1
|
Zhang J, Ma L, Hou Y, Ouyang H, Hong H, Kim K, Kang H, Chu Z. Nanodiamond-Based Sensing: A revolution for biosensors in capturing elusive bio-signals in living cells. Adv Drug Deliv Rev 2025; 221:115590. [PMID: 40246241 DOI: 10.1016/j.addr.2025.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cells constantly produce elusive bio-signals, such as cellular forces, free radicals, and molecular interactions, that are important for understanding diseases and treatment effects. However, detecting these signals is challenging because of issues with sensitivity, specificity, and the complexity of biological systems. Owing to their unique properties, nanodiamonds have emerged as a promising platform for detecting such elusive bio-signals, providing enhanced precision and effectiveness in diagnostics and therapies. In this review, we explore the detection of intracellular elusive bio-signals using nitrogen-vacancy (NV) centers in nanodiamonds, presenting case studies on their applications in cell force, free radicals, molecular interactions, and nanoscale thermometry. Moreover, we explore the design and applications of nanodiamonds as nanocarriers in quantum sensors and drug delivery systems.
Collapse
Affiliation(s)
- Jiahua Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Haoyi Ouyang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Hyunsik Hong
- Department of Materials Science and Engineering and College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kanghyeon Kim
- Department of Materials Science and Engineering and College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong, China.
| |
Collapse
|
2
|
Su J, Kong Z, Zeng L, Kong F, Xia K, Shi F, Du J. Fluorescent Nanodiamonds for Quantum Sensing in Biology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70012. [PMID: 40328518 DOI: 10.1002/wnan.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Fluorescent nanodiamonds exhibiting outstanding optical and biocompatible properties are the subject of increased studies and attention in physics and biology. The nitrogen-vacancy center in diamonds with unique quantum properties at room temperature is sensitive to physical properties such as magnetic field, electric field, temperature, and pressure. By taking advantage of the NV center and high sensitivity that arises from the intrinsic quantum properties of spins in nanodiamonds, which are extensively employed in quantum sensing, bio-imaging, and bio-sensing. In this review, the selected topic mainly focuses on the surface functionalization of nanodiamonds and the recent progress in applying nanodiamonds as quantum sensors for intracellular orientation tracking, temperature sensing, and notably nuclear magnetic resonance and electron spin resonance applications.
Collapse
Affiliation(s)
- Jia Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Zenghao Kong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Linyu Zeng
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Fei Kong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Kangwei Xia
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Fazhan Shi
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
- Institute of Quantum Sensing and School of Physics, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wu J, Zhou X, Tsang CY, Mei Q, Zhang Y. Bioengineered nanomaterials for dynamic diagnostics in vivo. Chem Soc Rev 2025. [PMID: 40289891 DOI: 10.1039/d5cs00136f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In vivo diagnostics obtains real-time physiological information directly from the site of interest in a patient's body, providing more accurate disease diagnosis compared with ex vivo diagnostics. Particularly, in vivo dynamic diagnostics allows the continuous monitoring of physiological signals over a period of time, offering deeper insights into disease pathogenesis and progression. However, achieving in situ dynamic diagnostics in deep tissues presents challenges related to energy and signal penetration as well as dynamic monitoring. Bioengineered nanomaterials serve as an ideal platform for in vivo dynamic diagnostics, leveraging energy conversion and biofunctionalization to enable continuous acquisition of physiological information across temporal and spatial scales. In this review, with reference to the studies from the last five years, we summarize the fundamental components that are essential for dynamic diagnosis in vivo. Firstly, an input energy source with high tissue penetration is needed, such as near-infrared (NIR) light, X-rays, magnetic field and ultrasound. Secondly, a nanomaterial class that is responsive to such an energy source to provide a readable output signal is chosen. Thirdly, bioengineered nanoprobes are designed to exhibit spatial, temporal or spatiotemporal changes in the output signal. Finally, different methods are used to analyse the output signal of nanoprobes, such as detecting changes in optical, radiation, magnetic and ultrasound signals. This review also discusses the obstacles and potential solutions for advancing these bioengineered nanomaterials toward clinical translational applications.
Collapse
Affiliation(s)
- Jizhong Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Xinyu Zhou
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| | - Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yong Zhang
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| |
Collapse
|
4
|
Kato YS, Shimazaki Y, Chuma S, Shiraya K, Nakane Y, Sugi T, Okabe K, Harada Y, Sotoma S. Fluorescent Thermometers Based on Carbon Quantum Dots with Various Detection Modes for Intracellular Temperature Measurement. NANO LETTERS 2025; 25:5688-5696. [PMID: 40134068 DOI: 10.1021/acs.nanolett.4c06642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
We report that carbon quantum dots (CQDs) synthesized via a hydrothermal process using anthraquinone derivatives and l-cysteine provide versatile detection modes, making them suitable for various experimental setups. By modification of the precursor structures, these CQDs can function as different types of fluorescent nanothermometers, including those based on fluorescence intensity, ratiometrics, and fluorescence lifetime. Notably, fluorescence lifetime-based CQDs demonstrate robust performance under a wide range of conditions, including variations in pH and ionic strength. The CQDs exhibit low cytotoxicity and high cellular uptake efficiency, enabling wash-free imaging and precise fluorescence lifetime-based temperature measurements at the single-cell level. Furthermore, we successfully measured temperature changes associated with biochemical reactions, including the increase in cellular temperature induced by mitochondrial depolarization. In addition, these fluorescence lifetime-based measurements could be cross-verified using their fluorescence intensity. These findings underscore the potential of CQDs as versatile and minimally invasive tools for nanoscale thermometry in live cells.
Collapse
Affiliation(s)
- Yuki S Kato
- Department of Biological Sciences, School of Science, The University of Osaka, Machikaneyamacho Toyonaka, Osaka 560-0043, Japan
| | - Yukiho Shimazaki
- Department of Biological Sciences, Graduate School of Science, The University of Osaka, Machikaneyamacho Toyonaka, Osaka 560-0043, Japan
- Institute for Protein Research, The University of Osaka, Yamadaoka Suita, Osaka 565-0871, Japan
| | - Shunsuke Chuma
- Institute for Protein Research, The University of Osaka, Yamadaoka Suita, Osaka 565-0871, Japan
| | - Kota Shiraya
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yurina Nakane
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Takuma Sugi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo Bunkyo City, Tokyo 113-0033, Japan
| | - Yoshie Harada
- Institute for Protein Research, The University of Osaka, Yamadaoka Suita, Osaka 565-0871, Japan
- Center for Quantum Information and Quantum Biology, The University of Osaka, Machikaneyamacho Toyonaka, Osaka 560-0043, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), The University of Osaka, Yamadaoka Suita, Osaka 565-0871, Japan
| | - Shingo Sotoma
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
5
|
Sun Y, Wang Q, Wu N, Kong M, Gu Y, Feng W. A Nd-Yb ratiometric luminescent nanothermometer for assessing thermal resistance discrepancies between A549 and BEAS-2B cells to achieve selective hyperthermia. Biomater Sci 2025; 13:2102-2114. [PMID: 40062947 DOI: 10.1039/d4bm01729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Temperature is a crucial physical parameter in living organisms, directly associated with cellular activities. Elevated temperatures induce cell death, thereby establishing hyperthermia as a viable modality for cancer therapy. The demand for determining appropriate cancer types for hyperthermia lies in identifying cancer cells that exhibit poorer heat tolerance compared to normal cells. Herein, we have designed NaNdF4:4%Yb@NaYF4 with bright luminescence in the near-infrared region for the purpose of achieving in situ cellular temperature detection. The Nd-Yb nanothermometer provides temperature feedback based on a ratiometric luminescence intensity signal. By employing a universal cytobiology method to assess the heat resistance differences between cancer cells and normal cells across various organs, it has been observed that lung epithelial cells exhibit superior heat resistance compared to lung cancer cells. Once the Nd-Yb nanothermometer incubates within lung cells, the temperature differences between live and dead cells can be detected. The absolute temperature differences between live and dead lung cancer cells (0.1 °C) and lung epithelial cells (1.4 °C) under identical thermal stimulation (50 °C) are detected by the Nd-Yb co-doped nanothermometer, confirming that the heat resistance of normal lung cells is significantly superior to that of lung cancer cells. The differential heat resistance of lung cells enables selective hyperthermia for killing A549 cells while maximally protecting BEAS-2B cells. This research may establish rare earth nanothermometry as a valuable protocol for assessing cellular heat resistance, thereby guiding selective hyperthermia for precise lung cancer treatment.
