1
|
Cao LM, Qiu YZ, Li ZZ, Wang GR, Xiao Y, Luo HY, Liu B, Wu Q, Bu LL. Extracellular Vesicles: Hermes between cancers and lymph nodes. Cancer Lett 2025; 623:217735. [PMID: 40268131 DOI: 10.1016/j.canlet.2025.217735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer is one of the main causes of death and a major obstacle to increasing life expectancy in all countries of the world. Lymph node metastasis (LNM) of in cancer patients indicates poor prognosis and it is an important indication to determine the therapeutic regime. Therefore, more attention should be given to the molecular mechanics of tumor lymphangiogenesis and LNM. Extracellular vesicles (EVs) are nanoscale cargo-bearing membrane vesicles that can serve as key mediators for the intercellular communication. Like Hermes, the messenger of the Greek gods, EVs can be secreted by tumor cells to regulate the LNM process. Many evidence has proved the clinical correlation between EVs and LNM in various cancer types. EVs plays an active role in the process of metastasis by expressing its connotative molecules, including proteins, nucleic acids, and metabolites. However, the clear role of EVs in the process of cancer LNM has not been thoroughly studied yet. In this review, we will summarize the clinical and mechanical findings of EVs regulating role on cancer LNM, and discuss the advanced modification of the research proposal. We propose the "PUMP" principle of EVs in LNM, including Preparation, Unleash, Migration, and Planting.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Zhong Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Han-Yue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Wang C, Fulati A, Kimura K, Li X, Richardson JJ, Naito M, Miyata K, Ichiki T, Ejima H. Encapsulation of Small Extracellular Vesicles into Selectively Disassemblable Shells of PEGylated Metal-Phenolic Networks. Adv Healthc Mater 2025:e2405188. [PMID: 40326152 DOI: 10.1002/adhm.202405188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/12/2025] [Indexed: 05/07/2025]
Abstract
Small extracellular vesicles (sEVs) are cell-derived particles used for intercellular communication in living organisms that have gained great interest from researchers for their use as drug carriers and diagnostic agents. However, the isolation and storage of sEVs lead to issues including lipid membrane disruption, protein denaturation, and nucleic acid degradation. Herein, a surface functionalization strategy is reported for encapsulating single sEV into selectively disassemblable protective shells composed of metal-phenolic networks (MPNs) post-modified with poly(ethylene glycol) (PEG). Disassemblable MPN shells can be rapidly deposited on sEVs in a one-step manner and post-modified with PEG. These coatings enhance the colloidal stability of sEVs and protect them against harsh storage conditions, while the non-covalent and selectively disassemblable nature of the MPN shell allows recovery after storage without compromising their surface integrity and functionality. It is demonstrated that various triggers, such as pH adjustment, competitive chelation, and redox reactions, can be used to disassemble the MPN shell, thereby offering widely adoptable strategies depending on the target applications. This approach potentially overcomes conventional challenges associated with sEV processing and storage and may contribute to reducing cold-chain requirements and transportation costs of future sEVs-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ailifeire Fulati
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kenta Kimura
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Xianglan Li
- Materials Fabrication and Analysis Platform, Research Network and Facility Services Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Joseph J Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Mitsuru Naito
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Huang Q, Wang J, Ning H, Liu W, Han X. Exosome isolation based on polyethylene glycol (PEG): a review. Mol Cell Biochem 2025; 480:2847-2861. [PMID: 39702782 DOI: 10.1007/s11010-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Exosome acts as an outstanding biomarker for ongoing studies, diagnosis and prognosis of multiples diseases. Therefore, the call for economically and efficiently isolating a large number of exosomes is an active area of investigation. However, to date, the challenges including complex isolated procedure, uneconomical equipment, low protein content and distinct loss in the particle number of exosomes etc. still encounter in exosome isolation. Polyethylene glycol (PEG)-induced exosome isolation increasingly attracts wide attention of scientists. PEG precipitation reveals higher performance in the yield of exosomes among multiple common isolation techniques. PEG-based precipitation is a temporarily low-purity, but inexpensive, time-save, labor-less, convenient and high-yield technique to gain exosomes with high biological activities. Hence, the PEG-based exosome isolation approach wins the endorsement of experimental workers. Herein, we summary the existing knowledge on procedures of PEG-based exosomes separation from different biospecimens, the binding process of PEG to exosomes, some notices, demerits, merits of PEG-based exosome isolation, and at last the advantages by combining PEG-precipitation to other techniques for exosome isolation, with a view to eliciting profound insights for investigators who recruit PEG for exosome separation, and advancing references for the standardization of PEG-based exosome isolation in future.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Kim D, Lee JW, Rawding PA, Iida M, Kim C, Kostecki KL, Poellmann MJ, Crossman B, Liu AS, Kim Y, Wheeler DL, Hong S. Dendrimer Conjugates with PD-L1-Binding Peptides Enhance In Vivo Antitumor Immune Response. Adv Healthc Mater 2025:e2500551. [PMID: 40244214 DOI: 10.1002/adhm.202500551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Peptides are an emerging class of biologics for cancer immunotherapy; however, their clinical translation is hindered by poor binding kinetics, bioavailability, and short plasma half-life compared to their corresponding antibodies. Nanoparticles present potential solutions but face scale-up difficulties due to complexity. Here, a translatable, modular nanoparticle scaffold is presented for peptide-based immune checkpoint inhibitors (ICIs). This platform is based on a simple structure of generation 7 (G7) poly(amidoamine) (PAMAM) dendrimers conjugated with engineered peptides (dendrimer-peptide conjugates, DPCs). DPCs functionalized with multiple copies of a programmed death-ligand 1 (PD-L1)-binding peptide exhibited significantly enhanced avidity-based binding kinetics and in vitro specificity, in addition to the substantially prolonged plasma half-life in vivo. Notably, a series of in vivo experiments revealed that DPCs displayed selective tumor accumulation and high efficacy, without apparent toxicity, when applied to a syngeneic mouse model bearing mouse oral carcinoma (MOC1) tumors. The results indicate that the DPC platform significantly improves the antagonistic effect and in vivo behaviors of the PD-L1-binding peptides, which can be potentially applied to virtually any peptide-based ICIs. The DPC platform's simplicity and modular nature will likely increase the potential of its clinical translation and ultimately enable precision/personalized cancer immunotherapy.
