1
|
Qin R, Yang G, Zhao L, Shi H, Lang X, Jiang Q. In Situ Controllably Self-Assembled CoFe Oxide Nanosheet Arrays As Efficient Catalytic Electrodes for Oxygen Evolution Reaction at Large Current Density. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21143-21155. [PMID: 40146584 DOI: 10.1021/acsami.4c21507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
To advance the hydrogen energy economy, developing efficient water-splitting catalysts is crucial. As a potential candidate for industrial applications, the catalytic performance of CoFe2O4 at a large current density needs to be optimized in combination with a variety of strategies. Here, a brand-new In-doped cobalt ferrite/nickel selenide (CoFe1.7In0.3O4/NiSe2) heterojunction with genuine potential as a highly effective electrocatalyst for the OER at a large current density was reported. Density functional theory calculations demonstrate that the performance enhancement is ascribed to heterogeneous atom doping and a self-supported electrode consisting of cobalt ferrite/nickel selenide heterostructures, which reduce the band center of the Fe d orbit and narrow the band gap of cobalt ferrite. The optimized CoFe1.7In0.3O4/NiSe2 catalyst demonstrates remarkably low overpotentials of 335 mV to achieve current densities of 500 mA cm-2 (η500) for the oxygen evolution reaction, while maintaining complete stability over a 100-h chronocurrent measurement at 500 mA cm-2. In addition, the electrode also demonstrates excellent hydrogen evolution reaction performance and superior durability. This strategy can be extended to other spinel oxides to achieve stable oxygen evolution at a large current density.
Collapse
Affiliation(s)
- Ruige Qin
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Guang Yang
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lijun Zhao
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Hang Shi
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
2
|
Liu C, Zhai Y, Li Z, Sun H, Liu Y. Atomically Dispersed Mn-Ir Sites on 2D Amorphous Carbon Materials Synergistically Boost Electrochemical Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411238. [PMID: 40026047 DOI: 10.1002/smll.202411238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Enhancing the activity and durability of noble-metal-based catalysts for overall water splitting is crucial for advancing sustainable energy conversion. In this study, a novel catalyst, PBN-Ir/Mn, is reported, developed through a self-healing process of the polyhexabenzocoronene network (PBN) that incorporates both Mn and Ir atoms. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and X-ray absorption spectroscopy (XAS) characterizations confirm a unique atomic-scale Ir-Ir-Mn triangular structure on the porous PBN substrate. The synergy between Mn and Ir atoms leads to superior water electrolysis performance, with ultra-low overpotentials of 11 mV for the hydrogen evolution reaction (HER) and 220 mV for the oxygen evolution reaction (OER) at 10 mA cm-2. PBN-Ir/Mn also achieves outstanding mass activities, reaching 425.92 A mg-1 for HER and 152.28 A mg-1 OER. Moreover, PBN-Ir/Mn demonstrates exceptional durability in overall water splitting, maintaining stable performance over 100 h in a full-cell setup, surpassing commercial benchmarks. Density functional theory (DFT) calculations reveal that Mn doping modifies the d-band center of Ir, reducing the activation energy barriers and significantly enhancing both activity and stability. The high performance and stability of PBN-Ir/Mn, combined with its scalability for gram-scale synthesis, highlight its potential for industrial applications and multifunctional catalysis.
Collapse
Affiliation(s)
- Chunxiang Liu
- School of Chemistry, Beihang University, Beijing, 100191, China
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
- Renewable Energy and Hydrogen Energy Collaborative Technology Team, Shijiazhuang, Hebei, 050018, China
| | - Yizhuang Zhai
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Zexu Li
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Hexu Sun
- Renewable Energy and Hydrogen Energy Collaborative Technology Team, Shijiazhuang, Hebei, 050018, China
- School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Yuzhou Liu
- School of Chemistry, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
3
|
Kumar P, Zhang H, Yohannes AG, Wang J, Shayesteh Zeraati A, Roy S, Wang X, Kannimuthu K, Askar AM, Miller KA, Ling K, Adnan M, Hung SF, Ma JJ, Huang WH, Trivedi D, Molina M, Zhao H, Martí AA, Leontowich AFG, Shimizu GKH, Sinton D, Adachi MM, Wu YA, Ajayan PM, Siahrostami S, Hu J, Kibria MG. Isolated iridium oxide sites on modified carbon nitride for photoreforming of plastic derivatives. Nat Commun 2025; 16:2862. [PMID: 40128214 PMCID: PMC11933312 DOI: 10.1038/s41467-025-57999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
The rising concentration of plastics due to extensive disposal and inefficient recycling of plastic waste poses an imminent and critical threat to the environment and ecological systems. Photocatalytic reforming of plastic derivatives to value-added chemicals under ambient conditions proceeds at lower oxidation potential which galvanizes the hydrogen evolution. We report the synthesis of a narrow band gap NCN-functionalized O-bridged carbon nitride (MC) through condensation polymerization of hydrogen-bonded melem (M)-cyameluric acid (C) macromolecular aggregate. The MC scaffold hosts well-dispersed Ir single atom (MCIrSA) sites which catalyze oxidative photoreforming of alkali-treated polylactic acid (PLA) and polyethylene terephthalate (PET) derivatives to produce H2 at a rate of 147.5 and 29.58 μmol g-1cat h-1 under AM1.5G irradiation. Solid-state electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) reveals efficient charge carrier generation and separation in MCIrSA. X-ray absorption spectroscopy (XAS) and Bader charge analysis reveal undercoordinated IrN2O2 SA sites pinned in C6N7 moieties leading to efficient hole quenching. The liquid phase EPR, in situ FTIR and density functional theory (DFT) studies validate the facile generation of •OH radicals due to the evolution of O-Ir-OH transient species with weak Ir--OH desorption energy barrier.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Ali Shayesteh Zeraati
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Soumyabrata Roy
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, ON, Canada
| | - Karthick Kannimuthu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | | | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Kexin Ling
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Muflih Adnan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jian-Jie Ma
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | | - Dhwanil Trivedi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Maria Molina
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Angel A Martí
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | | | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, ON, Canada
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | | | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Zaman B, Jiao D, Fan J, Wang D, Fan H, Gong M, Xu S, Liu Y, Faizan M, Cui X. Interface Engineering of RuO 2/Ni-Co 3O 4 Heterostructures for enhanced acidic oxygen evolution reaction. J Colloid Interface Sci 2025; 682:548-555. [PMID: 39637651 DOI: 10.1016/j.jcis.2024.11.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
RuO2 has been recognized as a standard electrocatalyst for acidic oxygen evolution reaction (OER). Nonetheless, its high cost and limited durability are still ongoing challenges. Herein, a RuO2/Ni-Co3O4 heterostructure confining a heterointerface (between RuO2 and Ni-doped Co3O4) is constructed to realize enhanced OER performance. Specifically, RuO2/Ni-Co3O4 containing a low Ru content (2.7 ± 0.3 wt%) achieves an overpotential of 186 mV at a current density of 10 mA cm-2 with a long-run stability (≥1300 h). Also, it exhibits a mass activity of 1202.29 mA mgRu-1 at an overpotential of 250 mV, exceeding commercial RuO2. The results disclose an optimum electron transfer at the heterointerface, wherein Ni doping improves the adsorption energy of oxygen-containing intermediates, thereby facilitating OER. This study presents an effective approach for designing highly active and stable OER electrocatalysts.