Collapse
Affiliation(s)
- Yishuo Sun
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, P.R. China.
| | - Na Wu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Mengya Kong
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Yuyang Gu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.
| |
Collapse
|
6
|
Li S, Zhang X, Wang C, Lv T, Liu J, Liu R, Jiang G. Surface-Enhanced Raman Spectroscopy-Based Spatial Temperature Profiling in Space-Confined Hollow Carbon Nanospheres for a Reaction Mechanism Study. Anal Chem 2025; 97:6967-6975. [PMID: 40132130 DOI: 10.1021/acs.analchem.4c06321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Accurately sensing the spatial distribution of temperature, one of the most fundamental parameters, is crucial for understanding the mechanism of the physicochemical process in confined space. However, traditional methods for temperature measurement often show a very limited spatial resolution and sensitivity. Herein, we develop a surface-enhanced Raman spectroscopy (SERS) nanosensor to measure the spatial distribution of temperature within the hollow carbon nanospheres (HCNSs) and study the light-promoted Fenton-like process catalyzed by a Fe single-atom anchored on the HCNSs. Based on the temperature-dependent SERS spectra of phenyl isocyanide adsorbed on Au nanoparticles, the spatial distribution of the temperature gradient in the nanocavity and on the surface of the HCNSs, induced by light-irradiation, is sensed with a sensitivity of 0.8 °C. Furthermore, by combining the local temperature measurement and reaction kinetics-temperature relationship, we clarify that the Fe single-atom catalyzed oxidation of phenol by peroxymonosulfate occurs at the surface of the HCNSs, thus providing sound evidence on the homogeneous mechanism. Besides providing a new strategy for local temperature measurement with submicrometer resolution, this work also shows the feasibility of the reaction mechanism study through locating the reactive site.
Collapse
Affiliation(s)
- Shiwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwan Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianyan Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
7
|
Ortiz‐Rivero E, Prorok K, Marin R, Bednarkiewicz A, Jaque D, Haro‐González P. Unlocking Single-Particle Multiparametric Sensing: Decoupling Temperature and Viscosity Readouts through Upconverting Polarized Spectroscopy. SMALL METHODS 2025; 9:e2400718. [PMID: 39491791 PMCID: PMC12020337 DOI: 10.1002/smtd.202400718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Upconverting particles (UCPs), renowned for their capability to convert infrared to visible light, serve as invaluable imaging probes. Furthermore, their responsiveness to diverse external stimuli holds promise for leveraging UCPs as remote multiparametric sensors, capable of characterizing medium properties in a single assessment. However, the utility of UCPs in multiparametric sensing is impeded by crosstalk, wherein distinct external stimuli induce identical alterations in UCP luminescence, hindering accurate interpretation, and yielding erroneous outputs. Overcoming crosstalk requires alternative strategies in upconverting luminescence analysis. In this study, it is shown how a single spinning NaYF4:Er3+, Yb3+ upconverting particle enables simultaneous and independent readings of temperature and viscosity. This is achieved by decoupling thermal and rehological measurements-employing the luminescence of thermally-coupled energy levels of Er3+ ions for thermal sensing, while leveraging the polarization of luminescence from non-thermally coupled levels of Er3+ ions to determine viscosity. Through simple proof-of-concept experiments, the study validates the capability of a single spinning UCP to perform unbiased, simultaneous temperature, and viscosity sensing, thereby opening new avenues for advanced sensing in microenvironments.
Collapse
Affiliation(s)
- Elisa Ortiz‐Rivero
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de CienciasUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Materiales Nicolás CabreraUniversidad Autónoma de MadridMadrid28049Spain
| | - Katarzyna Prorok
- Institute of Low Temperature and Structure ResearchPolish Academy of SciencesOkolna 2Wroclaw50‐422Poland
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de CienciasUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Materiales Nicolás CabreraUniversidad Autónoma de MadridMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure ResearchPolish Academy of SciencesOkolna 2Wroclaw50‐422Poland
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de CienciasUniversidad Autónoma de MadridMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Patricia Haro‐González
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de CienciasUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Materiales Nicolás CabreraUniversidad Autónoma de MadridMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
8
|
Suta M. What makes β-NaYF 4:Er 3+,Yb 3+ such a successful luminescent thermometer? NANOSCALE 2025; 17:7091-7099. [PMID: 39873119 DOI: 10.1039/d4nr04392h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Luminescence thermometry has emerged as a promising approach for remote, non-invasive temperature sensing at the nanoscale. One of the simplest approaches in that regard is single-ion luminescence Boltzmann thermometry that exploits thermal coupling between two radiatively emitting levels. The working horse example for this type of luminescence thermometry is undoubtedly the green-emitting upconversion phosphor β-NaYF4:Er3+,Yb3+ exploiting the thermal coupling between the two excited 2H11/2 and 4S3/2 levels of Er3+ for this purpose. Within this tutorial article, I would like to give a theoretically motivated account on the underlying reasons for the experimentally recorded success of this material for Boltzmann thermometry referring to time-resolved data on both the bulk and nanocrystalline material. Guidelines are established and both advantages and potential pitfalls in β-NaYF4:Er3+,Yb3+ for luminescence thermometry are given.