Collapse
Affiliation(s)
- DaWon Kim
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, 53705, USA
| | - Jin Woong Lee
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, 53705, USA
| | - Piper A Rawding
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, 53705, USA
| | - Mari Iida
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Carter Kim
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, 53705, USA
| | - Kourtney L Kostecki
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Michael J Poellmann
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, 53705, USA
| | - Bridget Crossman
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Ashley S Liu
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, 53705, USA
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei University, Incheon, 21983, South Korea
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, South Korea
| | - Deric L Wheeler
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, WI, 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, 53705, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, South Korea
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, WI, 53705, USA
- Lachman Institute for Pharmaceutical Development, University of Wisconsin, Madison, WI, 53705, USA
| |
Collapse
|
5
|
Xu K, Hao Y, Gao H, Feng H, Chen J, Zhao R, Huang Y. Engineering Peptide-Based Molecular Baits for Targeted Fishing and Protein Profiling of Exosomes as a Liquid Biopsy for Gastrointestinal Adenocarcinoma. Anal Chem 2025; 97:741-748. [PMID: 39810339 DOI: 10.1021/acs.analchem.4c05186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
High-performance isolation of exosomes as a promising liquid biopsy target is of great importance for both fundamental research and clinical applications. This is, however, challenged by the prevalent heterogeneity of exosomes and the highly complex nature of biosamples. Here, we introduce the use of a CD81-targeting peptide as a building block for tailoring molecular baits for exosome isolation and payload analysis in clinical biofluids. To explore the full potential of multivalent interactions, peptide-functionalized affinity interfaces were covalently engineered with varied assembling topology, flexibility, and local density of the recognition motif. Capable of best fitting the surface conformation of CD81 on highly curved exosome membranes, a dual-layered exosome capture affinity interface (Exo-PepTrap2) with tandem bivalent peptide decoration outperforms the monolayered and the branched multivalent architectures. Enabled by the multivalency-enhanced affinity reaction and antifouling ability, Exo-PepTrap2 achieved a high yield and purity for targeted fishing of exosomes in complex cell culture media and clinical urine samples. By integration of Exo-PepTrap2 isolation with mass spectrometry-based proteomic profiling, differentially expressed proteins were efficiently identified in harvested exosomes as potential biomarkers for gastrointestinal adenocarcinoma. This CD81-targeted tandem peptide-functionalized affinity platform provides a new viewpoint for tailoring multivalency-based affinity interfaces and a versatile tool to explore molecular information in exosomes for precise medicine.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Hao
- Department of Geriatrics, Peking University Third Hospital, Beijing 100191, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Meng L, Zhao T, Wang S, Wang W. A biomimetic 3D DNA nanoplatform for enhanced capture and high-purity isolation of stem cell exosomes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:388-394. [PMID: 39641647 DOI: 10.1039/d4ay01665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Exosomes are uniformly sized vesicle-like bodies that cells secrete. Researchers now believe that exosomes can mediate various health and pathological processes. However, because the biophysical properties of exosomes are similar to those of other cell secretion products and biological fluids are rich and diverse, their separation and purification have always been challenging. Inspired by the adhesive domains in the tentacles of marine organisms that effectively capture and release mobile food particles, we have built a biomimetic 3D DNA nanoplatform. This platform not only captures exosomes efficiently but also allows for light-controlled exosome release. The surface of the 3D DNA nanoplatform can grow multivalent aptamers via rolling circle amplification. Aptamers fold into specific secondary structures that bind to CD63, a protein expressed on the surface of exosomes, enabling efficient exosome capture. As a photothermal reagent, the temperature of the DNA nanoplatform increases under near-infrared light irradiation, destroying the secondary structure of the CD63 aptamer and releasing the exosomes. Additionally, we have demonstrated that a 3D DNA nanoplatform with multivalent CD63 aptamer structures achieves more efficient and convenient stem cell exosome separation compared to ultracentrifugation. This strategy provides an efficient and high-purity way to capture and reversibly separate exosomes, and the separated ultrapure exosomes are used for enhancing wound healing by modulating migration and angiogenesis.
Collapse
Affiliation(s)
- Lingxia Meng
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Tingting Zhao
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Shuaiying Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Wenxiao Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| |
Collapse
|
7
|
Liu X, Zhang J, Chen Z, He X, Yan C, Lv H, Chen Z, Liu Y, Wang L, Song C. Branched hybridization chain reaction and tetrahedral DNA-based trivalent aptamer powered SERS sensor for ultra-highly sensitive detection of cancer-derived exosomes. Biosens Bioelectron 2025; 267:116737. [PMID: 39243449 DOI: 10.1016/j.bios.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Exosomes have emerged as a promising noninvasive biomarker for early cancer diagnosis due to their ability to carry specific bioinformation related to cancer cells. However, accurate detection of trace amount of cancer-derived exosomes in complex blood remains a significant challenge. Herein, an ultra-highly sensitive SERS sensor, powered by the branched hybridization chain reaction (bHCR) and tetrahedral DNA-based trivalent aptamer (triApt-TDN), has been proposed for precise detection of cancer-derived exosomes. Taking gastric cancer SGC-7901 cells-derived exosomes as a test model, the triApt-TDNs were constructed by conjugating aptamers specific to mucin 1 (MUC1) protein with tetrahedral DNAs and subsequently immobilized on the surface of silver nanorods (AgNRs) arrays to create SERS-active sensing chips capable of specifically capturing exosomes overexpressing MUC1 proteins. The bHCR was further initiated by the trigger aptamers (tgApts) bound to exosomes, and as a result the SERS tags were assembled into AuNP network structures with abundant SERS hotspots. By optimizing the sensing conditions, the SERS sensor showed good performance in ultra-highly sensitive detection of target exosomes within 60 min detection time, with a broad response ranging of 1.44 to 1.44 × 104 particles·μL-1 and an ultralow limit of detection capable of detecting a single exosome in 2 μL sample. Furthermore, the SERS sensor exhibited good uniformity, repeatability and specificity, and capability to distinguish between gastric cancer (GC) patients and healthy controls (HC) through the detection of exosomes in clinical human serums, indicating its promising clinical potential for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Zeyan Chen
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiyu He
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chenlong Yan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ying Liu
- Xuzhou College of Industrial Technology, Xuzhou, 221140, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
8
|
Li J, Luo P, Liu S, Fu M, Lin A, Liu Y, He Z, Qiao K, Fang Y, Qu L, Yang K, Wang K, Wang L, Jiang A. Effective strategies to enhance the diagnosis and treatment of RCC: The application of biocompatible materials. Mater Today Bio 2024; 27:101149. [PMID: 39100279 PMCID: PMC11296058 DOI: 10.1016/j.mtbio.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Renal cell carcinoma (RCC) is recognized as one of the three primary malignant tumors affecting the urinary system, posing a significant risk to human health and life. Despite advancements in understanding RCC, challenges persist in its diagnosis and treatment, particularly in early detection and diagnosis due to issues of low specificity and sensitivity. Consequently, there is an urgent need for the development of effective strategies to enhance diagnostic accuracy and treatment outcomes for RCC. In recent years, with the extensive research on materials for applications in the biomedical field, some materials have been identified as promising for clinical applications, e.g., in the diagnosis and treatment of many tumors, including RCC. Herein, we summarize the latest materials that are being studied and have been applied in the early diagnosis and treatment of RCC. While focusing on their adjuvant effects, we also discuss their technical principles and safety, thus highlighting the value and potential of their application. In addition, we also discuss the limitations of the application of these materials and possible future directions, providing new insights for improving RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinxin Li
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shiyang Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ziwei He
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Kun Qiao
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Le Qu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210000, China
| | - Kaidi Yang
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan, 572000, China
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Kunpeng Wang
- Department of Urology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The first People's Hospital of Lianyungang, 222061, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
9
|
Bandu R, Oh JW, Kim KP. Extracellular vesicle proteins as breast cancer biomarkers: Mass spectrometry-based analysis. Proteomics 2024; 24:e2300062. [PMID: 38829178 DOI: 10.1002/pmic.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 06/05/2024]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded vesicles released by various cell types into the extracellular microenvironment. Although EVs vary in size, biological function, and components, their importance in cancer progression and the potential use of EV molecular species to serve as novel cancer biomarkers have become increasingly evident. Cancer cells actively release EVs into surrounding tissues, which play vital roles in cancer progression and metastasis, including invasion and immune modulation. EVs released by cancer cells are usually chosen as a gateway in the search for biomarkers for cancer. In this review, we mainly focused on molecular profiling of EV protein constituents from breast cancer, emphasizing mass spectrometry (MS)-based proteomic approaches. To further investigate the potential use of EVs as a source of breast cancer biomarkers, we have discussed the use of these proteins as predictive marker candidates. Besides, we have also summarized the key characteristics of EVs as potential therapeutic targets in breast cancer and provided significant information on their implications in breast cancer development and progression. Information provided in this review may help understand the recent progress in understanding EV biology and their potential role as new noninvasive biomarkers as well as emerging therapeutic opportunities and associated challenges.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Chen M, Li J, Lin Y, Li X, Yu Y, Zhou S, Xu F, Zhang Q, Zhang H, Wang W. Recent research on material-based methods for isolation of extracellular vesicles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3179-3191. [PMID: 38738644 DOI: 10.1039/d4ay00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by cells with a closed phospholipid bilayer structure, which can participate in various physiological and pathological processes and have significant clinical value in disease diagnosis, targeted therapy and prognosis assessment. EV isolation methods currently include differential ultracentrifugation, ultrafiltration, size exclusion chromatography, immunoaffinity, polymer co-precipitation and microfluidics. In addition, material-based biochemical or biophysical approaches relying on intrinsic properties of the material or its surface-modified functionalized monomers, demonstrated unique advantages in the efficient isolation of EVs. In order to provide new ideas for the subsequent development of material-based EV isolation methods, this review will focus on the principle, research status and application prospects of material-based EV isolation methods based on different material carriers and functional monomers.