Collapse
Affiliation(s)
- Bilal Zaman
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Dongxu Jiao
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Jinchang Fan
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Dewen Wang
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Huafeng Fan
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Ming Gong
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Shan Xu
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Yanhua Liu
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Muhammad Faizan
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Wang H, Li X, Zhang G, Gu Z, Chen H, Wei G, Shen S, Cheng J, Zhang J. Recent Progress in Balancing the Activity, Durability, and Low Ir Content for Ir-Based Oxygen Evolution Reaction Electrocatalysts in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410407. [PMID: 39711255 DOI: 10.1002/smll.202410407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations. Consequently, numerous studies have emerged aimed at reducing iridium content while maintaining high activity and durability. Furthermore, the research on the OER mechanism of Ir-based catalysts has garnered widespread attention due to differing views among researchers. The recent progress in balancing activity, durability, and low iridium content in Ir-based catalysts is summarized in this review, with a particular focus on the effects of catalyst morphology, heteroatom doping, substrate introduction, and novel structure development on catalyst performance from four perspectives. Additionally, the recent mechanistic studies on Ir-based OER catalysts is discussed, and both theoretical and experimental approaches is summarized to elucidate the Ir-based OER mechanism. Finally, the perspectives on the challenges and future developments of Ir-based OER catalysts is presented.
Collapse
Affiliation(s)
- Huimin Wang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Gu
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Zhang Q, Ma S, Xie Y, Pan S, Miao Z, Wang J, Yang Z. Cobalt Incorporation Promotes CO 2 Desorption from Nickel Active Sites Encapsulated by Nitrogen-Doped Carbon Nanotubes in Urea-Assisted Water Electrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26212-26220. [PMID: 39572867 DOI: 10.1021/acs.langmuir.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The potential application prospects of urea-assisted water electrolysis toward hydrogen production in renewable energy infrastructure can effectively alleviate energy shortages and environmental pollution caused by rich urea wastewater. It is of prominent significance that adjusting the CO2 desorption of nickel-based electrocatalysts can overcome the slow reaction kinetics for urea oxidation reaction (UOR) to achieve exceptional catalytic activity. In this work, cobalt (Co) metal doping is employed to boost the UOR performance of nitrogen-doped carbon nanotubes encapsulating nickel nanoparticle electrocatalysts (Ni@N-CNT). The influence of diverse Co doping concentrations on the performance of UOR and hydrogen evolution reaction (HER) catalytic activities associated with stability are systematically investigated. The Co dopant can effectively promote the dynamical conversion of Ni to Ni3+ species; as a result, the UOR catalytic activity is improved by 1.8-fold at 1.6 V vs RHE. The DFT calculation results show that the CoNi bimetallic structure possesses a comparably lower binding energy for CO2 adsorption accelerating the rate-limiting step. Meanwhile, the Co dopant also boosts the HER performance, achieving a 57 mV reduction in overpotential at 100 mA cm-2 due to the creation of more active sites. In addition, the assembled urea-assisted water electrolysis attains 10 mA cm-2 at merely 1.51 V as well as excellent stability.
Collapse
Affiliation(s)
- Quan Zhang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuangxiu Ma
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuyuan Pan
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zhengpei Miao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiatang Wang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| |
Collapse
|
7
|
Hayat A, Dawi E, Tahira A, Bhatti MA, Halepoto IA, Ali G, Mahar IA, Naz I, Shah AA, Solangi AG, Aftab U, Alshammari RH, Nafady A, Vigolo B, Ibupoto ZH. Phytochemical-enhanced NiO nanostructures for superior oxygen evolution and asymmetric supercapacitor applications. NANO EXPRESS 2024; 5:045015. [DOI: 10.1088/2632-959x/ad9ac0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The development of new energy conversion and storage technologies has contributed to the widespread use of renewable energy. However, new methodologies for electrochemical energy storage systems remain to be developed. This study presents a facile, low-cost, scalable, and environmentally friendly method for the synthesis of nickel oxide (NiO) nanostructures by hydrothermal methods using lotus root extract. The different volumes of lotus root extract were tested on NiO nanostructures (sample 1, sample 2) using 1 ml and 2 ml amounts of the extract, respectively. Therefore, phytochemicals from lotus extract have influenced the surface morphology, crystal quality, optical band gap, electrical conductivity, and surface active sites of NiO nanostructures. Sample 2 of the NiO nanostructures was found to be highly active for oxygen evolution reaction (OER) and showed an overpotential of 380 mV at 10 mA cm−2 and a durability of 30 h at 10 mA cm−2. Furthermore, sample 2 of NiO has shown specific capacitance of 1503.84 F g−1 at 2 A g−1 as well as cycling stability over a period of forty thousand GCD cycles. The percentage specific capacitance retention were highly improved up to 100.6%. An asymmetric energy storage device has been constructed using NiO sample 2 as the anode electrode material, demonstrating excellent specific capacity of about 1113 C g−1 at 5 A g−1. For the asymmetric supercapacitor device, a power density of 20000 W kg−1 and an energy density of 245 Wh kg−1 were obtained. In a study of cycling stability for 40000 GCD cycles, it was observed that the asymmetric device retained 96.86% of its specific capacitance. A significant contribution was made to the electrochemical performance of sample 2 of NiO by phytochemicals derived from lotus extract.
Collapse
|
8
|
Zhang L, Lei Y, Yang Y, Wang D, Zhao Y, Xiang X, Shang H, Zhang B. High Coverage Sub-Nano Iridium Cluster on Core-Shell Cobalt-Cerium Bimetallic Oxide for Highly Efficient Full-pH Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407475. [PMID: 39401396 PMCID: PMC11615758 DOI: 10.1002/advs.202407475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Indexed: 12/06/2024]
Abstract
The construction of sub-nanometer cluster catalysts (<1 nm) with almost complete exposure of active atoms serves as a promising avenue for the simultaneous enhancement of atom utilization efficiency and specific activity. Herein, a core-shell cobalt-cerium bimetallic oxide protected by high coverage sub-nanometer Ir clusters (denoted as Ir cluster@CoO/CeO2) is constructed by a confined in situ exsolution strategy. The distinctive core-shell structure endows Ir cluster@CoO/CeO2 with enhanced intrinsic activity and high conductivity, facilitating efficient charge transfer and full-pH water splitting. The Ir cluster@CoO/CeO2 achieves low overpotentials of 49/215, 52/390, and 54/243 mV at 10 mA cm-2 for hydrogen evolution reaction/oxygen evolution reaction (HER/OER) in 0.5 m H2SO4, 1.0 m PBS, and 1.0 m KOH, respectively. The small decline in performance after 300 h of operation renders it one of the most effective catalysts for full-pH water splitting. DFT calculations indicate that oriented electron transfer (along the path from Ce to Co and then to Ir) creates an electron-rich environment for surface Ir clusters. The reconstructed interface electronic environment provides optimized intermediates adsorption/desorption energy at the Ir site (for HER) and at the Ir-Co site (for OER), thus simultaneously speeding up the HER/OER kinetics.
Collapse
Affiliation(s)
- Lili Zhang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yuanting Lei
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yinze Yang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Dan Wang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yafei Zhao
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Huishan Shang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Bing Zhang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
9
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
11
|
Ling L, Xi M, Wang H, Xiao R, Zheng L, Hu L, Gu W, Zhu C. Tuning electrochemical water activation over NiIr single-atom alloy aerogels for stable electrochemiluminescence. Sci Bull (Beijing) 2024; 69:2387-2394. [PMID: 38679503 DOI: 10.1016/j.scib.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
The anodic oxygen evolution reaction is a well-acknowledged side reaction in traditional aqueous electrochemiluminescence (ECL) systems due to the generation and surface aggregation of oxygen at the electrode, which detrimentally impacts the stability and efficiency of ECL emission. However, the effect of reactive oxygen species generated during water oxidation on ECL luminophores has been largely overlooked. Taking the typical luminol emitter as an example, herein, we employed NiIr single-atom alloy aerogels possessing efficient water oxidation activity as a prototype co-reaction accelerator to elucidate the relationship between ECL behavior and water oxidation reaction kinetics for the first time. By regulating the concentration of hydroxide ions in the electrolyte, the electrochemical oxidation processes of both luminol and water are finely tuned. When the concentration of hydroxide ions in electrolyte is low, the kinetics of water oxidation is attenuated, which limits the generation of oxygen, effectively mitigates the influence of oxygen accumulation on the ECL strength, and offers a novel perspective for harnessing side reactions in ECL systems. Finally, a sensitive and stable sensor for antioxidant detection was constructed and applied to the practical sample detection.