Collapse
Affiliation(s)
- Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
10
|
Tan YY, Liu J, Su QP. Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights. SENSORS (BASEL, SWITZERLAND) 2025; 25:491. [PMID: 39860861 PMCID: PMC11768609 DOI: 10.3390/s25020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses. Live-cell imaging has become an invaluable tool for dissecting these complexes. Despite its benefits, live imaging of platelets presents significant technical challenges. This review addresses these challenges, identifying key areas in need of further development and proposing possible solutions. We also focus on the dynamic processes of platelet adhesion, activation, and aggregation in haemostasis and thrombosis, applying imaging capacities from the microscale to the nanoscale. By exploring various live imaging techniques, we demonstrate how these approaches offer crucial insights into platelet biology and deepen our understanding of these three core events. In conclusion, this review provides an overview of the imaging methods currently available for studying platelet dynamics, guiding researchers in selecting suitable techniques for specific studies. By advancing our knowledge of platelet behaviour, these imaging methods contribute to research on haemostasis, thrombosis, and platelet-related diseases, ultimately aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Yuping Yolanda Tan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
11
|
Jacobs HT, Rustin P, Bénit P, Davidi D, Terzioglu M. Mitochondria: great balls of fire. FEBS J 2024; 291:5327-5341. [PMID: 39543792 DOI: 10.1111/febs.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
Recent experimental studies indicate that mitochondria in mammalian cells are maintained at temperatures of at least 50 °C. While acknowledging the limitations of current experimental methods and their interpretation, we here consider the ramifications of this finding for cellular functions and for evolution. We consider whether mitochondria as heat-producing organelles had a role in the origin of eukaryotes and in the emergence of homeotherms. The homeostatic responses of mitochondrial temperature to externally applied heat imply the existence of a molecular heat-sensing system in mitochondria. While current findings indicate high temperatures for the innermost compartments of mitochondria, those of the mitochondrial surface and of the immediately surrounding cytosol remain to be determined. We ask whether some aspects of mitochondrial dynamics and motility could reflect changes in the supply and demand for mitochondrial heat, and whether mitochondrial heat production could be a factor in diseases and immunity.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Finland
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, Paris, France
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, Paris, France
| | - Dan Davidi
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mügen Terzioglu
- Faculty of Medicine and Health Technology, Tampere University, Finland
| |
Collapse
|
12
|
Xue K, Huang S, Wu K, Sun Z, Fu H, Wang C, Wang C, Zhu C. Ultrasensitive Ratiometric Fluorescent Nanothermometer with Reverse Signal Changes for Intracellular Temperature Mapping. Anal Chem 2024; 96:11026-11035. [PMID: 38938163 DOI: 10.1021/acs.analchem.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sensing temperature at the subcellular level is pivotal for gaining essential thermal insights into diverse biological processes. However, achieving sensitive and accurate sensing of the intracellular temperature remains a challenge. Herein, we develop a ratiometric organic fluorescent nanothermometer with reverse signal changes for the ultrasensitive mapping of intracellular temperature. The nanothermometer is fabricated from a binary mixture of saturated fatty acids with a noneutectic composition, a red-emissive aggregation-caused quenching luminogen, and a green-emissive aggregation-induced emission luminogen using a modified nanoprecipitation method. Different from the eutectic mixture with a single phase-transition point, the noneutectic mixture possesses two solid-liquid phase transitions, which not only allows for reversible regulation of the aggregation states of the encapsulated luminogens but also effectively broadens the temperature sensing range (25-48 °C) across the physiological temperature range. Remarkably, the nanothermometer exhibits reverse and sensitive signal changes, demonstrating maximum relative thermal sensitivities of up to 63.66% °C-1 in aqueous systems and 44.01% °C-1 in the intracellular environment, respectively. Taking advantage of these outstanding thermometric performances, the nanothermometer is further employed to intracellularly monitor minute temperature variations upon chemical stimulation. This study provides a powerful tool for the exploration of dynamic cellular thermal activities, holding great promise in unveiling intricate physiological processes.
Collapse
Affiliation(s)
- Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siwei Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kaiyu Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Liu J, Tan YY, Zheng W, Wang Y, Ju LA, Su QP. Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J Nanobiotechnology 2024; 22:363. [PMID: 38910248 PMCID: PMC11194919 DOI: 10.1186/s12951-024-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
Collapse
Affiliation(s)
- Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuping Yolanda Tan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Wen Zheng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
14
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
15
|
Yin Y, Chen S, Li H, Pang X, Wang C, Wang L, Liu P, Xu S, Luo X. Exogenous and Endogenous Dual-Activated Nanoladder for Precise Imaging of Mitochondrial Ferroptosis-Related Inhibition miRNA with Tumor Cell Specificity. Anal Chem 2024; 96:7550-7557. [PMID: 38706132 DOI: 10.1021/acs.analchem.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Developing precise tumor cell-specific mitochondrial ferroptosis-related inhibition miRNA imaging methods holds enormous potential for anticancer drug screening and cancer treatment. Nevertheless, traditional amplification methods still tolerated the limited tumor specificity because of the "off-tumor" signal leakage resulting from their "always-active" sensing mode. To overcome this limitation, we herein developed a dual (exogenous 808 nm NIR light and endogenous APE1) activated nanoladder for precise imaging of mitochondrial ferroptosis-related miRNA with tumor cell specificity and improved imaging resolution. Exogenous NIR light-activation can regulate the ferroptosis-related inhibition miRNA imaging signals within mitochondria, and endogenous enzyme-activation can confine signals to tumor cells. Based on this dual activation design, off-tumor signals were greatly reduced and tumor-to-background contrast was enhanced with an improved tumor/normal discrimination ratio, realizing tumor cell-specific precise imaging of mitochondrial ferroptosis-related inhibition miRNA.
Collapse
Affiliation(s)
- Yue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuwei Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haiming Li
- Qingdao Women and Children's Hospital, Qingdao 266034, P. R. China
| | - Xiaozhe Pang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Congkai Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou 450000, P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
16
|
Liu M, Sun Y, Teh DBL, Zhang Y, Cao D, Mei Q. Nanothermometry for cellular temperature monitoring and disease diagnostics. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractBody temperature variations, including the generation, transfer, and dissipation of heat, play an important role throughout life and participate in all biological events. Cellular temperature information is an indispensable link in the comprehensive understanding of life science processes, but traditional testing strategies cannot provide sufficient information due to their low precision and inefficient cellular‐entrance. In recent years, with the help of luminescent nanomaterials, a variety of new thermometers have been developed to achieve real‐time temperature measurement at the micro/nano scale. In this review, we summarized the latest advances in several nanoparticles for cellular temperature detection and their related applications in revealing cell metabolism and disease diagnosis. Furthermore, this review proposed a few challenges for the nano‐thermometry, expecting to spark novel thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Daniel Boon Loong Teh
- Departments of Ophthalmology Anatomy Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Donglin Cao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University Guangzhou China
- Department of Laboratory Medicine Guangdong Second Provincial General Hospital Guangzhou China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| |
Collapse
|
17
|
Wu Y, Li F, Wu Y, Wang H, Gu L, Zhang J, Qi Y, Meng L, Kong N, Chai Y, Hu Q, Xing Z, Ren W, Li F, Zhu X. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo. Nat Commun 2024; 15:2341. [PMID: 38491065 PMCID: PMC10943110 DOI: 10.1038/s41467-024-46727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 μm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.
Collapse
Affiliation(s)
- Yukai Wu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Fang Li
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yanan Wu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Hao Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Liangtao Gu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Jieying Zhang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yukun Qi
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Na Kong
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China
| | - Qian Hu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Zhenyu Xing
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, P.R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| |
Collapse
|
18
|
Peng F, Ai X, Sun J, Yang L, Gao B. Recent advances in FRET probes for mitochondrial imaging and sensing. Chem Commun (Camb) 2024; 60:2994-3007. [PMID: 38381520 DOI: 10.1039/d4cc00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Mitochondria, as essential organelles in cells, play a crucial role in cellular growth and apoptosis. Monitoring mitochondria is of great importance, as mitochondrial dysfunction is often considered a hallmark event of cell apoptosis. Traditional fluorescence probes used for mitochondrial imaging and sensing are mostly intensity-based and are susceptible to factors such as concentration, the probe environment, and fluorescence intensity. Probes based on fluorescence resonance energy transfer (FRET) can effectively overcome external interference and achieve high-contrast imaging of mitochondria as well as quantitative monitoring of mitochondrial microenvironments. This review focuses on recent advances in the application of FRET-based probes for mitochondrial structure imaging and microenvironment sensing.