Collapse
Affiliation(s)
- Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Xiaowei Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Qi Zhang
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
11
|
Choi Y, Akyildiz K, Seong J, Lee Y, Jeong E, Park JS, Lee DH, Kim K, Koo HJ, Choi J. Dielectrophoretic Capture of Cancer-Derived Small-Extracellular-Vesicle-Bound Janus Nanoparticles via Lectin-Glycan Interaction. Adv Healthc Mater 2024; 13:e2302313. [PMID: 38124514 DOI: 10.1002/adhm.202302313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Glycosylation is closely related to cellular metabolism and disease progression. In particular, glycan levels in cancer cells and tissues increase during cancer progression. This upregulation of glycosylation in cancer cells may provide a basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. Here, they developed a detection technology for pancreatic cancer cell-derived small extracellular vesicles (PC-sEVs) based on lectin-glycan interactions. Lectins specific for sialic acids are conjugated to Janus nanoparticles to induce interactions with PC-sEVs in a dielectrophoretic (DEP) system. PC-sEVs are selectively bound to the lectin-conjugated Janus nanoparticles (lectin-JNPs) with an affinity comparable to that of conventionally used carbohydrate antigen 19-9 (CA19-9) antibodies. Furthermore, sEVs-bound Lectin-JNPs (sEVs-Lec-JNPs) are manipulated between two electrodes to which an AC signal is applied for DEP capture. In addition, the proposed DEP system can be used to trap the sEVs-Lec-JNP on the electrodes. Their results, which are confirmed by lectin-JNPs using the proposed DEP system followed by target gene analysis, provide a basis for the development of a new early diagnostic marker based on the glycan characteristics of PC-sEVs. In turn, these novel detection methods could overcome the shortcomings of commercially available pancreatic cancer detection techniques.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Kubra Akyildiz
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jihyun Seong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yangwoo Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Jin-Seok Park
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| |
Collapse
|
12
|
Moon Y, Lee S, Kim J, Park G, Park C, Lim JW, Yeom M, Song D, Haam S. Label-Free and Colorimetric Detection of Influenza A Virus via Receptor-Mediated Viral Fusion with Plasmonic Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305748. [PMID: 37712175 DOI: 10.1002/smll.202305748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/02/2023] [Indexed: 09/16/2023]
Abstract
The rapid transmission and numerous re-emerging human influenza virus variants that spread via the respiratory system have led to severe global damage, emphasizing the need for detection tools that can recognize active and intact virions with infectivity. Here, this work presents a plasmonic vesicle-mediated fusogenic immunoassay (PVFIA) comprising gold nanoparticle (GNP) encapsulating fusogenic polymeric vesicles (plasmonic vesicles; PVs) for the label-free and colorimetric detection of influenza A virus (IAV). The PVFIA combines two sequential assays: a biochip-based immunoassay for target-specific capture and a PV-induced fusion assay for color change upon the IAV-PV fusion complex formation. The PVFIA demonstrates excellent specificity in capturing the target IAV, while the fusion conditions and GNP induce a significant color change, enabling visual detection. The integration of two consecutive assays results in a low detection limit (100.7919 EID50 mL-1 ) and good reliability (0.9901), indicating sensitivity that is 104.208 times higher than conventional immunoassay. Leveraging the PV viral membrane fusion activity renders the PVFIA promising for point-of-care diagnostics through colorimetric detection. The innovative approach addresses the critical need for detecting active and intact virions with infectivity, providing a valuable tool with which to combat the spread of the virus.
Collapse
Affiliation(s)
- Yesol Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Sun Y, Xing L, Luo J, Yu M, Wang X, Wang Y, Zhou T, Jiang H. A Pro-Metastatic Derivatives Eliminator for In Vivo Dual-Removal of Circulating Tumor Cells and Tumor-Derived Exosomes Impedes their Biodistribution into Distant Organs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304287. [PMID: 37867235 PMCID: PMC10700241 DOI: 10.1002/advs.202304287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) play an irreplaceable role in the metastatic cascade and preventing them from reaching distant organs via blood circulation helps to reduce the probability of cancer recurrence and metastasis. However, technologies that can simultaneously prevent CTCs and TDEs from reaching distant organs have not been thoroughly developed until now. Here, inspired by hemoperfusion, a pro-metastatic derivative eliminator (PMDE) is developed for the removal of both CTCs and TDEs from the peripheral blood, which also inhibits their biodistribution in distant organs. This device is designed with a dual antibody-modified immunosorbent filled into a capture column that draws peripheral blood out of the body to flow through the column to specifically capture CTCs and TDEs, followed by retransfusing the purified blood into the body. The PMDE can efficiently remove CTCs and TDEs from the peripheral blood and has excellent biocompatibility. Interestingly, the PMDE device can significantly inhibit the biodistribution of CTCs and TDEs in the lung and liver by scavenging them. This work provides a new perspective on anti-metastatic therapy and has broad prospects in clinical applications to prevent metastasis and recurrence.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Lei Xing
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Druggability of BiopharmaceuticalsChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesChina Pharmaceutical UniversityNanjing210009China
| | - Jun Luo
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Ming‐Tao Yu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Xiao‐Jie Wang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Yi Wang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Tian‐Jiao Zhou
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Hu‐Lin Jiang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Druggability of BiopharmaceuticalsChina Pharmaceutical UniversityNanjing210009China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
14
|
Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles 2023; 12:e12386. [PMID: 38050832 PMCID: PMC10696644 DOI: 10.1002/jev2.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.
Collapse
Affiliation(s)
| | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
15
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
16
|
Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem 2023; 95:16029-16048. [PMID: 37874907 DOI: 10.1021/acs.analchem.3c02224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are crucial mediators of intercellular communication and can be classified based on their physical properties, biomolecular structure, and origin. Among EVs, exosomes have garnered significant attention due to their potential as therapeutic and diagnostic tools. Exosomes are released via fusion of multivesicular bodies on plasma membranes and can be isolated from various biofluids using methods such as differential ultracentrifugation, immune affinity capture, ultrafiltration, and size exclusion chromatography. Herein, an overview of different techniques for exosome characterization and isolation, as well as the diverse applications of exosome detection, including their potential use in drug delivery and disease diagnosis, is provided. Additionally, we discuss the emerging field of exosome detection by sensors, which offers an up-and-coming avenue for point-of-care diagnostic tools development. Overall, this review aims to provide a exhaustive and up-to-date summary of the current state of exosome research.