Collapse
Affiliation(s)
- Ling Ling
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengzhen Xi
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hengjia Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
12
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
13
|
Zhao B, Liu C, Mahmood A, Talib SH, Wang P, He Y, Qu D, Niu L. Electronic-Structure Transformation of Platinum-Rich Nanowires as Efficient Electrocatalyst for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37829-37839. [PMID: 39011930 DOI: 10.1021/acsami.4c03946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Platinum (Pt) has been widely used as cathodic electrocatalysts for the hydrogen evolution reaction (HER) but unfortunately neglected as an anodic electrocatalyst for the oxygen evolution reaction (OER) due to excessively strong bonding with oxygen species in water splitting electrolyzers. Herein we report that fine control over the electronic-structure and local-coordination environment of Pt-rich PtPbCu nanowires (NWs) by doping of iridium (Ir) lowers the overpotential of the OER and simultaneously suppresses the overoxidation of Pt in IrPtPbCu NWs during water electrolysis. In light of the one-dimensional morphology featured with atomically dispersed IrOx species and electronically modulated Pt-sites, the IrPtPbCu NWs exhibit an enhanced OER (175 mV at 10 mA cm-2) and HER (25 mV at 10 mA cm-2) electrocatalytic performance in acidic media and yield a high turnover frequency. For OER at the overpotential of 250 mV, the IrPtPbCu NWs show an enhanced mass activity of 1.51 A mg-1Pt+Ir (about 19 times higher) than Ir/C. For HER at the overpotential of 50 mV, NWs exhibit a remarkable mass activity of 1.35 A mg-1Pt+Ir, which is 2.6-fold relative to Pt/C. Experimental results and theoretical calculations corroborate that the doping of Ir in NWs has the capacity to suppress the formation of Ptx>4 derivates and ameliorate the adsorption free energy of reaction intermediates during the water electrolysis. This approach enabled the realization of a previously unobserved mechanism for anodic electrocatalysts.
Collapse
Affiliation(s)
- Bolin Zhao
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Chuhao Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Azhar Mahmood
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shamraiz Hussain Talib
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - PengChong Wang
- The First Company of China Eighth Engineering Bureau Ltd. Jinan 250000, P. R. China
| | - Ying He
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongyang Qu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
14
|
Kaushik S, Wu D, Zhang Z, Xiao X, Zhen C, Wang W, Huang NY, Gu M, Xu Q. Universal Synthesis of Single-Atom Catalysts by Direct Thermal Decomposition of Molten Salts for Boosting Acidic Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401163. [PMID: 38639567 DOI: 10.1002/adma.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Single-atom catalysts (SACs) are considered prominent materials in the field of catalysis due to their high metal atom utilization and selectivity. However, the wide-ranging applications of SACs remain a significant challenge due to their complex preparation processes. Here, a universal strategy is reported to prepare a series of noble metal single atoms on different non-noble metal oxides through a facile one-step thermal decomposition of molten salts. By using a mixture of non-noble metal nitrate and a small-amount noble metal chloride as the precursor, noble metal single atoms can be easily introduced into the non-noble metal oxide lattice owing to the cation exchange in the in situ formed molten salt, followed by the thermal decomposition of nitrate anions during the heating process. Analyses using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy confirm the formation of the finely dispersed single atoms. Specially, the as-synthesized Ir single atoms (10.97 wt%) and Pt single atoms (4.60 wt%) on the Co3O4 support demonstrate outstanding electrocatalytic activities for oxygen evolution reaction and hydrogen evolution reaction, respectively.
Collapse
Affiliation(s)
- Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Duojie Wu
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China
| | - Zhen Zhang
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenjuan Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Meng Gu
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
15
|
Yu J, Li J, Gao RT, Yang Y, Wang L. Improving NiFe Electrocatalysts through Fluorination-Driven Rearrangements for Neutral Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310642. [PMID: 38708896 DOI: 10.1002/smll.202310642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/05/2024] [Indexed: 05/07/2024]
Abstract
Neutral electrolysis to produce hydrogen is prime challenging owing to the sluggish kinetics of water dissociation for the electrochemical reduction of water to molecular hydrogen. An ion-enriched electrode/electrolyte interface for electrocatalytic reactions can efficiently obtain a stable electrolysis system. Herein, we found that interfacial accumulated fluoride ions and the anchored Pt single atoms/nanoparticles in catalysts can improve hydrogen evolution reaction (HER) activity of NiFe-based hydroxide catalysts, prolonging the operating stability at high current density in neutral conditions. NiFe hydroxide electrode obtains an outstanding performance of 1000 mA cm-2 at low overpotential of 218 mV with 1000 h operation at 100 mA cm-2. Electrochemical experiments and theoretical calculations have demonstrated that the interfacial fluoride contributes to promote the adsorption of Pt to proton for sustaining a large current density at low potential, while the Pt single atoms/nanoparticles provide H adsorption sites. The synergy effect of F and Pt species promotes the formation of Pt─H and F─H bonds, which accelerate the adsorption and dissociation process of H2O and promote the HER reaction with a long-term durability in neutral conditions.
Collapse
Affiliation(s)
- Jidong Yu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Jiamin Li
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, USA
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
16
|
Zhao L, Tao Z, You M, Xiao H, Wang S, Ma W, Huang Y, He B, Chen Q. Partial Exsolution Enables Superior Bifunctionality of Ir@SrIrO 3 for Acidic Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309750. [PMID: 38564772 PMCID: PMC11199977 DOI: 10.1002/advs.202309750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The pursuit of efficient and durable bifunctional electrocatalysts for overall water splitting in acidic media is highly desirable, albeit challenging. SrIrO3 based perovskites are electrochemically active for oxygen evolution reaction (OER), however, their inert activities toward hydrogen evolution reaction (HER) severely restrict the practical implementation in overall water splitting. Herein, an Ir@SrIrO3 heterojunction is newly developed by a partial exsolution approach, ensuring strong metal-support interaction for OER and HER. Notably, the Ir@SrIrO3-175 electrocatalyst, prepared by annealing SrIrO3 in 5% H2 atmosphere at 175 °C, delivers ultralow overpotentials of 229 mV at 10 mA cm-2 for OER and 28 mV at 10 mA cm-2 for HER, surpassing most recently reported bifunctional electrocatalysts. Moreover, the water electrolyzer using the Ir@SrIrO3-175 bifunctional electrocatalyst demonstrates the potential application prospect with high electrochemical performance and excellent durability in acidic environment. Theoretical calculations unveil that constructing Ir@SrIrO3 heterojunction regulates interfacial electronic redistribution, ultimately enabling low energy barriers for both OER and HER.
