1
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
2
|
Chen X, Li Z, Yang C, Yang D. Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges. Asian J Pharm Sci 2024; 19:100900. [PMID: 38590797 PMCID: PMC10999516 DOI: 10.1016/j.ajps.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 04/10/2024] Open
Abstract
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Marcano RGV, Khalil NM, de Lurdes Felsner M, Mainardes RM. Mitigating amphotericin B cytotoxicity through gliadin-casein nanoparticles: Insights into synthesis, optimization, characterization, in vitro release and cytotoxicity evaluation. Int J Biol Macromol 2024; 260:129471. [PMID: 38237837 DOI: 10.1016/j.ijbiomac.2024.129471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Amphotericin B (AmB) is a widely used antifungal agent; however, its clinical application is limited due to severe side effects and nephrotoxicity associated with parenteral administration. In recent years, there has been growing interest in the utilization of food-grade materials as innovative components for nanotechnology-based drug delivery systems. This study introduces gliadin/casein nanoparticles encapsulating AmB (AmB_GliCas NPs), synthesized via antisolvent precipitation. Formulation was refined using a 24 factorial design, assessing the influence of gliadin and casein concentrations, as well as organic and aqueous phase volumes, on particle size, polydispersity index (PDI), and zeta potential. The optimal composition with 2 % gliadin, 0.5 % casein, and a 1:5 organic-to-aqueous phase ratio, yielded nanoparticles with a 442 nm size, a 0.307 PDI, a -20 mV zeta potential, and 82 % entrapment efficiency. AmB was confirmed to be amorphous within the nanoparticles by X-ray diffraction. These NPs released AmB sustainably over 96 h, primarily in its monomeric form. Moreover, NPs maintained stability in simulated gastrointestinal fluids with minimal drug release and showed significantly lower hemolytic activity and cytotoxicity on Vero cells than free AmB, suggesting their promise for oral AmB delivery.
Collapse
Affiliation(s)
- Rossana Gabriela Vásquez Marcano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Maria de Lurdes Felsner
- Departamento de Química, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Rubiana Mara Mainardes
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil.
| |
Collapse
|
4
|
Padaraju A, Dwivedi F, Kumar G. Microemulsions, nanoemulsions and emulgels as carriers for antifungal antibiotics. Ther Deliv 2023; 14:721-740. [PMID: 38014430 DOI: 10.4155/tde-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
According to estimates, up to 25% of the world's population has fungal skin diseases, making them the most prevalent infectious disease. Several chemical classes of antifungal drugs are available to treat fungal infections. However, the major challenges of conventional formulations of antifungal drugs include poor pharmacokinetic profiles like solubility, low permeability, side effects and decreased efficacy. Novel drug delivery is a promising approach for overcoming pharmacokinetic limitations and increasing the effectiveness of antibiotics. In this review, we have shed light on microemulsions, nanoemulsions, and emulgels as novel drug delivery approaches for the topical delivery of antifungal antibiotics. We believe these formulations have potential translational value and could be developed for treating fungal infections in humans.
Collapse
Affiliation(s)
- Annapurna Padaraju
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Falguni Dwivedi
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
5
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
6
|
Kaur G, Mehra S, Kumar H, Kumar A. Exploring the aggregation behaviour and antibiotic binding ability of thiazolium-based surface-active ionic liquids; Understanding transportation of poorly water-soluble drug. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Shen L, Zhang Y, Feng J, Xu W, Chen Y, Li K, Yang X, Zhao Y, Ge S, Li J. Microencapsulation of Ionic Liquid by Interfacial Self-Assembly of Metal-Phenolic Network for Efficient Gastric Absorption of Oral Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45229-45239. [PMID: 36173185 DOI: 10.1021/acsami.2c15599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Improving bioavailability of orally delivered drugs is still challenging, as conventional drug delivery systems suffer from non-specific drug delivery in the gastrointestinal (GI) tract and limited drug absorption efficiency. Gastric drug delivery is even more difficult due to the harsh microenvironment, short retention time, and physiologic barriers in the stomach. Here, an oral drug delivery microcapsule system was developed for gastric drug delivery, which consists of ionic liquid (IL) as the inner carrier and metal-phenolic network (MPN) as the microcapsule shell. The IL@MPN microcapsules are prepared by interfacial self-assembly of FeIII and quercetin at the interface of hydrophobic IL ([EMIM][NTf2]) and water. The formation of MPN shell could improve the stability of IL droplets in water and endow the system with pH-response drug release properties, while the encapsulated IL core could efficiently load the drug and enhance the drug tissue permeability. The IL@MPN microcapsules showed enhanced drug absorption in the stomach after oral administration in a rat model, where the microcapsules are disassembled in gastric acid, and the released IL could reduce the viscosity of mucus gel and increase the drug transport rate across endothelial cells. This work presents a simple yet efficient strategy for oral drug delivery to the stomach. Given the diversity and versatility of both MPN and IL, the proposed self-assembled microcapsules could expand the toolbox of drug delivery systems with enhanced oral drug bioavailability.