Collapse
Affiliation(s)
- Özge Altıntaş
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| |
Collapse
|
17
|
Poellmann MJ, Bu J, Liu S, Wang AZ, Seyedin SN, Chandrasekharan C, Hong H, Kim Y, Caster JM, Hong S. Nanotechnology and machine learning enable circulating tumor cells as a reliable biomarker for radiotherapy responses of gastrointestinal cancer patients. Biosens Bioelectron 2023; 226:115117. [PMID: 36753988 PMCID: PMC10034717 DOI: 10.1016/j.bios.2023.115117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
A highly sensitive, circulating tumor cell (CTC)-based liquid biopsy was used to monitor gastrointestinal cancer patients during treatment to determine if CTC abundance was predictive of disease recurrence. The approach used a combination of biomimetic cell rolling on recombinant E-selectin and dendrimer-mediated multivalent immunocapture at the nanoscale to purify CTCs from peripheral blood mononuclear cells. Due to the exceptionally high numbers of CTCs captured, a machine learning algorithm approach was developed to efficiently and reliably quantify abundance of immunocytochemically-labeled cells. A convolutional neural network and logistic regression model achieved 82.9% true-positive identification of CTCs with a false positive rate below 0.1% on a validation set. The approach was then used to quantify CTC abundance in peripheral blood samples from 27 subjects before, during, and following treatments. Samples drawn from the patients either prior to receiving radiotherapy or early in chemotherapy had a median 50 CTC ml-1 whole blood (range 0.6-541.6). We found that the CTC counts drawn 3 months post treatment were predictive of disease progression (p = .045). This approach to quantifying CTC abundance may be a clinically impactful in the timely determination of gastrointestinal cancer progression or response to treatment.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA; Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA; Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea; Department of Biological Engineering, Inha University, Incheon, 22212, South Korea
| | - Stanley Liu
- Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea
| | - Andrew Z Wang
- Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Heejoo Hong
- Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, Seoul, 05505, South Korea
| | - YoungSoo Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Joseph M Caster
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA; Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea; Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea; Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI, 53705, USA; Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
18
|
Kumar K, Kim E, Alhammadi M, Umapathi R, Aliya S, Tiwari JN, Park HS, Choi JH, Son CY, Vilian AE, Han YK, Bu J, Huh YS. Recent advances in microfluidic approaches for the isolation and detection of exosomes. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Yin Y, Han X, Li C, Sun T, Li K, Liu X, Liu M. The status of industrialization and development of exosomes as a drug delivery system: A review. Front Pharmacol 2022; 13:961127. [PMID: 36304147 PMCID: PMC9592696 DOI: 10.3389/fphar.2022.961127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exosomes, as natural biomolecular carriers produced by cells, have the potential and advantage of delivering drugs to target organs or cells in vivo. The steps to improve exosomes as a drug delivery system can be divided into three steps:large-scale preparation of exosomes, loading of drugs and targeted delivery of exosomes. Based on the existing production process and technology, there is still much room for improvement. This review highlights the research progress in three aspects and proposes new technologies and innovative approaches to improve the efficiency of exosome delivery.
Collapse
Affiliation(s)
- Yi Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xing Han
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Cheng Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tonghui Sun
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Kailin Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- *Correspondence: Mujun Liu,
| |
Collapse
|
20
|
Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Bu J, Jeong WJ, Jafari R, Kubiatowicz LJ, Nair A, Poellmann MJ, Hong RS, Liu EW, Owen RH, Rawding PA, Hopkins CM, Kim D, George DJ, Armstrong AJ, Král P, Wang AZ, Bruce J, Zhang T, Kimple RJ, Hong S. Bimodal liquid biopsy for cancer immunotherapy based on peptide engineering and nanoscale analysis. Biosens Bioelectron 2022; 213:114445. [PMID: 35679646 DOI: 10.1016/j.bios.2022.114445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Despite its high potential, PD-L1 expressed by tumors has not been successfully utilized as a biomarker for estimating treatment responses to immunotherapy. Circulating tumor cells (CTCs) and tumor-derived exosomes that express PD-L1 can potentially be used as biomarkers; however, currently available assays lack clinically significant sensitivity and specificity. Here, a novel peptide-based capture surface is developed to effectively isolate PD-L1-expressing CTCs and exosomes from human blood. For the effective targeting of PD-L1, this study integrates peptide engineering strategies to enhance the binding strength and specificity of a β-hairpin peptide derived from PD-1 (pPD-1). Specifically, this study examines the effect of poly(ethylene glycol) spacers, the secondary peptide structure, and modification of peptide sequences (e.g., removal of biologically redundant amino acid residues) on capture efficiency. The optimized pPD-1 configuration captures PD-L1-expressing tumor cells and tumor-derived exosomes with 1.5-fold (p = 0.016) and 1.2-fold (p = 0.037) higher efficiencies, respectively, than their whole antibody counterpart (aPD-L1). This enhanced efficiency is translated into more clinically significant detection of CTCs (1.9-fold increase; p = 0.035) and exosomes (1.5-fold increase; p = 0.047) from patients' baseline samples, demonstrating stronger correlation with patients' treatment responses. Additionally, we confirmed that the clinical accuracy of our system can be further improved by co-analyzing the two biomarkers (bimodal CTC/exosome analysis). These data demonstrate that pPD-1-based capture is a promising approach for capturing PD-L1-expressing CTCs and exosomes, which can be used as a reliable biomarker for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Woo-Jin Jeong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Roya Jafari
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA
| | - Luke J Kubiatowicz
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Ashita Nair
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Michael J Poellmann
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Rachel S Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Elizabeth W Liu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Randall H Owen
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Piper A Rawding
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Caroline M Hopkins
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA; Department of Physics, Department of Pharmaceutical Sciences, University of Illinois at Chicago, 845 W Taylar St, Chicage, IL, 60607, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Justine Bruce
- Department of Human Oncology, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA
| | - Tian Zhang
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; Department of Biomedical Engineering, The University of Wisconsin-Madison, 1550 Engineering Dr., Madison, WI, 53705, USA; Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Poellmann MJ, Rawding P, Kim D, Bu J, Kim Y, Hong S. Branched, dendritic, and hyperbranched polymers in liquid biopsy device design. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1770. [PMID: 34984833 PMCID: PMC9480505 DOI: 10.1002/wnan.1770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The development of minimally invasive tests for cancer diagnosis and prognosis will aid in the research of new treatments and improve survival rates. Liquid biopsies seek to derive actionable information from tumor material found in routine blood samples. The relative scarcity of tumor material in this complex mixture makes isolating and detecting cancerous material such as proteins, circulating tumor DNA, exosomes, and whole circulating tumor cells a challenge for device engineers. This review describes the chemistry and applications of branched and hyperbranched to improve the performance of liquid biopsy devices. These polymers can improve the performance of a liquid biopsy through several mechanisms. For example, polymers designed to increase the affinity of capture enhance device sensitivity. On the other hand, polymers designed to increase binding avidity or repel nonspecific adsorption enhance device specificity. Branched and hyperbranched polymers can also be used to amplify the signal from small amounts of detected material. The further development of hyperbranched polymers in liquid biopsy applications will enhance device capabilities and help these critical technologies reach the oncology clinic where they are sorely needed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
- Capio Biosciences, Madison, Wisconsin, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
- Capio Biosciences, Madison, Wisconsin, USA
- Department of Pharmacy, Yonsei University, Incheon, South Korea
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Lee T, Rawding PA, Bu J, Hyun S, Rou W, Jeon H, Kim S, Lee B, Kubiatowicz LJ, Kim D, Hong S, Eun H. Machine-Learning-Based Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022; 14:2061. [PMID: 35565192 PMCID: PMC9103537 DOI: 10.3390/cancers14092061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
(1) Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Although various serum enzymes have been utilized for the diagnosis and prognosis of HCC, the currently available biomarkers lack the sensitivity needed to detect HCC at early stages and accurately predict treatment responses. (2) Methods: We utilized our highly sensitive cell-free DNA (cfDNA) detection system, in combination with a machine learning algorithm, to provide a platform for improved diagnosis and prognosis of HCC. (3) Results: cfDNA, specifically alpha-fetoprotein (AFP) expression in captured cfDNA, demonstrated the highest accuracy for diagnosing malignancies among the serum/plasma biomarkers used in this study, including AFP, aspartate aminotransferase, alanine aminotransferase, albumin, alkaline phosphatase, and bilirubin. The diagnostic/prognostic capability of cfDNA was further improved by establishing a cfDNA score (cfDHCC), which integrated the total plasma cfDNA levels and cfAFP-DNA expression into a single score using machine learning algorithms. (4) Conclusion: The cfDHCC score demonstrated significantly improved accuracy in determining the pathological features of HCC and predicting patients' survival outcomes compared to the other biomarkers. The results presented herein reveal that our cfDNA capture/analysis platform is a promising approach to effectively utilize cfDNA as a biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Taehee Lee
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu 41453, Korea;
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu-si 11759, Korea;
| | - Piper A. Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Korea
| | - Sunghee Hyun
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu-si 11759, Korea;
| | - Woosun Rou
- Department of Internal Medicine, Chungnam National University Sejong Hospital (CNUSH), Sejong 30099, Korea; (W.R.); (H.J.)