Collapse
Affiliation(s)
- Ling Zhao
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Zetian Tao
- School of Resources, Environment and Safety EngineeringUniversity of South ChinaHengyangHunan421001P. R. China
| | - Maosheng You
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Huangwei Xiao
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Sijiao Wang
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Wenjia Ma
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Yonglong Huang
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Beibei He
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Qi Chen
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
| |
Collapse
|
17
|
Sun J, Qin Y, Niu X, Zhao R, Xu Z, Liu D, Zhao W, Guo L, Jiang N, Liu C, Zhang K, Zhang J, Wang Q. Ultrastable and highly active Co-vacancies-enriched IrCo bifunctional nanoalloys for proton exchange membrane water electrolysis. J Colloid Interface Sci 2024; 661:249-258. [PMID: 38301463 DOI: 10.1016/j.jcis.2024.01.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Exploring the electrocatalysts with high intrinsic activity and stability for both anode and cathode to tolerate the extremely acidic condition in proton exchange membrane water electrolyzer (PEMWE) is crucial for widespread industrial application. Herein, we constructed the bifunctional IrCox nanoalloys with abundant metal vacancies via the combination of chemical reduction and electrochemical treatment for overall water splitting. The developed IrCo0.13 exhibits ultra-low overpotentials of 238 mV for OER and 18.6 mV for HER at 10 mA cm-2 in 0.1 M HClO4, and achieves the exceptional stability of 1000 h for OER and 100 h for HER at 10 mA cm-2. Further, the cell voltage is only 1.68 V to reach a high current density of 1 A cm-2 in PEMWE with IrCo0.13 as the both cathode and anode catalytic layer, and it shows excellent corrosion resistance in acidic environment, evidenced by 415 h stable operation at 1 A cm-2. The strong electronic interactions in the Ir-Co atomic heterostructure and the in-situ generation of Co vacancies by electrochemical oxidation synergistically contribute to the enhanced activity and stability via optimizing the electronic structure of adjacent Ir active sites, enhancing the conductivity and electrochemical active surface area of the catalyst, accelerating charge transfer and kinetics. This work provides a new perspective for designing bifunctional catalysts for practical application in PEMWE.
Collapse
Affiliation(s)
- Jiuyi Sun
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Qin
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danni Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenli Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lili Guo
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Jiang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kaige Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junfeng Zhang
- Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
18
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
19
|
Wang Y, Ji Z, Pei Y. Highly selective electrochemical reduction of nitrate via CoO/Ir-nickel foam cathode to treat wastewater with a low C/N ratio. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132813. [PMID: 37918076 DOI: 10.1016/j.jhazmat.2023.132813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Thorough nitrate removal from reclaimed water by biological techniques without carbon sources is difficult. Flexible, controllable electrochemical nitrate reduction is widely researched. Herein, ultrathin CoO nanosheets were constructed through amino group induction and orientation. The interfacial electron transfer resistance of two-dimensional CoO was 43.4% lower than that of one-dimensional nanoparticles, resulting in higher current density and improved nitrate reduction efficiency. Nickel foam and IrO2-nickel foam electrodes have almost no effect on nitrate reduction. It is worth noting that iridium loading on CoO (nanosheet) regulated the electronic band structure and generated active atomic H* . The nitrate removal rate increased from 45.1% (CoO (nanoparticle)-nickle foam) and 63.8% (CoO (nanosheet)-nickle foam) to 94.64% (CoO/Ir10 wt%-nickle foam). The proton enhancement effect improved indirect nitrate reduction by atomic H* and increased the NO3--N removal rate to 99.8%. Active chlorine species generated by Cl- in the wastewater selectively converted more than 99% of nitrate to N2, exceeding previous Co-based cathode results. In situ DEMS indicated that electrochemical reduction of nitrate included deoxidation (NO3-→*NO2-→*NO→*N/*N2O→N2) and hydrogenation (*NH2→*NH3→NH4+). The NO3--N removal rate of CoO/Ir10 wt% exceeded 65% during treatment of wastewater treatment plant effluents, verifying the feasibility of electrochemical nitrate reduction with the CoO/Ir10 wt% cathode. A strategy for designing electrochemical nitrate reduction electrocatalysts with excellent potential for full-scale application to treat wastewater treatment plant effluent is provided.
Collapse
Affiliation(s)
- Youke Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Zehua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
20
|
Jeon D, Kim DY, Kim H, Kim N, Lee C, Seo DH, Ryu J. Electrochemical Evolution of Ru-Based Polyoxometalates into Si,W-Codoped RuO x for Acidic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304468. [PMID: 37951714 DOI: 10.1002/adma.202304468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Despite intensive studies over decades, the development of electrocatalysts for acidic water splitting still relies on platinum group metals, especially Pt and Ir, which are scarce, expensive, and poorly sustainable. Because such problems can be alleviated, Ru-based bifunctional catalysts such as rutile RuO2 have recently emerged. However, RuO2 has a relatively low activity for hydrogen evolution reactions (HER) and low stability for oxygen evolution reactions (OER) under acidic conditions. In this study, the synthesis of a RuOx -based bifunctional catalyst (RuSiW) for acidic water splitting via the electrochemical evolution from Ru-based polyoxometalates at cathodic potentials is reported. RuSiW consists of the nanocrystalline RuO2 core and Si,W-codoped RuOx shell. RuSiW exhibits outstanding HER and OER activity comparable to Pt/C and RuO2 , respectively, with high stability. Computational analysis suggests that the codoping of RuOx with W and Si synergistically improves the HER activity of otherwise poor RuO2 by shifting the d-band center and optimizing atomic configurations beneficial for proper hydrogen adsorption. This study provides insights into the design and synthesis of unprecedented bifunctional electrocatalysts using catalytically inactive and less explored elements, such as Si and W.
Collapse
Affiliation(s)
- Dasom Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong Yeon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeongoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nayeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cheolmin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Renewable Carbon, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
21
|
Kuang J, Deng B, Jiang Z, Wang Y, Jiang ZJ. Sr-Stabilized IrMnO 2 Solid Solution Nano-Electrocatalysts with Superior Activity and Excellent Durability for Oxygen Evolution Reaction in Acid Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306934. [PMID: 38135663 DOI: 10.1002/adma.202306934] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The development of cost-effective catalysts for oxygen evolution reaction (OER) in acidic media is of paramount importance. This work reports that Sr-doped solid solution structural ultrafine IrMnO2 nanoparticles (NPs) (≈1.56 nm) on the carbon nanotubes (Sr-IrMnO2 /CNTs) are efficient catalysts for the acidic OER. Even with the Ir use dosage 3.5 times lower than that of the commercial IrO2 , the Sr-IrMnO2 /CNTs only need an overpotential of 236.0 mV to drive 10.0 mA cm-2 and show outstanding stability for >400.0 h. Its Ir mass activity is 39.6 times higher than that of the IrO2 at 1.53 V. The solid solution and Sr-doping structure of Sr-IrMnO2 are the main origin of the high catalytic activity and excellent stability of the Sr-IrMnO2 /CNTs. The density function theory calculations indicate that the solid solution structure can promote strong electronic coupling between Ir and Mn, lowering the energy barrier of the OER rate-determining step. The Sr-doping can enhance the stability of Ir against the chemical corrosion and demetallation. Water electrolyzers and proton exchange membrane water electrolyzers assembled with the Sr-IrMnO2 /CNTs show superb performance and excellent durability in the acid media.