Collapse
Affiliation(s)
- Fei Peng
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Xiangnan Ai
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Jing Sun
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Linshuai Yang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Baoxiang Gao
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
19
|
Chen S, Yin Y, Pang X, Wang C, Wang L, Wang J, Jia J, Liu X, Xu S, Luo X. Light and endogenous enzyme triggered plasmonic antennas for accurate subcellular molecular imaging with enhanced spatial resolution. Chem Sci 2024; 15:566-572. [PMID: 38179540 PMCID: PMC10762929 DOI: 10.1039/d3sc05728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Developing accurate tumor-specific molecular imaging approaches holds great potential for evaluating cancer progression. However, traditional molecular imaging approaches still suffer from restricted tumor specificity due to the "off-tumor" signal leakage. In this work, we proposed light and endogenous APE1-triggered plasmonic antennas for accurate tumor-specific subcellular molecular imaging with enhanced spatial resolution. Light activation ensures subcellular molecular imaging and endogenous enzyme activation ensures tumor-specific molecular imaging. In addition, combined with the introduction of plasmon enhanced fluorescence (PEF), off-tumor signal leakage at the subcellular level was effectively reduced, resulting in the significantly enhanced discrimination ratio of tumor/normal cells (∼11.57-fold) which is better than in previous reports, demonstrating great prospects of these plasmonic antennas triggered by light and endogenous enzymes for tumor-specific molecular imaging at the subcellular level.
Collapse
Affiliation(s)
- Shuwei Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yue Yin
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Xiaozhe Pang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Congkai Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Lei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Junqi Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jiangfei Jia
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Xinxue Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
20
|
Lai Y, Marquez M, Liang J. Tutorial on compressed ultrafast photography. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11524. [PMID: 38292055 PMCID: PMC10826888 DOI: 10.1117/1.jbo.29.s1.s11524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Significance Compressed ultrafast photography (CUP) is currently the world's fastest single-shot imaging technique. Through the integration of compressed sensing and streak imaging, CUP can capture a transient event in a single camera exposure with imaging speeds from thousands to trillions of frames per second, at micrometer-level spatial resolutions, and in broad sensing spectral ranges. Aim This tutorial aims to provide a comprehensive review of CUP in its fundamental methods, system implementations, biomedical applications, and prospect. Approach A step-by-step guideline to CUP's forward model and representative image reconstruction algorithms is presented with sample codes and illustrations in Matlab and Python. Then, CUP's hardware implementation is described with a focus on the representative techniques, advantages, and limitations of the three key components-the spatial encoder, the temporal shearing unit, and the two-dimensional sensor. Furthermore, four representative biomedical applications enabled by CUP are discussed, followed by the prospect of CUP's technical advancement. Conclusions CUP has emerged as a state-of-the-art ultrafast imaging technology. Its advanced imaging ability and versatility contribute to unprecedented observations and new applications in biomedicine. CUP holds great promise in improving technical specifications and facilitating the investigation of biomedical processes.
Collapse
Affiliation(s)
- Yingming Lai
- Université du Québec, Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
| | - Miguel Marquez
- Université du Québec, Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
| | - Jinyang Liang
- Université du Québec, Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
| |
Collapse
|
21
|
Terzioglu M, Veeroja K, Montonen T, Ihalainen TO, Salminen TS, Bénit P, Rustin P, Chang YT, Nagai T, Jacobs HT. Mitochondrial temperature homeostasis resists external metabolic stresses. eLife 2023; 12:RP89232. [PMID: 38079477 PMCID: PMC10712956 DOI: 10.7554/elife.89232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Based on studies with a fluorescent reporter dye, Mito Thermo Yellow (MTY), and the genetically encoded gTEMP ratiometric fluorescent temperature indicator targeted to mitochondria, the temperature of active mitochondria in four mammalian and one insect cell line was estimated to be up to 15°C above that of the external environment to which the cells were exposed. High mitochondrial temperature was maintained in the face of a variety of metabolic stresses, including substrate starvation or modification, decreased ATP demand due to inhibition of cytosolic protein synthesis, inhibition of the mitochondrial adenine nucleotide transporter and, if an auxiliary pathway for electron transfer was available via the alternative oxidase, even respiratory poisons acting downstream of oxidative phosphorylation (OXPHOS) complex I. We propose that the high temperature of active mitochondria is an inescapable consequence of the biochemistry of OXPHOS and is homeostatically maintained as a primary feature of mitochondrial metabolism.
Collapse
Affiliation(s)
- Mügen Terzioglu
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Kristo Veeroja
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies Neurodéveloppementales et NeurovasculairesParisFrance
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies Neurodéveloppementales et NeurovasculairesParisFrance
| | - Young-Tae Chang
- SANKEN (The Institute of Scientific and Industrial Research), Osaka UniversityIbarakiJapan
| | | | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
- Department of Environment and Genetics, La Trobe UniversityMelbourneAustralia
| |
Collapse
|
22
|
Gu Q, Shanahan L, Hart JW, Belser S, Shofer N, Atatüre M, Knowles HS. Simultaneous Nanorheometry and Nanothermometry Using Intracellular Diamond Quantum Sensors. ACS NANO 2023; 17:20034-20042. [PMID: 37791968 PMCID: PMC10604098 DOI: 10.1021/acsnano.3c05285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
The viscoelasticity of the cytoplasm plays a critical role in cell morphology, cell division, and intracellular transport. Viscoelasticity is also interconnected with other biophysical properties, such as temperature, which is known to influence cellular bioenergetics. Probing the connections between intracellular temperature and cytoplasmic viscoelasticity provides an exciting opportunity for the study of biological phenomena, such as metabolism and disease progression. The small length scales and transient nature of changes in these parameters combined with their complex interdependencies pose a challenge for biosensing tools, which are often limited to a single readout modality. Here, we present a dual-mode quantum sensor capable of performing simultaneous nanoscale thermometry and rheometry in dynamic cellular environments. We use nitrogen-vacancy centers in diamond nanocrystals as biocompatible sensors for in vitro measurements. We combine subdiffraction resolution single-particle tracking in a fluidic environment with optically detected magnetic resonance spectroscopy to perform simultaneous sensing of viscoelasticity and temperature. We use our sensor to demonstrate probing of the temperature-dependent viscoelasticity in complex media at the nanoscale. We then investigate the interplay between intracellular forces and the cytoplasmic rheology in live cells. Finally, we identify different rheological regimes and reveal evidence of active trafficking and details of the nanoscale viscoelasticity of the cytoplasm.
Collapse
Affiliation(s)
| | | | | | - Sophia Belser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United
Kingdom
| | - Noah Shofer
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United
Kingdom
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United
Kingdom
| | - Helena S. Knowles
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United
Kingdom
| |
Collapse
|
23
|
Pelluau T, Sene S, Ali LMA, Félix G, Manhes F, Carneiro Neto AN, Carlos LD, Albela B, Bonneviot L, Oliviero E, Gary-Bobo M, Guari Y, Larionova J. Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with β-diketonate Tb 3+/Eu 3+ complexes as efficient ratiometric emissive thermometers working in water. NANOSCALE 2023; 15:14409-14422. [PMID: 37614145 DOI: 10.1039/d3nr01851b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Despite the great effort made in recent years on lanthanide-based ratiometric luminescent nanothermometers able to provide temperature measurements in water, their design remains challenging. We report on the synthesis and properties of efficient ratiometric nanothermometers that are based on mesoporous stellate nanoparticles (MSN) of ca. 90 nm functionalized with an acetylacetonate (acac) derivative inside the pores and loaded with β-diketonate-Tb3+/Eu3+ complexes able to work in water, in PBS or in cells. Encapsulating a [(Tb/Eu)9(acac)16(μ3-OH)8(μ4-O)(μ4-OH)] complex (Tb/Eu ratio = 19/1 and 9/1) led to hybrid multifunctionalized nanoparticles exhibiting a Tb3+ and Eu3+ characteristic temperature-dependent luminescence with a high rate Tb3+-to-Eu3+ energy transfer. According to theoretical calculations, the modifications of photoluminescence properties and the increase in the pairwise Tb3+-to-Eu3+ energy transfer rate by about 10 times can be rationalized as a change of the coordination number of the Ln3+ sites of the complex from 7 to 8 accompanied by a symmetry evolution from Cs to C4v and a slight shortening of intramolecular Ln3+-Ln3+ distances upon the effect of encapsulation. These nanothermometers operate in the 20-70 °C range with excellent photothermal stability, cyclability and repeatability (>95%), displaying a maximum relative thermal sensitivity of 1.4% °C-1 (at 42.7 °C) in water. Furthermore, they can operate in cells with a thermal sensitivity of 8.6% °C-1 (at 40 °C), keeping in mind that adjusting the calibration for each system is necessary to ensure accurate measurements.