| | - Hongjae Jeon
- Department of Internal Medicine, Chungnam National University Sejong Hospital (CNUSH), Sejong 30099, Korea; (W.R.); (H.J.)
| | - Seokhyun Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.K.); (B.L.)
| | - Byungseok Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.K.); (B.L.)
| | - Luke J. Kubiatowicz
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
| | - Dawon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul 03722, Korea
| | - Hyuksoo Eun
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul 03722, Korea
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
24
|
Rawding PA, Bu J, Wang J, Kim D, Drelich AJ, Kim Y, Hong S. Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1752. [PMID: 34414690 PMCID: PMC9485970 DOI: 10.1002/wnan.1752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy, or the utilization of a patient's own immune system to treat cancer, has shifted the paradigm of cancer treatment. Despite meaningful responses being observed in multiple studies, currently available immunotherapy platforms have only proven effective to a small subset of patients. To address this, nanoparticles have been utilized as a novel carrier for immunotherapeutic drugs, achieving robust anti-tumor effects with increased adaptive and durable responses. Specifically, dendrimer nanoparticles have attracted a great deal of scientific interest due to their versatility in various therapeutic applications, resulting from their unique physicochemical properties and chemically well-defined architecture. This review offers a comprehensive overview of dendrimer-based immunotherapy technologies, including their formulations, biological functionalities, and therapeutic applications. Common formulations include: (1) modulators of cytokine secretion of immune cells (adjuvants); (2) facilitators of the recognition of tumorous antigens (vaccines); (3) stimulators of immune effectors to selectively attack cells expressing specific antigens (antibodies); and (4) inhibitors of immune-suppressive responses (immune checkpoint inhibitors). On-going works and prospects of dendrimer-based immunotherapies are also discussed. Overall, this review provides a critical overview on rapidly growing dendrimer-based immunotherapy technologies and serves as a guideline for researchers and clinicians who are interested in this field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Piper A Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adam J Drelich
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Youngsoo Kim
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Liu Y, Lin Z, Zheng Z, Zhang Y, Shui L. Accurate Isolation of Circulating Tumor Cells via a Heterovalent DNA Framework Recognition Element-Functionalized Microfluidic Chip. ACS Sens 2022; 7:666-673. [PMID: 35113538 DOI: 10.1021/acssensors.1c02692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detection of circulating tumor cells (CTCs) has provided a noninvasive and efficient approach for early diagnosis, treatment, and prognosis of cancer. However, efficient capture of CTCs in the clinical environment is very challenging because of the extremely rare and heterogeneous expression of CTCs. Herein, we fabricated a multimarker microfluidic chip for the enrichment of heterogeneous CTCs from peripheral blood samples of breast cancer patients. The multimarker aptamer cocktail DNA nanostructures (TP-multimarker) were modified on a deterministic lateral displacement (DLD)-patterned microfluidic chip to enhance the capture efficiency through the size selection effect of DLD arrays and the synergistic effect of multivalent aptamers. As compared to a monovalent aptamer-modified chip, the multimarker chip exhibits enhanced capture efficiency toward both high and low epithelial cell adhesion molecule expression cell lines, and the DNA nanostructure-functionalized chip enables the accurate capture of different phenotypes of CTCs. In addition, the DNA nanoscaffold makes nucleases more accessible to the aptamers to release cells with molecular integrity and outstanding cell viability.
Collapse
Affiliation(s)
- Yan Liu
- Joint Laboratory of Optofluidic Technology and Systems, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziwei Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lingling Shui
- Joint Laboratory of Optofluidic Technology and Systems, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
26
|
Inci F. Benchmarking a Microfluidic-Based Filtration for Isolating Biological Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1897-1909. [PMID: 35041413 DOI: 10.1021/acs.langmuir.1c03119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Isolating particles from complex fluids is a crucial approach in multiple fields including biomedicine. In particular, biological matrices contain a myriad of distinct particles with different sizes and structures. Extracellular vesicles (EVs), for instance, are nanosized particles carrying vital information from donor to recipient cells, and they have garnered significant impact on disease diagnostics, drug delivery, and theranostics applications. Among all the EV types, exosome particles are one of the smallest entities, sizing from 30 to 100 nm. Separating such small substances from a complex media such as tissue culture and serum is still one of the most challenging steps in this field. Membrane filtration is one of the convenient approaches for these operations; yet clogging, low-recovery, and high fouling are still major obstacles. In this study, we design a two-filter-integrated microfluidic device focusing on dead-end and cross-flow processes at the same time, thereby minimizing any interfering factors on the recovery. The design of this platform is also numerically assessed to understand pressure-drop and flow rate effects over the procedure. As a model, we isolate exosome particles from human embryonic kidney cells cultured in different conditions, which also mimic complex fluids such as serum. Moreover, by altering the flow direction, we refresh the membranes for minimizing clogging issues and benchmark the platform performance for multitime use. By comprehensively analyzing the design and operation parameters of this platform, we address the aforementioned existing barriers in the recovery, clogging, and fouling factors, thereby achieving the use of a microfluidic device multiple times for bio-nanoparticle isolation without any notable issues.
Collapse
Affiliation(s)
- Fatih Inci
- UNAM - National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
27
|
Jeong W, Bu J, Jafari R, Rehak P, Kubiatowicz LJ, Drelich AJ, Owen RH, Nair A, Rawding PA, Poellmann MJ, Hopkins CM, Král P, Hong S. Hierarchically Multivalent Peptide-Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103098. [PMID: 34894089 PMCID: PMC8811846 DOI: 10.1002/advs.202103098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Indexed: 05/20/2023]
Abstract
The multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity-based binding remains a significant challenge. Here, a set of engineering strategies are developed and tested to systematically enhance the multivalent binding of peptides in a stepwise manner. Poly(amidoamine) (PAMAM) dendrimers are employed to increase local peptide densities on a substrate, resulting in hierarchically multivalent architectures (HMAs) that display multivalent dendrimer-peptide conjugates (DPCs) with various configurations. To control binding behaviors, effects of the three major components of the HMAs are investigated: i) poly(ethylene glycol) (PEG) linkers as spacers between conjugated peptides; ii) multiple peptides on the DPCs; and iii) various surface arrangements of HMAs (i.e., a mixture of DPCs each containing different peptides vs DPCs cofunctionalized with multiple peptides). The optimized HMA configuration enables significantly enhanced target cell binding with high selectivity compared to the control surfaces directly conjugated with peptides. The engineering approaches presented herein can be applied individually or in combination, providing guidelines for the effective utilization of biomolecular multivalent interactions using DPC-based HMAs.