Collapse
Affiliation(s)
- Jianren Kuang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Zhongqing Jiang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
22
|
Xie Y, Xiong T, Li C, Shi H, Zhou C, Luo F, Yang Z. 2D Ni-organic frameworks decorated carbon nanotubes encapsulated Ni nanoparticles for robust CN and HO bonds cleavage. J Colloid Interface Sci 2023; 652:41-49. [PMID: 37591082 DOI: 10.1016/j.jcis.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
In this work, we report a robust bifunctional electrocatalyst composed of 2D Ni- organic frameworks (Ni-MOF) and nitrogen doped carbon nanotubes encapsulated Ni nanoparticles (Ni-MOF@Ni-NCNT) for CN and HO bonds dissociation. Due to the presence of Ni-NCNT, adsorption of OH- species is enhanced and CO2 binding strength is simultaneously weakened leading to a boosted urea oxidation reaction performance reflected by decrement in potential at 100 mA cm-2 by 69 mV. The loosened binding strength with CO2 specie is highlighted by in-situ electrochemical impedance spectroscopy (EIS) test and DFT calculation. Moreover, the alkaline hydrogen evolution reaction (HER) performance of Ni-MOF@Ni-NCNT is better than Ni-MOF and Ni-NCNT evidenced by the overpotential at 50 mA cm-2 decreased by 224 mV and 900 mV ascribed to the synergistic effect, in which Ni-MOF, Ni nanoparticles and Ni-Nx-C facilitates water adsorption, dissociation and adsorption/combination of hydrogen ions, respectively. The assembled HER- urea oxidation reaction (UOR) system requires only 1.33 V to reach 10 mA cm-2, 70 mV lower than water splitting driven by Pt/C-IrO2.
Collapse
Affiliation(s)
- Yuhua Xie
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Tiantian Xiong
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Chen Li
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Han Shi
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Cong Zhou
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Fang Luo
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Zehui Yang
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; Zhejiang Institute, China University of Geosciences, Hangzhou 311305, PR China.
| |
Collapse
|
23
|
Deng M, Tang Y, Lu Z, Wang Y, Lin Y. Self-Supporting Mn-RuO 2 Nanoarrays for Stable Oxygen Evolution Reaction in Acid. Molecules 2023; 28:7727. [PMID: 38067458 PMCID: PMC10708348 DOI: 10.3390/molecules28237727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 05/12/2024] Open
Abstract
Currently, the process of an acidic oxygen evolution reaction (OER) necessitates the use of Iridium dioxygen (IrO2), which is both expensive and incredibly scarce on Earth. Ruthenium dioxygen (RuO2) offers high activity for acidic OERs and presents a potential substitution for IrO2. Nevertheless, its practical application is hindered by its relatively poor stability. In this study, we have developed Mn-doped RuO2 (Mn-RuO2) nanoarrays that are anchored on a titanium (Ti) mesh utilizing a two-step methodology involving the preparation of MnO2 nanoarrays followed by a subsequent Ru exchange and annealing process. By precisely optimizing the annealing temperature, we have managed to attain a remarkably low overpotential of 217 mV at 10 mA cm-2 in a 0.5 M H2SO4 solution. The enhanced catalytic activity of our Mn-RuO2 nanoarrays can be attributed to the electronic modification brought about by the high exposure of active sites, Mn dopant, efficient mass transfer, as well as the efficient transfer of electrons between the Ti mesh and the catalyst arrays. Furthermore, these self-supported Mn-RuO2 nanoarrays demonstrated excellent long-term stability throughout a chronoamperometry test lasting for 100 h, with no discernible changes observed in the Ru chemical states.
Collapse
Affiliation(s)
- Mengting Deng
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (M.D.)
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yulong Tang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (M.D.)
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation Strategies for the Preparation of High-Performance Catalysts for Urea Oxidation Reaction and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301130. [PMID: 37434036 DOI: 10.1002/smll.202301130] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Compared with the traditional electrolysis of water to produce hydrogen, urea-assisted electrolysis of water to produce hydrogen has significant advantages and has received extensive attention from researchers. Unfortunately, urea oxidation reaction (UOR) involves a complex six-electron transfer process leading to high overpotential, which forces researchers to develop high-performance UOR catalysts to drive the development of urea-assisted water splitting. Based on the UOR mechanism and extensive literature research, this review summarizes the strategies for preparing highly efficient UOR catalysts. First, the UOR mechanism is introduced and the characteristics of excellent UOR catalysts are pointed out. Aiming at this, the following modulation strategies are proposed to improve the catalytic performance based on summarizing various literature: 1) Accelerating the active phase formation to reduce initial potential; 2) Creating double active sites to trigger a new UOR mechanism; 3) Accelerating urea adsorption and promoting C─N bond cleavage to ensure the effective conduct of UOR; 4) Promoting the desorption of CO2 to improve stability and prevent catalyst poisoning; 5) Promoting electron transfer to overcome the inherent slow dynamics of UOR; 6) Increasing active sites or active surface area. Then, the application of UOR in electrochemical devices is summarized. Finally, the current deficiencies and future directions are discussed.
Collapse
Affiliation(s)
- Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
25
|
Luo F, Pan S, Xie Y, Li C, Yu Y, Bao H, Yang Z. Hydrazine-Assisted Acidic Water Splitting Driven by Iridium Single Atoms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305058. [PMID: 37775308 PMCID: PMC10646228 DOI: 10.1002/advs.202305058] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 10/01/2023]
Abstract
Water splitting, an efficient technology to produce purified hydrogen, normally requires high cell voltage (>1.5 V), which restricts the application of single atoms electrocatalyst in water oxidation due to the inferior stability, especially in acidic environment. Substitution of anodic oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) effectually reduces the overall voltage. In this work, the utilization of iridium single atom (Ir-SA/NC) as robust hydrogen evolution reaction (HER) and HzOR electrocatalyst in 0.5 m H2 SO4 electrolyte is reported. Mass activity of Ir-SA/NC is as high as 37.02 A mgIr -1 at overpotential of 50 mV in HER catalysis, boosted by 127-time than Pt/C. Besides, Ir-SA/NC requires only 0.39 V versus RHE to attain 10 mA cm-2 in HzOR catalysis, dramatically lower than OER (1.5 V versus RHE); importantly, a superior stability is achieved in HzOR. Moreover, the mass activity at 0.5 V versus RHE is enhanced by 83-fold than Pt/C. The in situ Raman spectroscopy investigation suggests the HzOR pathway follows *N2 H4 →*2NH2 →*2NH→2N→*N2 →N2 for Ir-SA/NC. The hydrazine assisted water splitting demands only 0.39 V to drive, 1.25 V lower than acidic water splitting.
Collapse
Affiliation(s)
- Fang Luo
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Shuyuan Pan
- Sustainable Energy LaboratoryFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan388 Lumo RDWuhan430074P. R. China
| | - Yuhua Xie
- Sustainable Energy LaboratoryFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan388 Lumo RDWuhan430074P. R. China
| | - Chen Li
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Yingjie Yu
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Haifeng Bao
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Zehui Yang
- Sustainable Energy LaboratoryFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan388 Lumo RDWuhan430074P. R. China
| |
Collapse
|
26
|
Hao Y, Hung SF, Zeng WJ, Wang Y, Zhang C, Kuo CH, Wang L, Zhao S, Zhang Y, Chen HY, Peng S. Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics. J Am Chem Soc 2023; 145:23659-23669. [PMID: 37871168 DOI: 10.1021/jacs.3c07777] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Designing stable single-atom electrocatalysts with lower energy barriers is urgent for the acidic oxygen evolution reaction. In particular, the atomic catalysts are highly dependent on the kinetically sluggish acid-base mechanism, limiting the reaction paths of intermediates. Herein, we successfully manipulate the steric localization of Ru single atoms at the Co3O4 surface to improve acidic oxygen evolution by precise control of the anchor sites. The delicate structure design can switch the reaction mechanism from the lattice oxygen mechanism (LOM) to the optimized adsorbate evolution mechanism (AEM). In particular, Ru atoms embedded into cation vacancies reveal an optimized mechanism that activates the proton donor-acceptor function (PDAM), demonstrating a new single-atom catalytic pathway to circumvent the classic scaling relationship. Steric interactions with intermediates at the anchored Ru-O-Co interface played a primary role in optimizing the intermediates' conformation and reducing the energy barrier. As a comparison, Ru atoms confined to the surface sites exhibit a lattice oxygen mechanism for the oxygen evolution process. As a result, the delicate atom control of the spatial position presents a 100-fold increase in mass activity from 36.96 A gRu(ads)-1 to 4012.11 A gRu(anc)-1 at 1.50 V. These findings offer new insights into the precise control of single-atom catalytic behavior.
