1
|
Babicheva VE. Effective Polarizability in Near-Field Microscopy of Phonon-Polariton Resonances. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:458. [PMID: 40137631 PMCID: PMC11946120 DOI: 10.3390/nano15060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
We investigate the resonant characteristics of planar surfaces and distinct edges of structures with the excitation of phonon-polaritons. We analyze two materials supporting phonon-polariton excitations in the mid-infrared spectrum: silicon carbide, characterized by an almost isotropic dielectric constant, and hexagonal boron nitride, notable for its pronounced anisotropy in a spectral region exhibiting hyperbolic dispersion. We formulate a theoretical framework that accurately captures the excitations of the structure involving phonon-polaritons, predicts the response in scattering-type near-field optical microscopy, and is effective for complex resonant geometries where the locations of hot spots are uncertain. We account for the tapping motion of the probe, perform analysis for different heights of the probe, and demodulate the signal using a fast Fourier transform. Using this Fourier demodulation analysis, we show that light enhancement across the entire apex is the most accurate characteristic for describing the response of all resonant excitations and hot spots. We demonstrate that computing the demodulation orders of light enhancement in the microscope probe accurately predicts its imaging.
Collapse
Affiliation(s)
- Viktoriia E Babicheva
- Department of Electrical and Computer Engineering, University of New Mexico, MSC01 1100, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Kumar P, Singh G, Guan X, Roy S, Lee J, Kim IY, Li X, Bu F, Bahadur R, Iyengar SA, Yi J, Zhao D, Ajayan PM, Vinu A. The Rise of Xene Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403881. [PMID: 38899836 DOI: 10.1002/adma.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Xenes, mono-elemental atomic sheets, exhibit Dirac/Dirac-like quantum behavior. When interfaced with other 2D materials such as boron nitride, transition metal dichalcogenides, and metal carbides/nitrides/carbonitrides, it enables them with unique physicochemical properties, including structural stability, desirable bandgap, efficient charge carrier injection, flexibility/breaking stress, thermal conductivity, chemical reactivity, catalytic efficiency, molecular adsorption, and wettability. For example, BN acts as an anti-oxidative shield, MoS2 injects electrons upon laser excitation, and MXene provides mechanical flexibility. Beyond precise compositional modulations, stacking sequences, and inter-layer coupling controlled by parameters, achieving scalability and reproducibility in hybridization is crucial for implementing these quantum materials in consumer applications. However, realizing the full potential of these hybrid materials faces challenges such as air gaps, uneven interfaces, and the formation of defects and functional groups. Advanced synthesis techniques, a deep understanding of quantum behaviors, precise control over interfacial interactions, and awareness of cross-correlations among these factors are essential. Xene-based hybrids show immense promise for groundbreaking applications in quantum computing, flexible electronics, energy storage, and catalysis. In this timely perspective, recent discoveries of novel Xenes and their hybrids are highlighted, emphasizing correlations among synthetic parameters, structure, properties, and applications. It is anticipated that these insights will revolutionize diverse industries and technologies.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - In Young Kim
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xiaomin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
3
|
Hu Y, Wu X, Liu H, Huang X. Casimir interaction driven by hyperbolic polaritons. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2983-2994. [PMID: 39634309 PMCID: PMC11501208 DOI: 10.1515/nanoph-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 12/07/2024]
Abstract
Casimir interaction is an intriguing phenomenon that is induced by electromagnetic quantum fluctuations, which dominates the interaction between microstructures at small separations and is essential for micro- and nano-electromechanical systems (MEMS and NEMS). However, Casimir interaction driven by hyperbolic polaritons remains an unexplored frontier. In this work, we investigate the Casimir interaction between natural hyperbolic material hexagonal boron nitride from the perspective of force distribution with different optical axis orientations for the first time. The attractive Casimir force is remarkably enhanced due to the excitation of volume-confined hyperbolic polaritons (HPs). Furthermore, distinct repulsive contributions to the force are observed due to surface-confined HPs that only exist when the optical axis is in-plane. The HPs are associated with a striking thickness dependence of spectral force properties, suggesting that the discrete volume-confined HPs lead to the attractive-repulsive transition of Casimir force. This work sheds light on the relation between HPs and the vacuum fluctuation-induced force, which could offer new opportunities for the development of the MEMS and NEMS.