Collapse
Affiliation(s)
- Woo‐jin Jeong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
- Department of Biological Sciences and BioengineeringInha University100 Inha‐ro, Michuhol‐guIncheon22212Republic of Korea
| | - Jiyoon Bu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Roya Jafari
- Department of ChemistryUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
| | - Pavel Rehak
- Department of ChemistryUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
| | - Luke J. Kubiatowicz
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Adam J. Drelich
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Randall H. Owen
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Ashita Nair
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Piper A. Rawding
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Michael J. Poellmann
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Caroline M. Hopkins
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
| | - Petr Král
- Department of ChemistryUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
- Departments of Physics, Pharmaceutical Sciences and Chemical EngineeringUniversity of Illinois at Chicago845 W Taylor StChicagoIL60607USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano)School of PharmacyUniversity of Wisconsin‐Madison777 Highland AveMadisonWI53705USA
- Department of Biomedical EngineeringThe University of Wisconsin‐Madison1550 Engineering Dr.MadisonWI53705USA
- Yonsei Frontier LabDepartment of PharmacyYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| |
Collapse
|
28
|
Liu X, Zong Z, Liu X, Li Q, Li A, Xu C, Liu D. Stimuli-Mediated Specific Isolation of Exosomes from Blood Plasma for High-Throughput Profiling of Cancer Biomarkers. SMALL METHODS 2022; 6:e2101234. [PMID: 35174989 DOI: 10.1002/smtd.202101234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Exosomes, ranging from 30-150 nm in diameter, have emerged as promising non-invasive biomarkers for the diagnosis and prognosis of numerous diseases. However, current research on exosomes is largely restricted by the lack of an efficient method to isolate exosomes from real samples. Herein, the first stimuli-mediated enrichment and purification system to selectively and efficiently extract exosomes from clinical plasma for high-throughput profiling of exosomal mRNAs as cancer biomarkers is presented. This novel isolation system relies on specific installation of the stimuli-responsive copolymers onto exosomal phospholipid bilayers, by which the enrichment and purification are exclusively achieved for exosomes rather than the non-vesicle counterparts co-existing in real samples. The stimuli-mediated isolation system outperforms conventional methods such as ultracentrifugation and polyethylene glycol-based precipitation in terms of isolation yield, purity, and retained bioactivity. The high performance of the isolation system is demonstrated by enriching exosomes from 77 blood plasma samples and validated the clinical potentials in profiling exosomal mRNAs for cancer diagnosis and discrimination with high accuracy. This simple isolation system can boost the development of extracellular vesicle research, not limited to exosomes, in both basic and clinical settings.
Collapse
Affiliation(s)
- Xuehui Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyou Zong
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinzhuo Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin, 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
29
|
Zheng H, Zhao J, Wang X, Yan S, Chu H, Gao M, Zhang X. Integrated Pipeline of Rapid Isolation and Analysis of Human Plasma Exosomes for Cancer Discrimination Based on Deep Learning of MALDI-TOF MS Fingerprints. Anal Chem 2022; 94:1831-1839. [PMID: 35025210 DOI: 10.1021/acs.analchem.1c04762] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasma exosomes have shown great potential for liquid biopsy in clinical cancer diagnosis. Herein, we present an integrated strategy for isolating and analyzing exosomes from human plasma rapidly and then discriminating different cancers excellently based on deep learning fingerprints of plasma exosomes. Sequential size-exclusion chromatography (SSEC) was developed efficiently for separating exosomes from human plasma. SSEC isolated plasma exosomes, taking as less as 2 h for a single sample with high purity such that the discard rates of high-density lipoproteins and low/very low-density lipoproteins were 93 and 85%, respectively. Benefitting from the rapid and high-purity isolation, the contents encapsulated in exosomes, covered by plasma proteins, were well profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). We further analyzed 220 clinical samples, including 79 breast cancer patients, 57 pancreatic cancer patients, and 84 healthy controls. After MS data pre-processing and feature selection, the extracted MS feature peaks were utilized as inputs for constructing a multi-classifier artificial neural network (denoted as Exo-ANN) model. The optimized model avoided overfitting and performed well in both training cohorts and test cohorts. For the samples in the independent test cohort, it realized a diagnosed accuracy of 80.0% with an area under the curve of 0.91 for the whole group. These results suggest that our integrated pipeline may become a generic tool for liquid biopsy based on the analysis of plasma exosomes in clinics.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuantang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huimin Chu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Wang J, Drelich AJ, Hopkins CM, Mecozzi S, Li L, Kwon G, Hong S. Gold nanoparticles in virus detection: Recent advances and potential considerations for SARS-CoV-2 testing development. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1754. [PMID: 34498423 PMCID: PMC8646453 DOI: 10.1002/wnan.1754] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Viruses are infectious agents that pose significant threats to plants, animals, and humans. The current coronavirus disease 2019 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally and resulted in over 2 million deaths and immeasurable financial losses. Rapid and sensitive virus diagnostics become crucially important in controlling the spread of a pandemic before effective treatment and vaccines are available. Gold nanoparticle (AuNP)-based testing holds great potential for this urgent unmet biomedical need. In this review, we describe the most recent advances in AuNP-based viral detection applications. In addition, we discuss considerations for the design of AuNP-based SARS-CoV-2 testings. Finally, we highlight and propose important parameters to consider for the future development of effective AuNP-based testings that would be critical for not only this COVID-19 pandemic, but also potential future outbreaks. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Jianxin Wang
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Adam J. Drelich
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Caroline M. Hopkins
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Sandro Mecozzi
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Lingjun Li
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Department of ChemistryUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Glen Kwon
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Seungpyo Hong
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Yonsei Frontier Lab and Department of PharmacyYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
31
|
Cytochalasin B Treatment and Osmotic Pressure Enhance the Production of Extracellular Vesicles (EVs) with Improved Drug Loading Capacity. NANOMATERIALS 2021; 12:nano12010003. [PMID: 35009953 PMCID: PMC8746776 DOI: 10.3390/nano12010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have been highlighted as novel drug carriers due to their unique structural properties and intrinsic features, including high stability, biocompatibility, and cell-targeting properties. Although many efforts have been made to harness these features to develop a clinically effective EV-based therapeutic system, the clinical translation of EV-based nano-drugs is hindered by their low yield and loading capacity. Herein, we present an engineering strategy that enables upscaled EV production with increased loading capacity through the secretion of EVs from cells via cytochalasin-B (CB) treatment and reduction of EV intravesicular contents through hypo-osmotic stimulation. CB (10 µg/mL) promotes cells to extrude EVs, producing ~three-fold more particles than through natural EV secretion. When CB is induced in hypotonic conditions (223 mOsm/kg), the produced EVs (hypo-CIMVs) exhibit ~68% less intravesicular protein, giving 3.4-fold enhanced drug loading capacity compared to naturally secreted EVs. By loading doxorubicin (DOX) into hypo-CIMVs, we found that hypo-CIMVs efficiently deliver their drug cargos to their target and induce up to ~1.5-fold more cell death than the free DOX. Thus, our EV engineering offers the potential for leveraging EVs as an effective drug delivery vehicle for cancer treatment.
Collapse
|
32
|
Saad MG, Beyenal H, Dong WJ. Exosomes as Powerful Engines in Cancer: Isolation, Characterization and Detection Techniques. BIOSENSORS 2021; 11:518. [PMID: 34940275 PMCID: PMC8699402 DOI: 10.3390/bios11120518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Exosomes, powerful extracellular nanovesicles released from almost all types of living cells, are considered the communication engines (messengers) that control and reprogram physiological pathways inside target cells within a community or between different communities. The cell-like structure of these extracellular vesicles provides a protective environment for their proteins and DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and development. In addition to the unique structure of exosomes, their nanometer size and tendency of interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis, monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about the prospects of the current exosome research.