Collapse
Affiliation(s)
| | - Saad Sene
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Gautier Félix
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Albano N Carneiro Neto
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luis D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Belén Albela
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Laurent Bonneviot
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Erwan Oliviero
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | |
Collapse
|
24
|
Suresh K, Monisha K, Bankapur A, Rao SK, Mutalik S, George SD. Cellular temperature probing using optically trapped single upconversion luminescence. Anal Chim Acta 2023; 1273:341530. [PMID: 37423663 DOI: 10.1016/j.aca.2023.341530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The thermally coupled energy states that contribute to the upconversion luminescence of rare earth element-doped nanoparticles have been the subject of intense research due to their potential nanoscale temperature probing. However, the inherent low quantum efficiency of these particles often limits their practical applications, and currently, surface passivation and incorporation of plasmonic particles are being explored to improve the inherent quantum efficiency of the particle. However, the role of these surface passivating layers and the attached plasmonic particles in the temperature sensitivity of upconverting nanoparticles while probing the intercellular temperature has not been investigated thus far, particularly at the single nanoparticle level. RESULTS The analysis of the study on the thermal sensitivity of oleate-free UCNP, UCNP@SiO2, and UCNP@SiO2@Au particles is carried out at a single particle level in a physiologically relevant temperature range (299 K-319 K) by optically trapping the particle. The thermal relative sensitivity of the as-prepared upconversion nanoparticle (UCNP) is found to be greater than that of UCNP@SiO2 and UCNP@SiO2@Au particles in an aqueous medium. An optically trapped single luminescence particle inside the cell is used to monitor the temperature inside the cell by measuring the luminescence from the thermally coupled states. The absolute sensitivity of optically trapped particles inside the biological cell increases with temperature, with a greater impact on the bare UCNP, which exhibits higher values for thermal sensitivity than UCNP@SiO2 and UCNP@SiO2@Au. The thermal sensitivity of the trapped particle inside the biological cell at 317 K indicates the thermal sensitivity of UCNP > UCNP@SiO2@Au > UCNP@SiO2 particles. SIGNIFICANCE AND NOVELTY Compared to bulk sample-based temperature probing, the present study demonstrates temperature measurement at the single particle level by optically trapping the particle and further explores the role of the passivating silica shell and the incorporation of plasmonic particles on thermal sensitivity. Furthermore, thermal sensitivity measurements inside a biological cell at the single particle level are investigated and illustrated that thermal sensitivity at a single particle is sensitive to the measuring environment.
Collapse
Affiliation(s)
- K Suresh
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - K Monisha
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Subha Krishna Rao
- Centre for Nanoscience and Nanotechnology, International Research Centre, Satyabama Institute of Science and Technology, Chennai, 600119, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India; Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
25
|
Li F, Huang Q, Zhou Z, Guan Q, Ye F, Huang B, Guo W, Liang XJ. Gold nanoparticles combat enveloped RNA virus by affecting organelle dynamics. Signal Transduct Target Ther 2023; 8:285. [PMID: 37528082 PMCID: PMC10393956 DOI: 10.1038/s41392-023-01562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Enveloped RNA viruses are a group of viruses with an outer membrane derived from a host cell and a genome consisting of ribonucleic acid (RNA). These viruses rely on host cell machinery and organelles to replicate and assemble new virus particles. However, the interaction between viruses and host organelles may be disrupted by nanomaterials, such as gold nanoparticles (AuNPs) with unique physical and chemical properties. In this study, we investigated the effects of AuNPs with different surface charge properties on the subcellular structure and function of mammalian cells, and their effects on two representative enveloped RNA viruses: lentivirus and human coronavirus OC43 (HCoV- OC43) antiviral potential. By comparing the subcellular effects of AuNPs with different surface charge properties, we found that treatment with AuNPs with positive surface charges induced more significant disruption of subcellular structures than neutrally charged AuNPs and negatively charged AuNPs, mainly manifested in lysosomes and Cytoskeletal disorders. The antiviral effect of the surface positively charged AuNPs was further evaluated using lentivirus and HCoV-OC43. The results showed that AuNPs had a significant inhibitory effect on both lentivirus and HCoV-OC43 without obvious side effects. In conclusion, our study provides insights into the mechanism of action and biocompatibility of AuNP in biological systems, while supporting the potential of targeting organelle dynamics against enveloped RNA viruses.
Collapse
Affiliation(s)
- Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qiongge Guan
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Fei Ye
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, P. R. China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
26
|
Lee S, Jiao M, Zhang Z, Yu Y. Nanoparticles for Interrogation of Cell Signaling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:333-351. [PMID: 37314874 PMCID: PMC10627408 DOI: 10.1146/annurev-anchem-092822-085852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell functions rely on signal transduction-the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
27
|
Zharkov DK, Leontyev AV, Shmelev AG, Nurtdinova LA, Chuklanov AP, Nurgazizov NI, Nikiforov VG. Upconversion Luminescence Response of a Single YVO 4:Yb, Er Particle. MICROMACHINES 2023; 14:mi14051075. [PMID: 37241698 DOI: 10.3390/mi14051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
We present the results of the luminescence response studies of a single YVO4:Yb, Er particle of 1-µm size. Yttrium vanadate nanoparticles are well-known for their low sensitivity to surface quenchers in water solutions which makes them of special interest for biological applications. First, YVO4:Yb, Er nanoparticles (in the size range from 0.05 µm up to 2 µm), using the hydrothermal method, were synthesized. Nanoparticles deposited and dried on a glass surface exhibited bright green upconversion luminescence. By means of an atomic-force microscope, a 60 × 60 µm2 square of a glass surface was cleaned from any noticeable contaminants (more than 10 nm in size) and a single particle of 1-µm size was selected and placed in the middle. Confocal microscopy revealed a significant difference between the collective luminescent response of an ensemble of synthesized nanoparticles (in the form of a dry powder) and that of a single particle. In particular, a pronounced polarization of the upconversion luminescence from a single particle was observed. Luminescence dependences on the laser power are quite different for the single particle and the large ensemble of nanoparticles as well. These facts attest to the notion that upconversion properties of single particles are highly individual. This implies that to use an upconversion particle as a single sensor of the local parameters of a medium, the additional studying and calibration of its individual photophysical properties are essential.