Collapse
Affiliation(s)
- Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ye Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
27
|
Zheng X, Yang J, Li P, Wang Q, Wu J, Zhang E, Chen S, Zhuang Z, Lai W, Dou S, Sun W, Wang D, Li Y. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. SCIENCE ADVANCES 2023; 9:eadi8025. [PMID: 37851800 PMCID: PMC10584348 DOI: 10.1126/sciadv.adi8025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
The anode corrosion induced by the harsh acidic and oxidative environment greatly restricts the lifespan of catalysts. Here, we propose an antioxidation strategy to mitigate Ir dissolution by triggering strong electronic interaction via elaborately constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce d-band holes of Ir species during both the synthesis and the oxygen evolution reaction processes and suppress their overoxidation, enabling the catalyst with substantially boosted corrosion resistance. Consequently, the optimized catalyst exhibits a high mass activity of 4.4 A mgIr-1 at an overpotential of 320 mV and outstanding long-term stability. A proton-exchange-membrane water electrolyzer using this catalyst delivers a current density of 2 A cm-2 at 1.711 V and low degradation in an accelerated aging test. Theoretical calculations unravel that the oxygen radicals induced by the π* interaction between Ir 5d-O 2p might be responsible for the boosted activity and durability.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng Li
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weihong Lai
- Institute for Superconducting and Electronic Materials, Australia Institute for Innovation Material, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
28
|
Xie Y, Yang Z. Morphological and Coordination Modulations in Iridium Electrocatalyst for Robust and Stable Acidic OER Catalysis. CHEM REC 2023; 23:e202300129. [PMID: 37229769 DOI: 10.1002/tcr.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
29
|
Galyamin D, Tolosana-Moranchel Á, Retuerto M, Rojas S. Unraveling the Most Relevant Features for the Design of Iridium Mixed Oxides with High Activity and Durability for the Oxygen Evolution Reaction in Acidic Media. JACS AU 2023; 3:2336-2355. [PMID: 37772191 PMCID: PMC10523372 DOI: 10.1021/jacsau.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/30/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is the technology of choice for the large-scale production of green hydrogen from renewable energy. Current PEMWEs utilize large amounts of critical raw materials such as iridium and platinum in the anode and cathode electrodes, respectively. In addition to its high cost, the use of Ir-based catalysts may represent a critical bottleneck for the large-scale production of PEM electrolyzers since iridium is a very expensive, scarce, and ill-distributed element. Replacing iridium from PEM anodes is a challenging matter since Ir-oxides are the only materials with sufficient stability under the highly oxidant environment of the anode reaction. One of the current strategies aiming to reduce Ir content is the design of advanced Ir-mixed oxides, in which the introduction of cations in different crystallographic sites can help to engineer the Ir active sites with certain characteristics, that is, environment, coordination, distances, oxidation state, etc. This strategy comes with its own problems, since most mixed oxides lack stability during the OER in acidic electrolyte, suffering severe structural reconstruction, which may lead to surfaces with catalytic activity and durability different from that of the original mixed oxide. Only after understanding such a reconstruction process would it be possible to design durable and stable Ir-based catalysts for the OER. In this Perspective, we highlight the most successful strategies to design Ir mixed oxides for the OER in acidic electrolyte and discuss the most promising lines of evolution in the field.
Collapse
Affiliation(s)
| | | | - María Retuerto
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
30
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
31
|
Wang Z, Li X, Zhang H, Deng K, Yu H, Xu Y, Li X, Wang H, Wang L. Phosphorus-induced activation of Ir metallene for efficient acidic overall water electrolysis. Chem Commun (Camb) 2023; 59:10440-10443. [PMID: 37555323 DOI: 10.1039/d3cc02900j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
In this work, we synthesize P-doped Ir metallene (P-Ir metallene) with rich defects as a highly active bifunctional catalyst towards the hydrogen evolution reaction and oxygen evolution reaction, requiring overpotentials of 28 and 279 mV to drive 10 mA cm-2 in 0.5 M H2SO4, respectively. Moreover, P-Ir metallene exhibits excellent electrocatalytic performance for overall water splitting, producing hydrogen at 10 mA cm-2 with a low operation voltage of 1.508 V. This study proposes the incorporation of phosphorus into noble metals to improve the electrocatalytic performance for water splitting.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xinmiao Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
32
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
33
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
34
|
Cui Z, Jiao W, Huang Z, Chen G, Zhang B, Han Y, Huang W. Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301465. [PMID: 37186069 DOI: 10.1002/smll.202301465] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Hydrogen energy is regarded as the ultimate energy source for future human society, and the preparation of hydrogen from water electrolysis is recognized as the most ideal way. One of the key factors to achieve large-scale hydrogen production by water splitting is the availability of highly active and stable electrocatalysts. Although non-precious metal electrocatalysts have made great strides in recent years, the best hydrogen evolution reaction (HER) electrocatalysts are still based on noble metals. Therefore, it is particularly important to improve the overall activity of the electrocatalysts while reducing the noble metals load. Alloying strategies can shoulder the burden of optimizing electrocatalysts cost and improving electrocatalysts performance. With this in mind, recent work on the application of noble metal-based alloy electrocatalysts in the field of hydrogen production from water electrolysis is summarized. In this review, first, the mechanism of HER is described; then, the current development of synthesis methods for alloy electrocatalysts is presented; finally, an example analysis of practical application studies on alloy electrocatalysts in hydrogen production is presented. In addition, at the end of this review, the prospects, opportunities, and challenges facing noble metal-based alloy electrocatalysts are tried to discuss.
Collapse
Affiliation(s)
- Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - ZeYi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Biao Zhang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South 9th Avenue, Gao Xin, Shenzhen, Guangdong, 518057, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
35
|
Jiang Z, Zhou W, Hu C, Luo X, Zeng W, Gong X, Yang Y, Yu T, Lei W, Yuan C. Interlayer-Confined NiFe Dual Atoms within MoS 2 Electrocatalyst for Ultra-Efficient Acidic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300505. [PMID: 37147742 DOI: 10.1002/adma.202300505] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Confining dual atoms (DAs) within the van der Waals gap of 2D layered materials is expected to expedite the kinetic and energetic strength in catalytic process, yet is a huge challenge in atomic-scale precise assembling DAs within two adjacent layers in the 2D limit. Here, an ingenious approach is proposed to assemble DAs of Ni and Fe into the interlayer of MoS2 . While inheriting the exceptional merits of diatomic species, this interlayer-confined structure arms itself with confinement effect, displaying the more favorable adsorption strength on the confined metal active center and higher catalytic activity towards acidic water splitting, as verified by intensive research efforts of theoretical calculations and experimental measurements. Moreover, the interlayer-confined structure also renders metal DAs a protective shelter to survive in harsh acidic environment. The findings embodied the confinement effects at the atom level, and interlayer-confined assembling of multiple species highlights a general pathway to advance interlayer-confined DAs catalysts within various 2D materials.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Wenda Zhou
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Ce Hu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Wei Zeng
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Xunguo Gong
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Yong Yang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
36
|
Wu Y, Yao R, Zhao Q, Li J, Liu G. RuO 2 nanoparticles anchored on g-C 3N 4 as an efficient bifunctional electrocatalyst for water splitting in acidic media. Dalton Trans 2023. [PMID: 37449381 DOI: 10.1039/d3dt01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The electrolysis of water, particularly proton exchange membrane (PEM) water electrolysis, holds great promise for hydrogen production in industry. However, the catalyst used in this process is prone to dissolution in acidic environments, making it imperative to develop cost-effective, highly efficient, and acid-stable electrocatalytic materials to overcome this challenge and enable large-scale application of PEM water electrolysis technology. Herein, we prepared ruthenium oxide (RuO2)/graphitic carbon nitride (g-C3N4) composites (RuO2/C3N4) via a combination of sol-gel and annealing methods. The g-C3N4 provides a large surface area, while RuO2 is uniformly deposited on the g-C3N4 surface. The interaction between g-C3N4 and RuO2 stabilizes the RuO2 nanoparticles and enhances long-term water oxidation stability. This unique structure and the combined advantages of RuO2 and g-C3N4 yield exceptional electrocatalytic activity toward both the oxygen evolution reaction (OER, 240 mV@10 mA cm-2) and the hydrogen evolution reaction (HER, 109 mV@10 mA cm-2), with excellent durability (over 28 h), and a cell voltage of 1.607 V at 10 mA cm-2 when used in an RuO2/C3N4||RuO2/C3N4 electrolyzer. This study highlights the efficacy of the g-C3N4 support method in designing highly stable Ru-based OER electrocatalysts for efficient acidic water splitting.