Collapse
Affiliation(s)
| | | | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (M.G.S.); (H.B.)
| |
Collapse
|
33
|
Zhu Q, Huang Y, Yang Q, Liu F. Recent technical advances to study metabolomics of extracellular vesicles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Min L, Wang B, Bao H, Li X, Zhao L, Meng J, Wang S. Advanced Nanotechnologies for Extracellular Vesicle-Based Liquid Biopsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102789. [PMID: 34463056 PMCID: PMC8529441 DOI: 10.1002/advs.202102789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are emerging as a new source of biomarkers in liquid biopsy because of their wide presence in most body fluids and their ability to load cargoes from disease-related cells. Owing to the crucial role of EVs in disease diagnosis and treatment, significant efforts have been made to isolate, detect, and analyze EVs with high efficiency. A recent overview of advanced EV detection nanotechnologies is discussed here. First, several key challenges in EV-based liquid biopsies are introduced. Then, the related pivotal advances in nanotechnologies for EV isolation based on physical features, chemical affinity, and the combination of nanostructures and chemical affinity are summarized. Next, a summary of high-sensitivity sensors for EV detection and advanced approaches for single EV detection are provided. Later, EV analysis is introduced in practical clinical scenarios, and the application of machine learning in this field is highlighted. Finally, future opportunities for the development of next-generation nanotechnologies for EV detection are presented.
Collapse
Affiliation(s)
- Li Min
- Department of GastroenterologyBeijing Friendship HospitalCapital Medical UniversityNational Clinical Research Center for Digestive DiseasesBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing100050P. R. China
| | - Binshuai Wang
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Han Bao
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xinran Li
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Libo Zhao
- Echo Biotech Co., Ltd.Beijing102206P. R. China
| | - Jingxin Meng
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shutao Wang
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
35
|
Cheng S, Li Y, Yan H, Wen Y, Zhou X, Friedman L, Zeng Y. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics. LAB ON A CHIP 2021; 21:3219-3243. [PMID: 34352059 PMCID: PMC8387453 DOI: 10.1039/d1lc00443c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) secreted by cells into the bloodstream and other bodily fluids, including exosomes, have been demonstrated to be a class of significant messengers that mediate intercellular communications. Tumor-derived extracellular vesicles are enriched in a selective set of biomolecules from original cells, including proteins, nucleic acids, and lipids, and thus offer a new perspective of liquid biopsy for cancer diagnosis and therapeutic monitoring. Owing to the heterogeneity of their biogenesis, physical properties, and molecular constituents, isolation and molecular characterization of EVs remain highly challenging. Microfluidics provides a disruptive platform for EV isolation and analysis owing to its inherent advantages to promote the development of new molecular and cellular sensing systems with improved sensitivity, specificity, spatial and temporal resolution, and throughput. This review summarizes the state-of-the-art advances in the development of microfluidic principles and devices for EV isolation and biophysical or biochemical characterization, in comparison to the conventional counterparts. We will also survey the progress in adapting the new microfluidic techniques to assess the emerging EV-associated biomarkers, mostly focused on proteins and nucleic acids, for clinical diagnosis and prognosis of cancer. Lastly, we will discuss the current challenges in the field of EV research and our outlook on future development of enabling microfluidic platforms for EV-based liquid biopsy.
Collapse
Affiliation(s)
- Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Bu J, Lee TH, Poellmann MJ, Rawding PA, Jeong W, Hong RS, Hyun SH, Eun HS, Hong S. Tri-modal liquid biopsy: Combinational analysis of circulating tumor cells, exosomes, and cell-free DNA using machine learning algorithm. Clin Transl Med 2021; 11:e499. [PMID: 34459134 PMCID: PMC8335965 DOI: 10.1002/ctm2.499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tae Hee Lee
- Research Institute for Future Medical ScienceChungnam National University Sejong Hospital (CNUSH)SejongRepublic of Korea
- Department of Senior HealthcareBK21 Plus ProgramGraduated SchoolEulji UniversityDaejeonRepublic of Korea
| | - Michael J. Poellmann
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Piper A. Rawding
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Woo‐Jin Jeong
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biological Sciences and BioengineeringInha UniversityIncheonRepublic of Korea
| | - Rachel S. Hong
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sung Hee Hyun
- Department of Senior HealthcareBK21 Plus ProgramGraduated SchoolEulji UniversityDaejeonRepublic of Korea
| | - Hyuk Soo Eun
- Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Seungpyo Hong
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Yonsei Frontier Lab and Department of PharmacyYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
37
|
Nair A, Bu J, Bugno J, Rawding PA, Kubiatowicz LJ, Jeong WJ, Hong S. Size-Dependent Drug Loading, Gene Complexation, Cell Uptake, and Transfection of a Novel Dendron-Lipid Nanoparticle for Drug/Gene Co-delivery. Biomacromolecules 2021; 22:3746-3755. [PMID: 34319087 DOI: 10.1021/acs.biomac.1c00541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendron micelles have shown promising results as a multifunctional delivery system, owing to their unique molecular architecture. Herein, we have prepared a novel poly(amidoamine) (PAMAM) dendron-lipid hybrid nanoparticle (DLNP) as a nanocarrier for drug/gene co-delivery and examined how the dendron generation of DLNPs impacts their cargo-carrying capabilities. DLNPs, formed by a thin-layer hydration method, were internally loaded with chemo-drugs and externally complexed with plasmids. Compared to generation 2 dendron DLNP (D2LNPs), D3LNPs demonstrated a higher drug encapsulation efficiency (31% vs 87%) and better gene complexation (minimal N/P ratio of 20:1 vs 5:1 for complexation) due to their smaller micellar aggregation number and higher charge density, respectively. Furthermore, D3LNPs were able to avoid endocytosis and subsequent lysosomal degradation and demonstrated a higher cellular uptake than D2LNPs. As a result, D3LNPs exhibited significantly enhanced antitumor and gene transfection efficacy in comparison to D2LNPs. These findings provide design cues for engineering multifunctional dendron-based nanotherapeutic systems for effective combination cancer treatment.
Collapse
Affiliation(s)
- Ashita Nair
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jiyoon Bu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States
| | - Piper A Rawding
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Luke J Kubiatowicz
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Woo-Jin Jeong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seungpyo Hong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States.,Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
38
|
Park H, Sut TN, Yoon BK, Zhdanov VP, Cho NJ, Jackman JA. Unraveling How Multivalency Triggers Shape Deformation of Sub-100 nm Lipid Vesicles. J Phys Chem Lett 2021; 12:6722-6729. [PMID: 34263601 DOI: 10.1021/acs.jpclett.1c01510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Multivalent ligand-receptor interactions are critical to the function of membrane-enveloped biological and biomimetic nanoparticles, yet resulting nanoparticle shape changes are rarely investigated. Using the localized surface plasmon resonance (LSPR) sensing technique, we tracked the attachment of biotinylated, sub-100 nm lipid vesicles to a streptavidin-functionalized supported lipid bilayer (SLB) and developed an analytical model to extract quantitative details about the vesicle-SLB contact region. The experimental results were supported by theoretical analyses of biotin-streptavidin complex formation and corresponding structural and energetic aspects of vesicle deformation. Our findings reveal how varying the surface densities of streptavidin receptors in the SLB and biotin ligands in the vesicles affects the extent of nanometer-scale vesicle deformation. We also identify conditions, i.e., a critical ligand density, at which appreciable vesicle deformation began, which provides insight into how the membrane bending energy partially counterposes the multivalent binding interaction energy. These findings are generalizable to various multivalent ligand-receptor systems.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Tun Naw Sut
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
39
|
Xue VW, Yang C, Wong SCC, Cho WCS. Proteomic profiling in extracellular vesicles for cancer detection and monitoring. Proteomics 2021; 21:e2000094. [PMID: 33665903 DOI: 10.1002/pmic.202000094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-size lipid vesicles released by cells, which play essential biological functions in intercellular communication. Increasing evidence indicates that EVs participate in cancer development, including invasion, migration, metastasis, and cancer immune modulation. One of the key mechanisms is that EVs affect different cells in the tumor microenvironment through surface-anchor proteins and protein cargos. Moreover, proteins specifically expressed in tumor-derived EVs can be applied in cancer diagnosis and monitoring. Besides, the EV proteome also helps to understand drug resistance in cancers and to guide clinical medication. With the development of mass spectrometry and array-based multi-protein detection, the research of EV proteomics has entered a new era. The high-throughput parallel proteomic profiling based on these new platforms allows us to study the impact of EV proteome on cancer progression more comprehensively and to describe the proteomic landscape in cancers with more details. In this article, we review the role and function of different types of EVs in cancer progression. More importantly, we summarize the proteomic profiling of EVs based on different methods and the application of EV proteome in cancer detection and monitoring.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Chenxi Yang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Sze Chuen Cesar Wong
- Faculty of Health and Social Sciences, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | |
Collapse
|
40
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
41
|
Pei Y, Ge Y, Zhang X, Li Y. Cathodic photoelectrochemical aptasensor based on NiO/BiOI/Au NP composite sensitized with CdSe for determination of exosomes. Mikrochim Acta 2021; 188:51. [PMID: 33496853 DOI: 10.1007/s00604-021-04716-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
A cathodic photoelectrochemical sensor has been developed for the determination of exosomes, based on a dual-signal reduction strategy. A heterostructure of NiO/BiOI/Au NP/CdSe was synthesized as a photoelectrochemical sensing interface, which is able to suppress the recombination of electron-hole pairs and produce a higher photocurrent. The obtained materials were characterized, and the mechanism for the generation of the cathodic photocurrent was proposed. CdSe QDs (quantum dots) modified with DNA2 were assembled on the electrode through the hybridization with EpCAM aptamer on the surface of ITO/NiO/BiOI/Au NP. The introduction of CdSe QDs to the electrode increases the photocurrent.The recognition of exosomes with aptamer DNA led to the separation of CdSe QDs from the electrode, which in turn caused the decrease of photocurrents. Meanwhile, the big volume of exosomes hinders the electron transfer between the electrode and electrolyte. Due to the dual reduction effect, a sensitive PEC sensor was obtained with a detection limit of 1.2 × 102 particles/μL exosomes (λex = 430 nm, bias voltage = - 0.1 V). The cathodic photoelectrochemical sensor showed good selectivity, performed well in a complex biological environment and could be used to distinguishbreast cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Yujiao Pei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yonghao Ge
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ying Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
42
|
Herrmann M, Diederichs S, Melnik S, Riegger J, Trivanović D, Li S, Jenei-Lanzl Z, Brenner RE, Huber-Lang M, Zaucke F, Schildberg FA, Grässel S. Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration. Front Bioeng Biotechnol 2021; 8:624096. [PMID: 33553127 PMCID: PMC7855463 DOI: 10.3389/fbioe.2020.624096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies.
Collapse
Affiliation(s)
- Marietta Herrmann
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Solvig Diederichs
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Svitlana Melnik
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Drenka Trivanović
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Shushan Li
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Bu J, Lee TH, Jeong WJ, Poellmann MJ, Mudd K, Eun HS, Liu EW, Hong S, Hyun SH. Enhanced detection of cell-free DNA (cfDNA) enables its use as a reliable biomarker for diagnosis and prognosis of gastric cancer. PLoS One 2020; 15:e0242145. [PMID: 33264292 PMCID: PMC7710035 DOI: 10.1371/journal.pone.0242145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Although circulating cell-free DNA (cfDNA) is a promising biomarker for the diagnosis and prognosis of various tumors, clinical correlation of cfDNA with gastric cancer has not been fully understood. To address this, we developed a highly sensitive cfDNA capture system by integrating polydopamine (PDA) and silica. PDA-silica hybrids incorporated different molecular interactions to a single system, enhancing cfDNA capture by 1.34-fold compared to the conventional silica-based approach (p = 0.001), which was confirmed using cell culture supernatants. A clinical study using human plasma samples revealed that the diagnostic accuracy of the new system to be superior than the commercially available cfDNA kit, as well as other serum antigen tests. Among the cancer patients, plasma cfDNA levels exhibited a good correlation with the size of a tumor. cfDNA was also predicative of distant metastasis, as the median cfDNA levels of metastatic cancer patients were ~60-fold higher than those without metastasis (p = 0.008). Furthermore, high concordance between tissue biopsy and cfDNA genomic analysis was found, as HER2 expression in cfDNA demonstrated an area under ROC curve (AUC) of 0.976 (p <0.001) for detecting patients with HER2-positive tumors. The new system also revealed high prognostic capability of cfDNA, as the concentration of cfDNA was highly associated with the survival outcomes. Our novel technology demonstrates the potential to achieve efficient detection of cfDNA that may serve as a reliable biomarker for gastric tumor.
Collapse
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Tae Hee Lee
- Department of Senior Healthcare, BK21 plus program, Graduated School, Eulji University, Daejeon, Republic of Korea
- Research Institute for Future Medical Science, Chungnam National University Sejong Hospital (CNUSH), Sejong, Republic of Korea
| | - Woo-jin Jeong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Michael J. Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kara Mudd
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Hyuk Soo Eun
- Divison of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Elizabeth W. Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Republic of Korea
- * E-mail: (SH); (SHH)
| | - Sung Hee Hyun
- Department of Senior Healthcare, BK21 plus program, Graduated School, Eulji University, Daejeon, Republic of Korea
- * E-mail: (SH); (SHH)
| |
Collapse
|
44
|
Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
Dendritic polymers have highly branched three-dimensional architectures, the fourth type apart from linear, cross-linked, and branched one. They possess not only a large number of terminal functional units and interior cavities, but also a low viscosity with weak or no entanglement. These features endow them with great potential in various biomedicine applications, including drug delivery, gene therapy, tissue engineering, immunoassay and bioimaging. Most review articles related to bio-related applications of dendritic polymers focus on their drug or gene delivery, while very few of them are devoted to their function as cancer diagnosis agents, which are essential for cancer treatment. In this review, we will provide comprehensive insights into various dendritic polymer-based cancer diagnosis agents. Their classification and preparation are presented for readers to have a precise understanding of dendritic polymers. On account of physical/chemical properties of dendritic polymers and biological properties of cancer, we will suggest a few design strategies for constructing dendritic polymer-based diagnosis agents, such as active or passive targeting strategies, imaging reporters-incorporating strategies, and/or internal stimuli-responsive degradable/enhanced imaging strategies. Their recent applications in in vitro diagnosis of cancer cells or exosomes and in vivo diagnosis of primary and metastasis tumor sites with the aid of single/multiple imaging modalities will be discussed in great detail. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Yu X, Sha L, Dong L, Cao Y, Zhao J. Recent Advances in Bio-Sensing Methods for the Detection of Tumor Exosomes. Crit Rev Anal Chem 2020; 52:356-374. [PMID: 32762253 DOI: 10.1080/10408347.2020.1802220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exosomes, small vesicles with the diameters of 40-160 nm, play an important role in intercellular transport and communication. Exosomes are rich in many kinds of biomolecules, and differential expression of exosomal contents directly reflects the state of the original cells. Therefore, the tumor exosomes are appearing as promising biomarkers in liquid biopsy, and highly sensitive and specific detection of tumor exosomes may provide the information for the early diagnosis, real-time monitoring and treatment of the tumors. In this review, we summarized the recent advances in the detection of tumor exosomes, mainly focusing on the use of different analytical techniques, such as optical and electrochemical methods as well as that combination with newly-emerging microfluidic techniques, thereby providing valuable information for the application in the clinical diagnosis and management of the tumors.
Collapse
Affiliation(s)
- Xiaomeng Yu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Lingjun Sha
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Langjian Dong
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|