Collapse
Affiliation(s)
- Dmitry K Zharkov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Andrey V Leontyev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Artemi G Shmelev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Larisa A Nurtdinova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Anton P Chuklanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Niaz I Nurgazizov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Victor G Nikiforov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| |
Collapse
|
28
|
Ray R, Ghosh S, Panja P, Jana NR. Rapid Mitochondria Targeting by Arginine-Terminated, Sub-10 nm Nanoprobe via Direct Cell Membrane Penetration. ACS APPLIED BIO MATERIALS 2023. [PMID: 37196150 DOI: 10.1021/acsabm.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although mitochondria have been identified as a potential therapeutic target for the treatment of various diseases, inefficient drug targeting to mitochondria is a major limitation for related therapeutic applications. In the current approach, drug loaded nanoscale carriers are used for mitochondria targeting via endocytic uptake. However, these approaches show poor therapeutic performance due to inefficient drug delivery to mitochondria. Here, we report a designed nanoprobe that can enter the cell via a nonendocytic approach and label mitochondria within 1 h. The designed nanoprobe is <10 nm in size and terminated with arginine/guanidinium that offers direct membrane penetration followed by mitochondria targeting. We found five specific criteria that need to be adjusted in a nanoscale material for mitochondria targeting via the nonendocytic approach. They include <10 nm size, functionalization with arginine/guanidinium, cationic surface charge, colloidal stability, and low cytotoxicity. The proposed design can be adapted for mitochondria delivery of drugs for efficient therapeutic performance.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prasanta Panja
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
29
|
Gu Y, Piñol R, Moreno-Loshuertos R, Brites CDS, Zeler J, Martínez A, Maurin-Pasturel G, Fernández-Silva P, Marco-Brualla J, Téllez P, Cases R, Belsué RN, Bonvin D, Carlos LD, Millán A. Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. ACS NANO 2023; 17:6822-6832. [PMID: 36940429 PMCID: PMC10100554 DOI: 10.1021/acsnano.3c00388] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The generation of temperature gradients on nanoparticles heated externally by a magnetic field is crucially important in magnetic hyperthermia therapy. But the intrinsic low heating power of magnetic nanoparticles, at the conditions allowed for human use, is a limitation that restricts the general implementation of the technique. A promising alternative is local intracellular hyperthermia, whereby cell death (by apoptosis, necroptosis, or other mechanisms) is attained by small amounts of heat generated at thermosensitive intracellular sites. However, the few experiments conducted on the temperature determination of magnetic nanoparticles have found temperature increments that are much higher than the theoretical predictions, thus supporting the local hyperthermia hypothesis. Reliable intracellular temperature measurements are needed to get an accurate picture and resolve the discrepancy. In this paper, we report the real-time variation of the local temperature on γ-Fe2O3 magnetic nanoheaters using a Sm3+/Eu3+ ratiometric luminescent thermometer located on its surface during exposure to an external alternating magnetic field. We measure maximum temperature increments of 8 °C on the surface of the nanoheaters without any appreciable temperature increase on the cell membrane. Even with magnetic fields whose frequency and intensity are still well within health safety limits, these local temperature increments are sufficient to produce a small but noticeable cell death, which is enhanced considerably as the magnetic field intensity is increased to the maximum level tolerated for human use, consequently demonstrating the feasibility of local hyperthermia.
Collapse
Affiliation(s)
- Yuanyu Gu
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- School
of Materials Science and Engineering, Nanjing
Tech University, 210009, Nanjing People’s Republic of China
| | - Rafael Piñol
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Raquel Moreno-Loshuertos
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Carlos D. S. Brites
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Justyna Zeler
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Faculty
of Chemistry, University of Wroclaw, 14. F. Joliot-Curie Street, 50-383 Wroclaw, Poland
| | - Abelardo Martínez
- Department
of Power Electronics, I3A, University of
Zaragoza, 50018 Zaragoza, Spain
| | - Guillaume Maurin-Pasturel
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Patricio Fernández-Silva
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Joaquín Marco-Brualla
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Pedro Téllez
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rafael Cases
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rafael Navarro Belsué
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Debora Bonvin
- Powder
Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luís D. Carlos
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Angel Millán
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
30
|
Fang WK, Xu DD, Liu D, Li YY, Liu MH, Pang DW, Tang HW. Combining Upconversion Luminescence, Photothermy, and Electrochemistry for Highly Accurate Triple-Signal Detection of Hydrogen Sulfide by Optically Trapping Single Microbeads. Anal Chem 2023; 95:5443-5453. [PMID: 36930753 DOI: 10.1021/acs.analchem.3c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.
Collapse
Affiliation(s)
- Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Meng-Han Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
31
|
How hot can mitochondria be? Incubation at temperatures above 43 °C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion 2023; 69:83-94. [PMID: 36764502 DOI: 10.1016/j.mito.2023.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Mitochondrial function generates an important fraction of the heat that contributes to cellular and organismal temperature maintenance, but the actual values of this parameter reached in the organelles is a matter of debate. The studies addressing this issue have reported divergent results: from detecting in the organelles the same temperature as the cell average or the incubation temperature, to increasing differences of up to 10 degrees above the incubation value. Theoretical calculations based on physical laws exclude the possibility of relevant temperature gradients between mitochondria and their surroundings. These facts have given rise to a conundrum or paradox about hot mitochondria. We have examined by Blue-Native electrophoresis, both in intact cells and in isolated organelles, the stability of respiratory complexes and supercomplexes at different temperatures to obtain information about their tolerance to heat stress. We observe that, upon incubation at values above 43 °C and after relatively short periods, respiratory complexes, and especially complex I and its supercomplexes, are unstable even when the respiratory activity is inhibited. These results support the conclusion that high temperatures (>43 °C) cause damage to mitochondrial structure and function and question the proposal that these organelles can physiologically work at close to 50 °C.
Collapse
|
32
|
Zhu Q, Sun Y, Fu M, Bian M, Zhu X, Wang K, Geng H, Zeng W, Shen W, Hu Y. Ultrasensitive Small-Molecule Fluorescent Thermometer Reveals Hot Mitochondria in Surgically Resected Human Tumors. ACS Sens 2023; 8:51-60. [PMID: 36573608 DOI: 10.1021/acssensors.2c01563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Warburg effect suggests that upregulated glycolysis arising from high glucose uptake in cancer cells might be accompanied with suppressed mitochondrial respiration. However, recent studies have shown that the mitochondrial temperature in cancer cells could be relatively higher than that in normal cells, suggesting hyperactive mitochondrial respiration in cancer cells. However, hot mitochondria have not been reported in patients with cancer. Here, near-infrared small-molecule fluorescent probes TRNs are rationally designed with two ethyl amino groups as the temperature-sensitive moiety. Afterward, a mitochondrial targeting group is installed via ether bonds on TRN-8 to build MTN. To the best of our knowledge, MTN is the near-infrared probe with the highest sensitivity for mitochondrial temperature. Moreover, it also displays high photostability, wide linearity, and high specificity. Using MTN, we can monitor the ups and downs of mitochondrial temperature in cancer cells upon the perturbations of mitochondrial respiration. Furthermore, we demonstrate that the mitochondrial temperature in surgically resected human tumors is relatively higher than that in paracancerous tissues. Our results indicate that relatively hot mitochondria may exist in tumors from patients. We envisage that our study provides critical evidence for revisiting the Warburg effect and cancer metabolism.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mianli Bian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaomei Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haoxing Geng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Shen
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yi Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
33
|
Zhang W, Huang X, Liu W, Gao Z, Zhong L, Qin Y, Li B, Li J. Semiconductor Plasmon Enhanced Upconversion toward a Flexible Temperature Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4469-4476. [PMID: 36642887 DOI: 10.1021/acsami.2c18412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noninvasive and sensitive thermometry is crucial to human health monitoring and applications in disease diagnosis. Despite recent advances in optical temperature detection, the construction of sensitive wearable temperature sensors remains a considerable challenge. Here, a flexible and biocompatible optical temperature sensor is developed by combining plasmonic semiconductor W18O49 enhanced upconversion emission (UCNPs/WO) with flexible poly(lactic acid) (PLA)-based optical fibers. The UCNPs/WO offers highly thermal-sensitive and obviously enhanced dual-wavelength emissions for ratiometric temperature sensing. The PLA polymer endows the sensor with excellent light-transmitting ability for laser excitation and emission collection and high biocompatibility. The fabricated UCNPs/WO-PLA sensor exhibits stable and rapid temperature response in the range 298-368 K, with a high relative sensitivity of 1.53% K-1 and detection limit as low as ±0.4 K. More importantly, this proposed sensor is demonstrated to possess dual function on real-time detection for physiological thermal changes and heat release, exhibiting great potential in wearable health monitoring and biotherapy applications.
Collapse
Affiliation(s)
- Weina Zhang
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Xingwu Huang
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| | - Wenjie Liu
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Zhensen Gao
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Yuwen Qin
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| | - Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| |
Collapse
|
34
|
Liang H, Yang K, Yang Y, Hong Z, Li S, Chen Q, Li J, Song X, Yang H. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane. NANO LETTERS 2022; 22:9045-9053. [PMID: 36326607 DOI: 10.1021/acs.nanolett.2c03392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell temperature monitoring is of great importance to uncover temperature-dependent intracellular events and regulate cellular functions. However, it remains a great challenge to precisely probe the localized temperature status in living cells. Herein, we report a strategy for in situ temperature mapping on an immune cell membrane for the first time, which was achieved by using the lanthanide-doped upconversion nanoparticles. The nanothermometer was designed to label the cell membrane by combining metabolic labeling and click chemistry and can leverage ratiometric upconversion luminescence signals to in situ sensitively monitor temperature variation (1.4% K-1). Moreover, a purpose-built upconversion hyperspectral microscope was utilized to synchronously map temperature changes on T cell membrane and visualize intracellular Ca2+ influx. This strategy was able to identify a suitable temperature status for facilitating thermally stimulated calcium influx in T cells, thus enabling high-efficiency activation of immune cells. Such findings might advance understandings on thermally dependent biological processes and their regulation methodology.
Collapse
Affiliation(s)
- Hanyu Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yating Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Juan Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
35
|
Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell Mol Life Sci 2022; 79:525. [PMID: 36125552 PMCID: PMC11802959 DOI: 10.1007/s00018-022-04523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Florian Beignon
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| | - Naig Gueguen
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
- Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France
| | | | - César Mattei
- Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
- Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
36
|
|
37
|
Wang Z, Delille F, Bartier S, Pons T, Lequeux N, Louis B, Kim J, Gacoin T. Zwitterionic Polymers toward the Development of Orientation-Sensitive Bioprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10512-10519. [PMID: 35979644 DOI: 10.1021/acs.langmuir.2c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamics with an orientational degree of freedom are fundamental in biological events. Probes with polarized luminescence enable a determination of the orientation. Lanthanide-doped nanocrystals can provide more precise analysis than quantum dots due to the nonphotoblinking/bleaching nature and the multiple line-shaped emission. However, the intrinsic polarization property of the original nanocrystals often deteriorates in complex physiological environments because the colloidal stability easily breaks and the probes aggregate in the media with abundant salts and macromolecules. Engineering the surface chemistry of the probes is thus essential to be compatible with biosystems, which has remained a challenging task that should be exclusively addressed for each specific probe. Here, we demonstrate a facile and efficient surface functionalization of lanthanide-doped nanorods by zwitterionic block copolymers. Due to the steric interaction and the intrinsic zwitterionic nature of the polymers, high colloidal stability of the zwitterionic nanorod suspension is achieved over wide ranges of pH and concentration of salts, even giving rise to the lyotropic liquid crystalline behavior of the nanorods in physiological media. The shear-aligned ability is shown to be unaltered by the coated polymers, and thus, the strongly polarized emission of Eu3+ is preserved. Besides, biological experiments reveal good biocompatibility of the zwitterionic nanorods with negligible nonspecific binding. This study is a stepping stone for the use of the nanorods as orientation probes in biofluids and validates the strategy of coupling zwitterions to lanthanide-doped nanocrystals for various bioapplications.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Fanny Delille
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Sophie Bartier
- Université Paris Est Créteil, IMRB, INSERM, CNRS, 94010 Créteil, France
| | - Thomas Pons
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Bruno Louis
- Université Paris Est Créteil, IMRB, INSERM, CNRS, 94010 Créteil, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
38
|
Deng Z, Li J, Liu H, Luo T, Yang Y, Yang M, Chen X. A light-controlled DNA nanothermometer for temperature sensing in the cellular membrane microenvironment. Biosens Bioelectron 2022; 216:114627. [PMID: 35973279 DOI: 10.1016/j.bios.2022.114627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Precise sensing of cellular temperature is one significant yet challenge task for studying miscellaneous biological processes. Herein, we report a light-controlled DNA nanothermometer that allow for real-time thermal sensing in extracellular microscope with high spatiotemporal resolution. The light-controlled DNA nanothermometer three key elements: a thermal-sensitive molecular beacon (MB) labelled with fluorophore Cy5 and Cy3 at its 5' and 3' termini, an inhibitor strand containing two photocleavable linkers (pc-linker), and a biotin modified strand, which could modify this three-strand hybridization complex onto the cell surface. Upon exposing to UV light irradiation, the light-controlled DNA nanothermometer could be remotely activated and enable to perform highly sensitive and practical ratiometric temperature sensing. Meanwhile, the light-controlled DNA nanothermometer could conduct temperature sensing in the extracellular microscope and demonstrates desirable sensitivity, excellent reversibility, and quantitative ability for extracellular temperature measurement. Therefore, this light-controlled DNA can serve as a promising tool for elucidating thermal-related cell physiological and pathological processes.
Collapse
Affiliation(s)
- Zhiwei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiacheng Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tong Luo
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yanjing Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
| |
Collapse
|
39
|
El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N. Regulation of mitochondrial temperature in health and disease. Pflugers Arch 2022; 474:1043-1051. [PMID: 35780250 PMCID: PMC9492600 DOI: 10.1007/s00424-022-02719-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Mitochondrial temperature is produced by various metabolic processes inside the mitochondria, particularly oxidative phosphorylation. It was recently reported that mitochondria could normally operate at high temperatures that can reach 50℃. The aim of this review is to identify mitochondrial temperature differences between normal cells and cancer cells. Herein, we discussed the different types of mitochondrial thermosensors and their advantages and disadvantages. We reviewed the studies assessing the mitochondrial temperature in cancer cells and normal cells. We shed the light on the factors involved in maintaining the mitochondrial temperature of normal cells compared to cancer cells.
Collapse
Affiliation(s)
- Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, Egypt.,Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, Egypt
| | - Ahmed O Elmehrath
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, Egypt.,Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Radwa A Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, Egypt
| | - Shams M Saad
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, Egypt.
| |
Collapse
|
40
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Sharma NK, Sarode SC. Do compromised mitochondria aggravate severity and fatality by SARS-CoV-2? Curr Med Res Opin 2022; 38:911-916. [PMID: 35403526 PMCID: PMC9115783 DOI: 10.1080/03007995.2022.2065140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022]
Abstract
At global level, the pandemic coronavirus disease 2019 (COVID-19) is known to be caused by an etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Numerous evidence and propositions have emerged on the molecular and cellular attributes that cause COVID-19. Notwithstanding, still several key questions with reference to molecular aspects of severity of infection by SARS-CoV-2 need to be answered. In the same line, the role of healthy mitochondria to maintain intracellular temperature and their association with the severity of SARS-CoV-2 is completely missing. In this direction, preclinical and clinical data on the comorbidities in the case of mitochondrial defective disease and COVID-19 are not available. The authors propose that patients harboring primary mitochondrial disease and secondary mitochondrial dysfunction will display a higher severity and death rate compared to healthy mitochondria harboring patients.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Cancer and Translational Research Lab, Pune, Maharashtra, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Pune, India
| |
Collapse
|
42
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
43
|
Kong N, Hu Q, Wu Y, Zhu X. Lanthanide Luminescent Nanocomposite for Non‐Invasive Temperature Monitoring in Vivo. Chemistry 2022; 28:e202104237. [DOI: 10.1002/chem.202104237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Na Kong
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Qian Hu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Yukai Wu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Xingjun Zhu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| |
Collapse
|
44
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochim Acta 2022; 189:109. [PMID: 35175435 DOI: 10.1007/s00604-022-05180-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 01/26/2023]
Abstract
Various fluctuations of intracellular ions, biomolecules, and other conditions in the physiological environment play crucial roles in fundamental biological processes. These factors are of great importance for analysis in biomedical detection. Nevertheless, developments of the simple, rapid, and accurate proof for specific detection still encounter major challenges. Upconversion nanoparticles (UCNPs), which could absorb multiple low-energy near-infrared light (NIR) photon excitation and emits high-energy photons caused by anti-Stokes shift, show unique upconversion luminescence (UCL) properties, for example, sharp emission band, high physicochemical stability like near-zero photobleaching, photo blinking in biological tissues, and long luminescence lifetime. Furthermore, the NIR used for the light source to excite UCNPs enable lower photo-damage effect and deeper penetration of tissue, and in the meantime, it can avoid the auto-fluorescence and light scattering from biological tissue interference. Thus, the lanthanide-doped UCNP-based functional platform with controlled structure, crystalline phase, size, and multicolor emission has become an appropriate nanomaterial for bioapplications such as biosensing, bioimaging, drug release, and therapies. In this review, the recent progress about synthesis and biomedical applications of UCNPs related to sensing and bioimaging is summarized. Firstly, the different luminescence mechanisms of the upconversion process are presented. Secondly, four of the most common methods for synthesizing UCNPs are compared as well as the advantages and disadvantages of these synthetic routes. Meanwhile, the surface modification of lanthanide-doped UCNPs was introduced to pave the way for their biochemistry applications. Next, this review detailed the biological applications of lanthanide-doped UCNPs, particularly in bioimaging, including UCL and multi-modal imaging and biosensing (monitoring intracellular ions and biomolecules). Finally, the challenges and future perspectives in materials science and biomedical fields of UCNPs are concluded: the low quantum yield of the upconversion process should be considered when they are executed as imaging contrast agents. And the biosafety of lanthanide-doped UCNPs needs to be evaluated.
Collapse
|
46
|
Rodríguez-Sevilla P, Thompson SA, Jaque D. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
| | - Sebastian A. Thompson
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) C/Faraday 9 Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal Ctra. Colmenar km. 9,100 Madrid 28034 Spain
| |
Collapse
|
47
|
Lin H, Cheng Z, Xu D, Zheng X, Liu T, Xu L, Ma Y, Zhang Y. Second Near-Infrared Upconverting and Downshifting Luminescence in a Core-Multishell Nanophotoswitch. NEW J CHEM 2022. [DOI: 10.1039/d2nj01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of NIR-II (near-infrared-II: 1000-1700 nm) nanophotoswitch is urgently needed, due to their deeper-tissue penetration and higher-resolution imaging. In this work, a new type of NIR-II upconversion (UC) and...
Collapse
|
48
|
Zhang H, Wu Y, Tang P, Zhu H, Gan Z, Zhang HQ, Wu D. Accurate and Real-Time Detection Method for the Exothermic Behavior of Enzymatic Nano-Microregions Using Temperature-Sensitive Amino-AgInS 2 Quantum Dots. SMALL METHODS 2022; 6:e2100811. [PMID: 35041293 DOI: 10.1002/smtd.202100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/17/2021] [Indexed: 06/14/2023]
Abstract
The thermal behavior of enzymes in nanoscale is of great significance to life phenomena. This nonequilibrium state real-time thermal behavior of enzymes at nanoscale cannot be accurately detected by existing methods. Herein, a novel method is developed for the detection of this thermal behavior. The enzyme-quantum dot (QD) conjugates can be obtained by chemically grafting temperature-sensitive amino-AgInS2 QDs to the enzyme, where the QDs act as nanothermometers with a sensitivity of -2.82% °C-1 . Detecting the photoluminescence intensity changes of the enzyme-QD conjugates, the real-time thermal behavior of enzymes can be obtained. The enzyme-QD conjugates show a temperature difference as high as 6 °C above ambient temperature in nano-microregions with good reproducibility (maximum error of 4%) during catalysis, while solution temperature hardly changed. This method has a temperature resolution of ≈0.5 °C with a detection limit of 0.02 mg mL-1 of enzyme, and spatially ensured that the amino-AgInS2 QDs are quantitatively bound to the enzyme; thus, it can accurately detect the exothermic behavior of the enzyme and can be extended to other organisms' detection. This method has high sensitivity, good stability, and reliability, indicating its great potential application in investigating the thermal behavior of organisms in nanoscale and related life phenomena.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Youshen Wu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng Tang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongrui Zhu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hu-Qin Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
49
|
Abstract
Upconversion nanoparticles are a class of luminescent materials that convert longer-wavelength near-infrared photons into visible and ultraviolet emissions. They can respond to various external stimuli, which underpins many opportunities for developing the next generation of sensing technologies. In this perspective, the unique stimuli-responsive properties of upconverting nanoparticles are introduced, and their recent implementations in sensing are summarized. Promising material development strategies for enhancing the key sensing merits, including intrinsic sensitivity, biocompatibility and modality, are identified and discussed. The outlooks on future technological developments, novel sensing concepts, and applications of nanoscale upconversion sensors are provided.
Collapse
Affiliation(s)
- Gungun Lin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan, Shenzhen, Guangdong 518055, China
| |
Collapse
|
50
|
Zhang Y, Zhou J, Peng S, Yu W, Fan X, Liu W, Ye Z, Qi J, Feng Z, Qian J. Hot-Band-Absorption-Induced Anti-Stokes Fluorescence of Aggregation-Induced Emission Dots and the Influence on the Nonlinear Optical Effect. BIOSENSORS 2021; 11:468. [PMID: 34821684 PMCID: PMC8615853 DOI: 10.3390/bios11110468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Hot-band absorption (HBA)-induced anti-Stokes fluorescence (ASF) with longer-wavelength excitation is one effective pathway to deep penetration and low autofluorescence in intravital fluorescence imaging, raising demands for fluorophores with broad spectra, high absorption, and strong emission. However, typical fluorescent dyes display some emission quenching when their concentration is increased in order to obtain brighter fluorescence. In this work, the HBA-induced ASF of aggregation-induced emission (AIE) dots is reported. BPN-BBTD dots were synthesized and confirmed with a fluorescence enhancement and a considerable ASF intensity. In addition, the mechanism of ASF and the HBA process of BPN-BBTD dots were carefully validated and discussed. To obtain the full advantages of the long-wavelength excitation and the short fluorescence lifetime in deep-tissue bioimaging, a large-depth ASF confocal microscopic imaging of in vivo cerebral vasculature was conducted under the excitation of a 980 nm continuous wave laser after intravenous injection of BPN-BBTD dots. Meanwhile, the 3D structure of the cerebrovascular network was successfully reconstructed.
Collapse
Affiliation(s)
- Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.); (S.P.); (W.Y.); (X.F.); (Z.F.)
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.); (S.P.); (W.Y.); (X.F.); (Z.F.)
| | - Shiyi Peng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.); (S.P.); (W.Y.); (X.F.); (Z.F.)
| | - Wenbin Yu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.); (S.P.); (W.Y.); (X.F.); (Z.F.)
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.); (S.P.); (W.Y.); (X.F.); (Z.F.)
| | - Wen Liu
- Key Laboratory of Optical Information Detecting and Display Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Zikang Ye
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.); (S.P.); (W.Y.); (X.F.); (Z.F.)
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.); (S.P.); (W.Y.); (X.F.); (Z.F.)
| |
Collapse
|