Collapse
Affiliation(s)
- Yang Hu
- School of Power and Energy, Northwestern Polytechnical University, Xi’an710072, Shaanxi, P.R. China
- Shandong Institute of Advanced Technology, Jinan250100, Shandong, P.R. China
| | - Xiaohu Wu
- Shandong Institute of Advanced Technology, Jinan250100, Shandong, P.R. China
| | - Haotuo Liu
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin150080, P.R. China
| | - Xiuquan Huang
- School of Power and Energy, Northwestern Polytechnical University, Xi’an710072, Shaanxi, P.R. China
| |
Collapse
|
4
|
Choi KR, Li S, Park DH, Joo BC, Lee H, Kang ESH, Nic Chormaic S, Wu JW, D’Aléo A, Lee YU. Photoluminescence lifetime engineering via organic resonant films with molecular aggregates. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1033-1037. [PMID: 39634005 PMCID: PMC11501593 DOI: 10.1515/nanoph-2023-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2024]
Abstract
Manipulating the spontaneous emission rate of fluorophores is vital in creating bright incoherent illumination for optical sensing and imaging, as well as fast single-photon sources for quantum technology applications. This can be done via increasing the Purcell effect by using non-monolithic optical nanocavities; however, achieving the desired performance is challenging due to difficulties in fabrication, precise positioning, and frequency tuning of cavity-emitter coupling. Here, we demonstrate a simple approach to achieve a wavelength-dependent photoluminescence (PL) lifetime modification using monolithic organic molecular aggregates films. These single monolithic organic films are designed to have a Lorentzian dispersion, including epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) spectral regions with increased and decreased photonic density of states, respectively. This dispersion leads to enhanced and depressed PL decay rates at different wavelengths. Both time-resolved photoluminescence (TRPL) and fluorescence lifetime imaging microscopy (FLIM) measurements are implemented to verify the validity of this approach. This approach offers a promising way to design dual-functional optical sources for a variety of applications, including bioimaging, sensing, data communications, and quantum photonics applications.
Collapse
Affiliation(s)
- Kyu-Ri Choi
- Chungbuk National University, Cheongju, Republic of Korea
| | - Shilong Li
- Okinawa Institure of Science and Technology Graduate University, Onna, Japan
| | - Dong Hee Park
- Chungbuk National University, Cheongju, Republic of Korea
| | - Bin Chan Joo
- Chungbuk National University, Cheongju, Republic of Korea
| | - Hojun Lee
- Chungbuk National University, Cheongju, Republic of Korea
| | | | - Síle Nic Chormaic
- Okinawa Institure of Science and Technology Graduate University, Onna, Japan
| | | | | | - Yeon Ui Lee
- Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Wang H, Kumar A, Dai S, Lin X, Jacob Z, Oh SH, Menon V, Narimanov E, Kim YD, Wang JP, Avouris P, Martin Moreno L, Caldwell J, Low T. Planar hyperbolic polaritons in 2D van der Waals materials. Nat Commun 2024; 15:69. [PMID: 38167681 PMCID: PMC10761702 DOI: 10.1038/s41467-023-43992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.e. ferromagnetic, ferroelectric, and piezoelectric) polaritons. Lastly, we provide our perspectives on the technological applications of such planar hyperbolic polaritons.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, 315211, Ningbo, China
| | - Anshuman Kumar
- Laboratory of Optics of Quantum Materials, Department of Physics, IIT Bombay, Mumbai, Maharashtra, 400076, India
| | - Siyuan Dai
- Department of Mechanical Engineering, Materials Research and Education Center, Auburn University, Auburn, AL, 36849, USA
| | - Xiao Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zubin Jacob
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vinod Menon
- Department of Physics, City College and Graduate Center, City University of New York, New York, NY, 10031, USA
| | - Evgenii Narimanov
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Young Duck Kim
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Phaedon Avouris
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Luis Martin Moreno
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Joshua Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Chen S, Wu X, Fu C. Comparative analysis of two models for phonon polaritons in van der Waals materials: 2D and 3D. NANOSCALE 2023; 15:17889-17898. [PMID: 37889109 DOI: 10.1039/d3nr03879c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Phonon polaritons with ultralow losses and high confinement in extremely anisotropic media have opened up new avenues for manipulating the flow of light at the nanoscale. Recent advances in var der Waals (vdW) materials reveal unprecedented dispersion characteristics of polaritons using a two-dimensional (2D) model, treating the slab as a surface without thickness. However, the difference between the 2D and three-dimensional (3D) models of hyperbolic polaritons remains largely unexplored. Herein, we compare the polaritonic difference between these two models for biaxial vdW slabs. In addition, we demonstrate that the fundamental mode in slab configuration corresponds to the polaritonic mode in surface sheet and higher-order modes vanish in the latter configuration. In particular, we reveal that the difference in in-plane polaritons along the [100] and [001] crystal directions between the two models is associated with the inverse of the dielectric function along these two directions. For example, we compare the near-field radiative heat transfer (NFRHT) between two vdW slabs based on these two models. It is found that when the attenuation length of the higher-order hyperbolic mode is less than the gap distance, the enhancement achieved using the 3D model comes from only the fundamental mode, resulting in a negligible difference between these two models. Therefore, our findings may help to understand in-plane anisotropic polaritons and provide guidance for the application of the 2D model in the analysis of vdW materials.