Collapse
Affiliation(s)
- Lanbo Shen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yaping Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Junkun Feng
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Wenxiu Xu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yi Chen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Kai Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Xiaoru Yang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yajun Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
8
|
Development and application of amphotericin B immunoassay for pharmacokinetic studies and therapeutic drug monitoring in critically ill patients. J Pharm Biomed Anal 2022; 218:114875. [DOI: 10.1016/j.jpba.2022.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
|
9
|
Recent updates on applications of ionic liquids (ILs) for biomedical sciences. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Mansur-Alves I, Lima BLF, Santos TT, Araújo NF, Frézard F, Islam A, de Barros AL, Dos Santos DC, Fernandes C, Ferreira LA, Aguiar MM. Cholesterol improves stability of amphotericin B nanoemulsion: promising use in the treatment of cutaneous leishmaniasis. Nanomedicine (Lond) 2022; 17:1237-1251. [PMID: 36189757 DOI: 10.2217/nnm-2021-0489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Amphotericin B (AmB) is an antileishmanial drug with high toxicity; however, this drawback might overcome by decreasing the AmB self-aggregation state. This work aimed at evaluating the influence of cholesterol on the aggregation state of AmB loaded in a nanoemulsion (NE-AmB) for the treatment of cutaneous leishmaniasis. NE-AmB (1, 4 and 8 mg/kg/day) was administered intravenously to animals infected by Leishmania major every 2 days for a total of five injections. Results: Ultraviolet-visible spectroscopy and circular dichroism studies demonstrated that cholesterol reduced AmB aggregation state in NE. NE-AmB was stable after 180 days, and its hemolytic toxicity was lower than that observed for the conventional AmB. NE-AmB administered intravenously into animals infected by Leishmania major at 8 mg/kg was capable of stabilizing the lesion size and reducing the parasitic load. Conclusion: These findings support the NE potential as a stable nanocarrier for AmB in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Izabela Mansur-Alves
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Brenda Lorrayne Furtado Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Thais Tunes Santos
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Naialy F Araújo
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Frédéric Frézard
- Department of Physiology & Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Arshad Islam
- Department of Pathology, Government Lady Reading Hospital, Medical Teaching Institution, Peshawar, 25100, Pakistan
| | - André Lb de Barros
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Délia Cm Dos Santos
- Department of Pharmacy & Nutrition, Center for Exact, Natural & Health Sciences, Federal University of Espírito Santo, Alto Universitario, Alegre, Espírito Santo, 29500-000, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Lucas Am Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Marta Mg Aguiar
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| |
Collapse
|
11
|
Ali MK, Moshikur RM, Goto M, Moniruzzaman M. Recent Developments in Ionic Liquid-Assisted Topical and Transdermal Drug Delivery. Pharm Res 2022; 39:2335-2351. [PMID: 35773446 DOI: 10.1007/s11095-022-03322-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) have attracted growing interest as designer solvents/materials for exploring unrealized functions in many areas of research including drug formulations and delivery owing to their inherent tunable physicochemical and biological properties. The use of ILs in the pharmaceutical industry can address challenges related to the use of conventional organic solvent-based chemical permeation enhancers. Their tunability in forming ion pairs with a diverse range of ions enables the task-specific optimization of ILs at the molecular level. In particular, ILs comprising second- and third-generation cations and anions have been extensively used to design biocompatible drug delivery systems to address the challenges related to conventional topical and transdermal drug delivery, including limited permeability, high cytotoxicity, and skin irritation. This review highlights the progress in IL-related research with particular emphasis on the very recent conceptual developments in transdermal drug delivery. Technological advancement and approaches for the formation of IL-based topical and transdermal delivery systems, as well as their promising application in drug delivery, are also discussed.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