Collapse
Affiliation(s)
- Yun Wu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Rui Yao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| |
Collapse
|
37
|
Xie Y, Feng Y, Jin S, Li C, Li C, Sun Y, Luo F, Yang Z. Nickel-doped iridium echinus-like nanosheets for stable acidic water splitting. Chem Commun (Camb) 2023. [PMID: 37326427 DOI: 10.1039/d3cc02299d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nickel-doped iridium echinus-like nanosheets (NiIr-ENS) have a superior acidic oxygen evolution reaction (OER) activity with a TOF of 1.72 s-1 at an overpotential of 300 mV, 8.6-fold higher than that of IrO2.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Yumei Feng
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Siyu Jin
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Chen Li
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China.
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China.
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China
| | - Fang Luo
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| |
Collapse
|
38
|
Bhatti AL, Tahira A, Kumar S, Ujjan ZA, Bhatti MA, Kumar S, Aftab U, Karsy A, Nafady A, Infantes-Molina A, Ibupoto ZH. Facile synthesis of efficient Co 3O 4 nanostructures using the milky sap of Calotropis procera for oxygen evolution reactions and supercapacitor applications. RSC Adv 2023; 13:17710-17726. [PMID: 37333727 PMCID: PMC10273030 DOI: 10.1039/d3ra02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023] Open
Abstract
The preparation of Co3O4 nanostructures by a green method has been rapidly increasing owing to its promising aspects, such as facileness, atom economy, low cost, scale-up synthesis, environmental friendliness, and minimal use of hazardous chemicals. In this study, we report on the synthesis of Co3O4 nanostructures using the milky sap of Calotropis procera (CP) by a low-temperature aqueous chemical growth method. The milky sap of CP-mediated Co3O4 nanostructures were investigated for oxygen evolution reactions (OERs) and supercapacitor applications. The structure and shape characterizations were done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) techniques. The prepared Co3O4 nanostructures showed a heterogeneous morphology consisting of nanoparticles and large micro clusters. A typical cubic phase and a spinel structure of Co3O4 nanostructures were also observed. The OER result was obtained at a low overpotential of 250 mV at 10 mA cm-2 and a low Tafel slope of 53 mV dec-1. In addition, the durability of 45 hours was also found at 20 mA cm-2. The newly prepared Co3O4 nanostructures using the milky sap of CP were also used to demonstrate a high specific capacitance of 700 F g-1 at a current density of 0.8 A g-1 and a power density of 30 W h kg-1. The enhanced electrochemical performance of Co3O4 nanostructures prepared using the milky sap of CP could be attributed to the surface oxygen vacancies, a relatively high amount of Co2+, the reduction in the optical band gap and the fast charge transfer rate. These surface, structural, and optical properties were induced by reducing, capping, and stabilizing agents from the milky sap of CP. The obtained results of OERs and supercapacitor applications strongly recommend the use of the milky sap of CP for the synthesis of diverse efficient nanostructured materials in a specific application, particularly in energy conversion and storage devices.
Collapse
Affiliation(s)
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Shusheel Kumar
- Institute of Physics, University of Sindh Jamshoro 76080 Sindh Pakistan
| | | | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Sooraj Kumar
- Department of Chemical Engineering, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Amal Karsy
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE) Cairo Egypt
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Antonia Infantes-Molina
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Unidad Asociada al ICP-CSIC, Faculty of Sciences, University of Malaga, Campus de Teatinos 29071 Malaga Spain
| | | |
Collapse
|
39
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
40
|
Xie Y, Chang C, Luo F, Yang Z. Modulation in the d Band of Ir by Core-Shell Construction for Robust Water Splitting Electrocatalysts in Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20081-20088. [PMID: 36989036 DOI: 10.1021/acsami.3c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The realization of commercialization of proton electrolyte membrane water splitting technology significantly depends on the anodic electrocatalyst working at a high potential and strong acidic conditions requiring superior oxygen evolution reaction activity and stability. In this work, we devise the construction of ultrasmall Pd@Ir core-shell nanoparticles (5 nm) with atomic layer Ir (3 atomic layers) on carbon nanotubes (Pd@Ir/CNT) as an exceptional bifunctional electrocatalyst in acidic water splitting. Due to the core-shell structure, strain generated at heterointerfaces leads to an upshifted d band center of Ir atoms contributing to a 62-fold better mass activity at 1.63 V vs RHE than commercial IrO2; besides, the electronic hybridization suppresses the electrochemical dissolution of Ir; as a result, robust stability is also achieved. In hydrogen evolution reaction catalysis, Pd@Ir/CNT exhibits a 3.7 times higher mass activity than Pt/C. Furthermore, only 1.7 V is required to reach a water splitting current density of 100 mA cm-2, 251 mV lower than that of Pt/C-IrO2, indicating its superiority in acidic water splitting.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Chaofeng Chang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Fang Luo
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, P. R. China
| |
Collapse
|
41
|
Agarose-gel-based self-limiting synthesis of a bimetal (Fe and Co)-doped composite as a bifunctional catalyst for a zinc-air battery. J Colloid Interface Sci 2023; 635:186-196. [PMID: 36586144 DOI: 10.1016/j.jcis.2022.12.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Exploring efficient noble-metal-free electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the development of rechargeable Zn-air batteries. Herein, a self-limiting method using an agarose gel was proposed to prepare bimetallic (iron and cobalt) nitrogen-doped carbon composites (FeCo-NC). The resulting FeCo-NC catalyst has a high surface area and a hierarchical porous structure. The optimized FeCo-NC electrocatalyst exhibits a small potential difference (ΔE) = 0.72 V between the ORR half-wave potential and the OER potential at a current density of 10 mA cm-2 in alkaline media. Impressively, the FeCo-NC Zn-air battery exhibits a high open-circuit voltage, large power density, and outstanding charge-discharge cycling stability. This study provides an effective means of designing electrocatalysts and energy conversion systems.
Collapse
|
42
|
Yang S, Si Z, Li G, Zhan P, Liu C, Lu L, Han B, Xie H, Qin P. Single Cobalt Atoms Immobilized on Palladium-Based Nanosheets as 2D Single-Atom Alloy for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207651. [PMID: 36631281 DOI: 10.1002/smll.202207651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec-1 and a low overpotential of 24.7 mV at 10 mA cm-2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.
