons, were significantly impaired after the onset of diabetes. The fasting blood glucose and random blood glucose levels in the model group were significantly higher than those in the normal group. The levels of TG and TC in the plasma of the model group were significantly increased, but there was no significant difference in the LDL level. The insulin content in the plasma of diabetic rats was significantly lower than that of the normal group. The levels of inflammatory factors and 12(S)-HETE were significantly increased in diabetic rats, as were the protein expression levels of cPLA2, 12/15-LOX, p38MAPK, phospho-p38MAPK, caspase-3, caspase-9 and Aβ1-42; by contrast, protein expression of Bcl-2 was significantly decreased. Administration of baicalein was shown to improve the spatial learning and memory ability and significantly decrease the levels of inflammatory cytokines. However, baicalein did not significantly influence the levels of blood glucose, lipids or insulin in rats. Baicalein treatment significantly protected diabetes rats from neuron death; significantly attenuated the overexpression of cPLA2, 12/15-LOX, p38MAPK, phospho-p38MAPK, caspase-3, caspase-9 and Aβ1-42; and upregulated the expression of Bcl-2. These findings suggest that baicalein improves the cognitive function of diabetic rats by directly acting in the brain rather than by regulating the levels of blood glucose, lipids or insulin. In addition, baicalein can protect rat cortical neurons from damage caused by diabetes via inhibiting the 12/15-LOX pathway and relieving inflammation and apoptosis of the central nervous system.
Collapse
Affiliation(s)
- Yuke Li
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qi Chen
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China; Pharmacy Department of GuiZhou Provincial People's Hospital, Guiyang 550000, China
| | - Dongzhi Ran
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Weimin Du
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Wengao Jiang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.
| |
Collapse
|