- Center for Research in Ionic Liquids, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
12
|
|
13
|
Miao H, Zhu X, Yuan F, Su Q, Li P, Li W, Zhao D, Chang J. Self-Assembly Cascade Reaction Platform for CD44 Positive Lung Cancer Therapy. J Biomed Nanotechnol 2021; 17:2374-2381. [PMID: 34974860 DOI: 10.1166/jbn.2021.3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lung cancer, as one of the most fatal cancers around the world, is responsible for the death of millions every year. Among various types of lung cancers, the ones overexpressing CD44 is usually associated higher cell proliferation with poorer prognosis. Therefore, finding a way to effectively treat CD44 positive lung cancer is urgently needed. Here in this study, negatively charged ultrasmall prussian blue nanoparticles (UPBNPs) was firstly synthesized and adsorbed to polyethyleneimine (PEI) together with glucose oxidase (Gox). Afterwards, the PEI was further complexed with hyaluronic acid (HA) to give a cascade reaction platform (HP/UPB-Gox) for CD44 positive lung cancer therapy. The HP/UPB-Gox with HA shell was able to positively target CD44 overexpressed A549 cells. Upon arriving at the tumor tissue, the Gox catalyzed the glucose of tumor to create H₂O₂, which further served as the substrate of UPBNPs, a peroxidase mimic, to finally give highly toxic hydroxyl radical (OH) for cancer therapy. Therefore, the cascade reaction formed between UPBNPs and Gox was expected to realize effective treatment on CD44 overexpressed lung cancer.
Collapse
Affiliation(s)
- Haitao Miao
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, 200127, China
| | - Xiaoxiao Zhu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Fei Yuan
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Qing Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Pei Li
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Wanyu Li
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Diandian Zhao
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Jianhua Chang
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, 200127, China
| |
Collapse
|
14
|
|
15
|
Sutar Y, Fulton SR, Paul S, Altamirano S, Mhatre S, Saeed H, Patel P, Mallick S, Bhat R, Patravale VB, Chauhan H, Nielsen K, Date AA. Docusate-Based Ionic Liquids of Anthelmintic Benzimidazoles Show Improved Pharmaceutical Processability, Lipid Solubility, and in Vitro Activity against Cryptococcus neoformans. ACS Infect Dis 2021; 7:2637-2649. [PMID: 34467755 PMCID: PMC8884109 DOI: 10.1021/acsinfecdis.1c00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans β-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged β-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sophie R Fulton
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sagarkumar Paul
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susmit Mhatre
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Hiwa Saeed
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Roopal Bhat
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Pharmaceutics, Shree Chanakya Education Society's Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Harsh Chauhan
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abhijit A Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
16
|
Curreri AM, Mitragotri S, Tanner EEL. Recent Advances in Ionic Liquids in Biomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004819. [PMID: 34245140 PMCID: PMC8425867 DOI: 10.1002/advs.202004819] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
The use of ionic liquids and deep eutectic solvents in biomedical applications has grown dramatically in recent years due to their unique properties and their inherent tunability. This review will introduce ionic liquids and deep eutectics and discuss their biomedical applications, namely solubilization of drugs, creation of active pharmaceutical ingredients, delivery of pharmaceuticals through biological barriers, stabilization of proteins and other nucleic acids, antibacterial agents, and development of new biosensors. Current challenges and future outlooks are discussed, including biocompatibility, the potential impact of the presence of impurities, and the importance of understanding the microscopic interactions in ionic liquids in order to design task-specific solvents.
Collapse
Affiliation(s)
- Alexander M. Curreri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Present address:
Department of Chemistry and BiochemistryThe University of MississippiUniversityMS38677USA
| |
Collapse
|
17
|
Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, Wu J, Chen Z, Yin L, He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021; 11:2585-2604. [PMID: 34522599 PMCID: PMC8424280 DOI: 10.1016/j.apsb.2021.04.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.
Collapse
Key Words
- ABCD, AmB colloidal dispersion
- AIDS, acquired immunodeficiency syndrome
- AP, antisolvent precipitation
- ARDS, acute respiratory distress syndrome
- AmB, amphotericin B
- AmB-GCPQ, AmB-encapsulated N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol-chitosan nanoparticles
- AmB-IONP, AmB-loaded iron oxide nanoparticles
- AmB-PM, AmB-polymeric micelles
- AmB-SD, AmB sodium deoxycholate
- AmBd, AmB deoxycholate
- Amphotericin B
- Aspergillus fumigatus, A. fumigatus
- BBB, blood‒brain barrier
- BCS, biopharmaceutics classification system
- BDDE, butanediol diglycidyl ether
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- C. Albicans, Candida Albicans
- CFU, colony-forming unit
- CLSM, confocal laser scanning microscope
- CMC, carboxymethylated l-carrageenan
- CP, chitosan-polyethylenimine
- CS, chitosan
- Conjugates
- DDS, drug delivery systems
- DMPC, dimyristoyl phosphatidyl choline
- DMPG, dimyristoyl phosphatidylglycerole
- DMSA, dimercaptosuccinic acid
- Drug delivery
- GNPs, gelatin nanoparticles
- HPH, high-pressure homogenization
- HPMC, hydroxypropyl methylcellulose
- ICV, intensive care unit
- IFIs, invasive fungal infections
- Invasive fungal infections
- L-AmB, liposomal AmB
- LNA, linolenic acid
- MAA, methacrylic acid
- MFC, minimum fungicidal concentrations
- MIC, minimum inhibitory concentration
- MN, microneedles
- MOP, microneedle ocular patch
- MPEG-PCL, monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)
- NEs, nanoemulsions
- NLC, nanostructured lipid carriers
- NPs, nanoparticles
- Nanoparticles
- P-407, poloxamer-407
- PAM, polyacrylamide
- PCL, polycaprolactone
- PDA, poly(glycolic acid)
- PDLLA, poly(d,l-lactic acid)
- PDLLGA, poly(d,l-lactic-co-glycolic acid)
- PEG, poly(ethylene glycol)
- PEG-DSPE, PEG-lipid poly(ethylene glycol)-distearoylphosphatidylethanolamine
- PEG-PBC, phenylboronic acid-functionalized polycarbonate/PEG
- PEG-PUC, urea-functionalized polycarbonate/PEG
- PGA-PPA, poly(l-lysine-b-l-phenylalanine) and poly(l-glutamic acid-b-l-phenylalanine)
- PLA, poly(lactic acid)
- PLGA, polyvinyl alcohol poly(lactic-co-glycolic acid)
- PLGA-PLH-PEG, PLGA-b-poly(l-histidine)-b-poly(ethylene glycol)
- PMMA, poly(methyl methacrylate)
- POR, porphyran
- PVA, poly(vinyl alcohol)
- PVP, polyvinylpyrrolidone
- Poor water-solubility
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- SEM, scanning electron microscope
- SL-AmB, sophorolipid-AmB
- SLNs, solid lipid nanoparticles
- Topical administration
- Toxicity
- γ-CD, γ-cyclodextrin
- γ-PGA, γ-poly(gamma-glutamic acid
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Imran Shair Mohammad
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Zongmin Zhao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Swingler S, Gupta A, Gibson H, Heaselgrave W, Kowalczuk M, Adamus G, Radecka I. The Mould War: Developing an Armamentarium against Fungal Pathogens Utilising Thymoquinone, Ocimene, and Miramistin within Bacterial Cellulose Matrices. MATERIALS 2021; 14:ma14102654. [PMID: 34070218 PMCID: PMC8158721 DOI: 10.3390/ma14102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by Gluconacetobacter xylinus has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing. The current study demonstrates the creation of a pharmacologically active wound dressing by loading antifungal agents into a biopolymer hydrogel to produce a novel wound dressing. Amphotericin B is known to be highly hepatotoxic, which reduces its appeal as an antifungal drug, especially in patients who are immunocompromised. This, coupled with an increase in antifungal resistance, has seen a surge in fungal wound infections in patients who are immunodeficient due to chemotherapy, disease, or injury. Antifungal activity was conducted via Clinical & Laboratory Standards Institute (CLSI) M27, M38, M44, and M51 against Candida auris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger. This study showed that thymoquinone has a comparable antifungal activity to amphotericin B with mean zones of inhibition of 21.425 ± 0.925 mm and 22.53 ± 0.969 mm, respectively. However, the mean survival rate of HEp-2 cells when treated with 50 mg/L amphotericin B was 29.25 ± 0.854% compared to 71.25 ± 1.797% when treated with 50 mg/L thymoquinone. Following cytotoxicity assays against HEp-2 cells, thymoquinone showed a 71.25 ± 3.594% cell survival, whereas amphotericin B had a mean cell survival rate of 29.25 ± 1.708%. The purpose of this study was to compare the efficacy of thymoquinone, ocimene, and miramistin against amphotericin B in the application of novel antifungal dressings.