Collapse
Affiliation(s)
- Shuo Chen
- LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
- Shandong Institute of Advanced Technology, Jinan 250100, China.
| | - Xiaohu Wu
- Shandong Institute of Advanced Technology, Jinan 250100, China.
| | - Ceji Fu
- LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Chen L, Song J, Jin L, Yao X, Zhao H, Cheng Q. Regulation of Near-Field Radiative Heat Transfer between Multilayer BP/hBN Heterostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12817-12825. [PMID: 37655503 DOI: 10.1021/acs.langmuir.3c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As an allotrope of phosphorus and a promising 2D semiconductor, black phosphorus (BP) exhibits in-plane anisotropy along its armchair and zigzag crystal directions, allowing for efficient regulation of near-field radiative heat transfer (NFRHT). In this work, we investigate the NFRHT between two multilayer BP/hBN heterostructures and theoretically demonstrate that thermal regulation can be realized by tuning the electron density and rotation angle of BP. Results show that a larger electron density leads to the coupling of anisotropic surface plasmon polaritons (SPPs) of BP with hyperbolic modes of hBN, and rotation of BP changes the anisotropic characteristic of coupled SPPs on both sides, whereby a regulation ratio of 5.8 can be obtained. We also analyze the effects of period number, hBN layer thickness, and topmost-layer material on the NFRHT. This work may be beneficial for efficient nanoscale thermal management and physical understanding of radiative heat transfer based on anisotropic SPPs.
Collapse
Affiliation(s)
- Lei Chen
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinlin Song
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lin Jin
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xinjie Yao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hailong Zhao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiang Cheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Chen M, Zhong Y, Harris E, Li J, Zheng Z, Chen H, Wu JS, Jarillo-Herrero P, Ma Q, Edgar JH, Lin X, Dai S. Van der Waals isotope heterostructures for engineering phonon polariton dispersions. Nat Commun 2023; 14:4782. [PMID: 37553366 PMCID: PMC10409777 DOI: 10.1038/s41467-023-40449-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Element isotopes are characterized by distinct atomic masses and nuclear spins, which can significantly influence material properties. Notably, however, isotopes in natural materials are homogenously distributed in space. Here, we propose a method to configure material properties by repositioning isotopes in engineered van der Waals (vdW) isotopic heterostructures. We showcase the properties of hexagonal boron nitride (hBN) isotopic heterostructures in engineering confined photon-lattice waves-hyperbolic phonon polaritons. By varying the composition, stacking order, and thicknesses of h10BN and h11BN building blocks, hyperbolic phonon polaritons can be engineered into a variety of energy-momentum dispersions. These confined and tailored polaritons are promising for various nanophotonic and thermal functionalities. Due to the universality and importance of isotopes, our vdW isotope heterostructuring method can be applied to engineer the properties of a broad range of materials.
Collapse
Affiliation(s)
- M Chen
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Y Zhong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - E Harris
- Department of Physics, Boston College, Chestnut Hill, Massachusetts, MA, 02467, USA
| | - J Li
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Z Zheng
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA, 02139, USA
| | - H Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
| | - J-S Wu
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - P Jarillo-Herrero
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA, 02139, USA
| | - Q Ma
- Department of Physics, Boston College, Chestnut Hill, Massachusetts, MA, 02467, USA
| | - J H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - X Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - S Dai
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
9
|
Jeon ES, Ko Y, Yoo S. Design principles for electrically driven Luttinger liquid-fed plasmonic nanoantennas. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2507-2516. [PMID: 39633741 PMCID: PMC11501488 DOI: 10.1515/nanoph-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/07/2023] [Indexed: 12/07/2024]
Abstract
Electrons injected into one-dimensional (1D) metals are efficiently converted into infrared plasmons because the unique property of the Luttinger liquid, a strongly correlated electronic matter in one-dimensional (1D) metals, prohibits excitations of other quasiparticles. Using the Luttinger liquid behavior, the electrically driven 1D metals can be used as a feed for optical nanoantennas. Nanoantennas can couple the 1D Luttinger liquid plasmons in the feed to the radiating photons in free space. In this work, we suggest design principles for the 1D metallic Luttinger liquid feed and the nanoantennas to obtain high injection and radiation efficiencies, respectively. We expect that our work can promote experimental efforts to realize electrically driven Luttinger liquid-fed nanoantennas and efficient infrared light sources.
Collapse
Affiliation(s)
- Eun Su Jeon
- