1
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
2
|
Garcia-Villen F, Gallego I, Sainz-Ramos M, Ordoyo-Pascual J, Ruiz-Alonso S, Saenz-del-Burgo L, O’Mahony C, Pedraz JL. Stability of Monoclonal Antibodies as Solid Formulation for Auto-Injectors: A Pilot Study. Pharmaceutics 2023; 15:2049. [PMID: 37631263 PMCID: PMC10459033 DOI: 10.3390/pharmaceutics15082049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Drug adherence is a significant medical issue, often responsible for sub-optimal outcomes during the treatment of chronic diseases such as rheumatoid or psoriatic arthritis. Monoclonal antibodies (which are exclusively given parenterally) have been proven to be an effective treatment in these cases. The use of auto-injectors is an effective strategy to improve drug adherence in parenteral treatments since these pen-like devices offer less discomfort and increased user-friendliness over conventional syringe-based delivery. This study aims to investigate the feasibility of including a monoclonal antibody as a solid formulation inside an auto-injector pen. Specifically, the objective was to evaluate the drug stability after a concentration (to reduce the amount of solvent and space needed) and freeze-drying procedure. A preliminary screening of excipients to improve stability was also performed. The nano-DSC results showed that mannitol improved the stability of the concentrated, freeze-dried antibody in comparison to its counterpart without it. However, a small instability of the CH2 domain was still found for mannitol samples, which will warrant further investigation. The present results serve as a stepping stone towards advancing future drug delivery systems that will ultimately improve the patient experience and associated drug adherence.
Collapse
Affiliation(s)
- Fatima Garcia-Villen
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jorge Ordoyo-Pascual
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Conor O’Mahony
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Zarzar J, Khan T, Bhagawati M, Weiche B, Sydow-Andersen J, Alavattam S. High concentration formulation developability approaches and considerations. MAbs 2023; 15:2211185. [PMID: 37191233 DOI: 10.1080/19420862.2023.2211185] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The growing need for biologics to be administered subcutaneously and ocularly, coupled with certain indications requiring high doses, has resulted in an increase in drug substance (DS) and drug product (DP) protein concentrations. With this increase, more emphasis must be placed on identifying critical physico-chemical liabilities during drug development, including protein aggregation, precipitation, opalescence, particle formation, and high viscosity. Depending on the molecule, liabilities, and administration route, different formulation strategies can be used to overcome these challenges. However, due to the high material requirements, identifying optimal conditions can be slow, costly, and often prevent therapeutics from moving rapidly into the clinic/market. In order to accelerate and derisk development, new experimental and in-silico methods have emerged that can predict high concentration liabilities. Here, we review the challenges in developing high concentration formulations, the advances that have been made in establishing low mass and high-throughput predictive analytics, and advances in in-silico tools and algorithms aimed at identifying risks and understanding high concentration protein behavior.
Collapse
Affiliation(s)
- Jonathan Zarzar
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Tarik Khan
- Pharma Technical Development Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Maniraj Bhagawati
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Benjamin Weiche
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Jasmin Sydow-Andersen
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | | |
Collapse
|
4
|
Zhang H, Dalby PA. Stability Convergence in Antibody Coformulations. Mol Pharm 2022; 19:4098-4110. [PMID: 36264768 DOI: 10.1021/acs.molpharmaceut.2c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combined administration of antibody therapeutics has proven to be beneficial for patients with cancer or infectious diseases. As a result, there is a growing trend toward multiple antibodies premixed into a single product form and delivered to patients as a fixed-dose coformulation. However, combining antibodies into a single coformulation could be challenging as proteins have the potential to interact and alter their stability and degradation profiles in the mixture, compared to that in isolation. We show that in two specific antibody-antibody coformulations, the more stable antibody component increased the stability of the less stable component, which in return destabilized the more stable component, hence exhibiting an overall convergence of stability in the coformulation.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biochemical Engineering, UCL, WC1E 6BTLondon, U.K.,EPSRC Future Targeted Healthcare Manufacturing Hub, UCL, WC1E 6BTLondon, U.K
| | - Paul A Dalby
- Department of Biochemical Engineering, UCL, WC1E 6BTLondon, U.K
| |
Collapse
|
5
|
Krieg D, Winter G, Svilenov HL. It is never too late for a cocktail - Development and analytical characterization of fixed-dose antibody combinations. J Pharm Sci 2022; 111:2149-2157. [DOI: 10.1016/j.xphs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
6
|
Roche A, Gentiluomo L, Sibanda N, Roessner D, Friess W, Trainoff SP, Curtis R. Towards an improved prediction of concentrated antibody solution viscosity using the Huggins coefficient. J Colloid Interface Sci 2021; 607:1813-1824. [PMID: 34624723 DOI: 10.1016/j.jcis.2021.08.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023]
Abstract
The viscosity of a monoclonal antibody solution must be monitored and controlled as it can adversely affect product processing, packaging and administration. Engineering low viscosity mAb formulations is challenging as prohibitive amounts of material are required for concentrated solution analysis, and it is difficult to predict viscosity from parameters obtained through low-volume, high-throughput measurements such as the interaction parameter, kD, and the second osmotic virial coefficient, B22. As a measure encompassing the effect of intermolecular interactions on dilute solution viscosity, the Huggins coefficient, kh, is a promising candidate as a parameter measureable at low concentrations, but indicative of concentrated solution viscosity. In this study, a differential viscometry technique is developed to measure the intrinsic viscosity, [η], and the Huggins coefficient, kh, of protein solutions. To understand the effect of colloidal protein-protein interactions on the viscosity of concentrated protein formulations, the viscometric parameters are compared to kD and B22 of two mAbs, tuning the contributions of repulsive and attractive forces to the net protein-protein interaction by adjusting solution pH and ionic strength. We find a strong correlation between the concentrated protein solution viscosity and the kh but this was not observed for the kD or the b22, which have been previously used as indicators of high concentration viscosity. Trends observed in [η] and kh values as a function of pH and ionic strength are rationalised in terms of protein-protein interactions.
Collapse
Affiliation(s)
- Aisling Roche
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK; Currently at: National Institute for Biological Standards and Control, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany; Currently at: Coriolis Pharma, Fraunhoferstraße 18B, 82152 Munich, Germany
| | - Nicole Sibanda
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Steven P Trainoff
- Wyatt Technology Corporation, 6330 Hollister Ave, Goleta, CA 93117, United States
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK.
| |
Collapse
|
7
|
Tilegenova C, Izadi S, Yin J, Huang CS, Wu J, Ellerman D, Hymowitz SG, Walters B, Salisbury C, Carter PJ. Dissecting the molecular basis of high viscosity of monospecific and bispecific IgG antibodies. MAbs 2021; 12:1692764. [PMID: 31779513 PMCID: PMC6927759 DOI: 10.1080/19420862.2019.1692764] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Some antibodies exhibit elevated viscosity at high concentrations, making them poorly suited for therapeutic applications requiring administration by injection such as subcutaneous or ocular delivery. Here we studied an anti-IL-13/IL-17 bispecific IgG4 antibody, which has anomalously high viscosity compared to its parent monospecific antibodies. The viscosity of the bispecific IgG4 in solution was decreased by only ~30% in the presence of NaCl, suggesting electrostatic interactions are insufficient to fully explain the drivers of viscosity. Intriguingly, addition of arginine-HCl reduced the viscosity of the bispecific IgG4 by ~50% to its parent IgG level. These data suggest that beyond electrostatics, additional types of interactions such as cation-π and/or π-π may contribute to high viscosity more significantly than previously understood. Molecular dynamics simulations of antibody fragments in the mixed solution of free arginine and explicit water were conducted to identify hotspots involved in self-interactions. Exposed surface aromatic amino acids displayed an increased number of contacts with arginine. Mutagenesis of the majority of aromatic residues pinpointed by molecular dynamics simulations effectively decreased the solution's viscosity when tested experimentally. This mutational method to reduce the viscosity of a bispecific antibody was extended to a monospecific anti-GCGR IgG1 antibody with elevated viscosity. In all cases, point mutants were readily identified that both reduced viscosity and retained antigen-binding affinity. These studies demonstrate a new approach to mitigate high viscosity of some antibodies by mutagenesis of surface-exposed aromatic residues on complementarity-determining regions that may facilitate some clinical applications.
Collapse
Affiliation(s)
| | - Saeed Izadi
- Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA, USA
| | - Jianping Yin
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | | | - Jiansheng Wu
- Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Diego Ellerman
- Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Sarah G Hymowitz
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Benjamin Walters
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Cleo Salisbury
- Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA, USA
| | - Paul J Carter
- Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
8
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Holloway L, Roche A, Marzouk S, Uddin S, Ke P, Ekizoglou S, Curtis R. Determination of Protein-Protein Interactions at High Co-Solvent Concentrations Using Static and Dynamic Light Scattering. J Pharm Sci 2020; 109:2699-2709. [DOI: 10.1016/j.xphs.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023]
|
10
|
Krieg D, Berner C, Winter G, Svilenov HL. Biophysical Characterization of Binary Therapeutic Monoclonal Antibody Mixtures. Mol Pharm 2020; 17:2971-2986. [PMID: 32687367 DOI: 10.1021/acs.molpharmaceut.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coformulations containing two therapeutic monoclonal antibodies (mAbs) could offer various benefits like enhanced therapeutic efficacy and better patient compliance. However, there are very few published studies on coformulations and binary mixtures of mAbs. It remains unclear to what extent mAbs with different physicochemical properties can be combined in solution without detrimental effects on protein stability. Here, we present a study including six model mAbs of the IgG1 subclass that are commercially available. In silico and biophysical characterization shows that the proteins have different physicochemical properties. Thus, their combinations represent various scenarios for coformulation development. We prepared all possible binary mixtures of the six mAbs and determined several biophysical parameters that are assessed during early-stage protein drug product development. The measured biophysical parameters are indicative of the conformational protein stability (inflection points of the thermal protein unfolding transitions) and the colloidal protein stability (aggregation onset temperatures and interaction parameter kD from dynamic light scattering). Remarkably, all 15 binary mAb mixtures do not exhibit biophysical parameters that indicate inferior conformational or colloidal stability compared to the least stable mAb in the mixture. Our findings suggest that the coformulation of some therapeutic monoclonal antibodies of the IgG1 subclass could be possible in a straightforward way as severe detrimental effects on the stability of these proteins in binary mixtures were not observed.
Collapse
Affiliation(s)
- Dennis Krieg
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Carolin Berner
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Hristo L Svilenov
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5-13, Munich D-81377, Germany.,Department of Chemistry, Technische Universitaet Muenchen, Garching 85747, Germany
| |
Collapse
|
11
|
Singh P, Roche A, van der Walle CF, Uddin S, Du J, Warwicker J, Pluen A, Curtis R. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies. Mol Pharm 2019; 16:4775-4786. [PMID: 31613625 DOI: 10.1021/acs.molpharmaceut.9b00430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coformulation of monoclonal antibody (mAb) mixtures provides an attractive route to achieving therapeutic efficacy where the targeting of multiple epitopes is necessary. Controlling and predicting the behavior of such mixtures requires elucidating the molecular basis for the self- and cross-protein-protein interactions and how they depend on solution variables. While self-interactions are now beginning to be well understood, systematic studies of cross-interactions between mAbs in solution do not exist. Here, we have used static light scattering to measure the set of self- and cross-osmotic second virial coefficients in a solution containing a mixture of two mAbs, mAbA and mAbB, as a function of ionic strength and pH. mAbB exhibits strong association at a low ionic strength, which is attributed to an electrostatic attraction that is enhanced by the presence of a strong short-ranged attraction of nonelectrostatic origin. Under all solution conditions, the measured cross-interactions are intermediate self-interactions and follow similar patterns of behavior. There is a strong electrostatic attraction at higher pH values, reflecting the behavior of mAbB. Protein-protein interactions become more attractive with an increasing pH due to reducing the overall protein net charges, an effect that is attenuated with an increasing ionic strength due to the screening of electrostatic interactions. Under moderate ionic strength conditions, the reduced cross-virial coefficient, which reflects only the energetic contribution to protein-protein interactions, is given by a geometric average of the corresponding self-coefficients. We show the relationship can be rationalized using a patchy sphere model, where the interaction energy between sites i and j is given by the arithmetic mean of the i-i and j-j interactions. The geometric mean does not necessarily apply to all mAb mixtures and is expected to break down at a lower ionic strength due to the nonadditivity of electrostatic interactions.
Collapse
Affiliation(s)
- Priyanka Singh
- Manchester Pharmacy School , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Aisling Roche
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom
| | - Christopher F van der Walle
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom.,Dosage Form Design & Development , AstraZeneca , Granta Park , Cambridge CB21 6GH , United Kingdom
| | - Shahid Uddin
- Formulation Sciences CMC , Immunocore , Milton Park , Abingdon OX14 4RW , United Kingdom
| | - Jiali Du
- Dosage Form Design & Development , AstraZeneca , Gaithersburg MD20878 , United States
| | - Jim Warwicker
- School of Chemistry , University of Manchester , Manchester M1 7DN , United Kingdom
| | - Alain Pluen
- Manchester Pharmacy School , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom
| |
Collapse
|
12
|
Calero-Rubio C, Saluja A, Sahin E, Roberts CJ. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions. J Phys Chem B 2019; 123:5709-5720. [PMID: 31241333 DOI: 10.1021/acs.jpcb.9b03779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonspecific protein-protein interactions of a monoclonal antibody were quantified experimentally using light scattering from low to high protein concentrations (c2) and compared with prior work for a different antibody that yielded qualitatively different behavior. The c2 dependence of the excess Rayleigh ratio (Rex) provided the osmotic second virial coefficient (B22) at low c2 and the static structure factor (Sq=0) at high c2, as a function of solution pH, total ionic strength (TIS), and sucrose concentration. Net repulsive interactions were observed at pH 5, with weaker repulsions at higher TIS. Conversely, attractive electrostatic interactions were observed at pH 6.5, with weaker attractions at higher TIS. Refined coarse-grained models were used to fit model parameters using experimental B22 versus TIS data. The parameters were used to predict high-c2 Rex values via Monte Carlo simulations and separately with Mayer-sampling calculations of higher-order virial coefficients. For both methods, predictions for repulsive to mildly attractive conditions were quantitatively accurate. However, only qualitatively accurate predictions were practical for strongly attractive conditions. An alternative, higher resolution model was used to show semiquantitatively and quantitatively accurate predictions of strong electrostatic attractions at low c2 and low ionic strength.
Collapse
Affiliation(s)
- Cesar Calero-Rubio
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Atul Saluja
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Erinc Sahin
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|