Collapse
Affiliation(s)
- Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Institute of Health, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Jerome K Jerome Building, Gorway Road, Walsall Campus, Walsall WS1 3BD, UK
| | - Hazel Gibson
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Wayne Heaselgrave
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Department of Biomedical Science, University of Wolverhampton, MA Building, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| |
Collapse
|
19
|
Silva SS, Gomes JM, Reis RL, Kundu SC. Green Solvents Combined with Bioactive Compounds as Delivery Systems: Present Status and Future Trends. ACS APPLIED BIO MATERIALS 2021; 4:4000-4013. [PMID: 35006819 DOI: 10.1021/acsabm.1c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Green solvents such as ionic liquids (ILs) unlock possibilities for developing innovative biomedical and pharmaceutical solutions. ILs are the most investigated solvents for compound extractions, as reaction media and/or catalysts, and a desired eco-friendly solvent to process biomacromolecules for biomaterial production. Investigations demonstrate that the tunable nature and physicochemical features of ILs are also beneficial for building up delivery systems through their combination with bioactive compounds. Bioactive compounds from synthetic origins, like ibuprofen, ketoprofen, and natural sources such as curcumin, flavonoids, and polyphenols are essential starting points as preventive and therapeutic agents for treating diseases. Therefore, the association of those compounds with ILs opens up windows of opportunities in this research field. This Review assesses some of the main and important recent information and the current challenges concerning delivery platforms based on ILs combined with bioactive compounds of both natural and synthetic origins. Moreover, the chemistry, bioavailability, and biological functions of the main bioactive compounds used in the ILs-based delivery platforms are described. These data are presented and are discussed, together with the main delivery routes of the systems.
Collapse
Affiliation(s)
- Simone S Silva
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joana M Gomes
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Subhas C Kundu
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|
21
|
A Novel Cryptococcal Meningitis Therapy: The Combination of Amphotericin B and Posaconazole Promotes the Distribution of Amphotericin B in the Brain Tissue. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8878158. [PMID: 33313322 PMCID: PMC7719495 DOI: 10.1155/2020/8878158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The deficient brain tissue distribution of amphotericin B (AMPB) seriously restricts its treatment for the clinical efficacy of cryptococcus neoformans meningitis (CNM). We strive to develop a tactic to increase its concentration in brain tissue. We aimed to investigate whether the combination of AMPB and posaconazole (POS) could be more effective in the treatment of CNM and to elucidate its potential mechanisms. HPLC analysis was used to analyze the concentration of AMPB in mouse serum, brain tissue, and BCECs cells. Schrodinger molecular docking, in vitro plasma balance dialysis, and ultrafiltration analysis were performed to evaluate the combinative effect of AMPB and POS with serum albumin and POS on AMPB plasma protein binding. H&E staining and colonization culture experiment of CN were employed to assess the effect of POS on the efficacy of AMPB. POS + AMPB significantly reduced the concentration of plasma total AMPB and increased its concentration in the brain tissue. However, the P-gp inhibitor zosuquidar, BCRP inhibitor Ko143, and a common inhibitor of both, elacridar, had no significant effect on its concentration. Molecular docking, balance dialysis, and ultrafiltration analysis showed that AMPB and POS had potential binding properties to serum albumin. Meanwhile, 4 and 8 μg/mL POS could significantly increase the concentration of free AMPB in plasma. POS and three inhibitors all had no significant effect on the uptake of AMPB by BCECs, but serum albumin had. The therapeutic effect of CNM in mice was confirmed that AMPB and AMPB+POS could restrain the infiltration of neutrophils and lymphocytes in cortical neurons and improve the bleeding and markedly inhibit the proliferation of CN. Collectively, we propose that POS competitively binds to the plasma protein sites of AMPB, thereby increasing its level in the brain tissue. Meanwhile, POS could enhance the efficacy of AMPB in the treatment of CNM, which may be independent of P-gp and BCRP proteins.
Collapse
|
22
|
Pedro SN, R. Freire CS, Silvestre AJD, Freire MG. The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. Int J Mol Sci 2020; 21:E8298. [PMID: 33167474 PMCID: PMC7663996 DOI: 10.3390/ijms21218298] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023] Open
Abstract
Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - Mara G. Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (S.N.P.); (C.S.R.F.); (A.J.D.S.)
| |
Collapse
|