Collapse
Affiliation(s)
- Shuai Yang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Guozhen Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Chang Liu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., LTD, No. 712 Wen'er West Road, Hangzhou, 310003, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| |
Collapse
|
43
|
Rebarchik M, Bhandari S, Kropp T, Mavrikakis M. Insights into the Oxygen Evolution Reaction on Graphene-Based Single-Atom Catalysts from First-Principles-Informed Microkinetic Modeling. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Michael Rebarchik
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Saurabh Bhandari
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Thomas Kropp
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
Yuan SY, Jiang LW, Hu JS, Liu H, Wang JJ. Fully Dispersed IrO x Atomic Clusters Enable Record Photoelectrochemical Water Oxidation of Hematite in Acidic Media. NANO LETTERS 2023; 23:2354-2361. [PMID: 36853807 DOI: 10.1021/acs.nanolett.3c00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ir-based materials are still the benchmark catalysts for various reactions in acidic environment, but the high loading and low atom utilization limit their large-scale deployment. Herein, we report an effective strategy for implanting fully dispersed iridium-oxide atomic clusters onto hematite for boosting photoelectrochemical water oxidation in acidic solution. The resulting photoanode achieves a record-high photocurrent of 1.35 mA cm-2 at 1.23 V, corresponding to a mass activity of 172.70 A g-1 (3 times higher than electrodeposited control sample) and demonstrating the merits from the high atomic utilization of Ir. The systematically experimental and theoretical results reveal that the performance improvement correlates with the modulated electronic structure including the adjusted Fermi level and d-band center, which significantly enhances charge separation efficiency and promotes the conversion from intermediate *O into *OOH.
Collapse
Affiliation(s)
- Shao-Yu Yuan
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
| | - Li-Wen Jiang
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Science Beijing 100190, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan 250022, P. R. China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
45
|
Liu Y, Chen Y, Mu X, Wu Z, Jin X, Li J, Xu Y, Yang L, Xi X, Jang H, Lei Z, Liu Q, Jiao S, Yan P, Li X, Cao R. Spinel-Anchored Iridium Single Atoms Enable Efficient Acidic Water Oxidation via Intermediate Stabilization Effect. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yawei Chen
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xulin Mu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Zhongyi Wu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xu Jin
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yanzhi Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiaoke Xi
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, 4726, Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Zhanwu Lei
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Shuhong Jiao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Yan
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Xiyu Li
- University of Science and Technology of China, Hefei 230026, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
46
|
Evaluating the Stability of Ir Single Atom and Ru Atomic Cluster Oxygen Evolution Reaction Electrocatalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Si F, Liu J, Zhang Y, Zhao B, Liang Y, Wu X, Kang X, Yang X, Zhang J, Fu XZ, Luo JL. Surface Spin Enhanced High Stable NiCo 2 S 4 for Energy-Saving Production of H 2 from Water/Methanol Coelectrolysis at High Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205257. [PMID: 36344428 DOI: 10.1002/smll.202205257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nickel based materials are promising electrocatalysts to produce hydrogen from water in alkaline media. However, the stability is of great challenge, limiting its practical material functions. Herein, a new technique for electro-deposition flower-like NiCo2 S4 nanosheets on carbon-cloth (CC@NiCo2 S4 ) is proposed for energy-saving production of H2 from water/methanol coelectrolysis at high current density by constructing array architectures and regulating surface magnetism. The optimized and fine-tuned magnetism on the surface of the electrochemical in situ grown CC@NiCo2 S4 nanosheet array result in (0 1 -1) surface universally exposed, high catalytic activity for methanol electrooxidation, and long-term stability at high current density. X-ray photoelectron spectroscopy in combination of density functional theory calculations confirm the valence electron states and spin of d electrons for the surface of NiCo2 S4 , which enhance the surface stability of catalysts. This technology may be utilized to alter the surface magnetism and increase the stability of Ni-based electrocatalytic materials in general.
Collapse
Affiliation(s)
- Fengzhan Si
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianwen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bin Zhao
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yue Liang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuexian Wu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaomin Kang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoqiang Yang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
48
|
Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Guo R, Shi J, Hong L, Ma K, Zhu W, Yang H, Wang J, Wang H, Sheng M. CoP 2/Co 2P Encapsulated in Carbon Nanotube Arrays to Construct Self-Supported Electrodes for Overall Electrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56847-56855. [PMID: 36524830 DOI: 10.1021/acsami.2c17742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrocatalytic water splitting is a desirable and sustainable strategy for hydrogen production yet still faces challenges due to the sluggish kinetics and rapid deactivation of catalysts in the oxygen evolution process. Herein, we utilized the metal-catalyzed growth technology and phosphating process to fabricate self-supported electrodes (CoxPy@CNT-CC) composed of carbon nanotube (CNT) arrays grown on carbon cloth (CC); thereinto, cobalt-based phosphide nanoparticles (CoxPy) are uniformly encapsulated in the cavity of the CNTs. After further optimization, when the nanoparticles are in the composite phase (CoP2/Co2P), CoP2/Co2P@CNT-CC served as catalytic electrodes with the highest activity and stability for electrocatalytic water splitting in an alkaline medium (1.0 M KOH). The as-prepared CoP2/Co2P@CNT-CC integrates the advantages of the abundant active sites and confinement effect of CNTs, imparting promising electrocatalytic activities and stability in catalyzing both hydrogen evolution reaction and oxygen evolution reaction. Remarkably, electrocatalytic water splitting cells assembled using CoP2/Co2P@CNT-CC electrodes as the cathode and anode, respectively, require a cell voltage of 1.55 V at 10 mA cm-2, which is lower than that of the commercially noble Pt/C/CC and RuO2/CC catalyst couple (1.68 V). Besides, a CoP2/Co2P@CNT-CC||CoP2/Co2P@CNT-CC system shows outstanding durability for a period of 100 h at 10 mA cm-2. This work may provide new ideas for designing bifunctional electrocatalysts for applications in electrocatalytic water splitting.
Collapse
Affiliation(s)
- Ruiqi Guo
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Jialun Shi
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Lan Hong
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Kaiwen Ma
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Wenxiang Zhu
- Institue of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123Suzhou, China
| | - Haiwei Yang
- Institue of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123Suzhou, China
| | - Jiajie Wang
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Huihua Wang
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Minqi Sheng
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| |
Collapse
|
50
|
Dong S, Zhang C, Yue Z, Zhang F, Zhao H, Cheng Q, Wang G, Xu J, Chen C, Zou Z, Dou Z, Yang H. Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis. NANO LETTERS 2022; 22:9434-9440. [PMID: 36469749 DOI: 10.1021/acs.nanolett.2c03461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Insufficient catalyst utilization, limited mass transport, and high ohmic resistance of the conventional membrane electrode assembly (MEA) lead to significant performance losses of proton exchange membrane water electrolysis (PEMWE). Herein we propose a novel ordered MEA based on anode with a 3D membrane/catalytic layer (CL) interface and gradient tapered arrays by the nanoimprinting method, confirmed by energy dispersive spectroscopy. Benefiting from the maximized triple-phase interface, rapid mass transport, and gradient CL by overall design, such an ordered structure with Ir loading of 0.2 mg cm-2 not only greatly increases the electrochemical active area by 4.2 times but also decreases the overpotentials of both mass transport and ohmic polarization by 13.9% and 8.7%, respectively, compared with conventional MEA with an Ir loading of 2 mg cm-2, thus ensuring a superior performance (1.801 V at 2 A cm-2) and good stability. This work provides a new strategy of designing MEA for high-performance PEMWE.
Collapse
Affiliation(s)
- Shu Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunyan Zhang
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200023, China
| | - Zhouying Yue
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fengru Zhang
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hao Zhao
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingqing Cheng
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guoliang Wang
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jianfeng Xu
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chi Chen
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhiqing Zou
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhenlan Dou
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200023, China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|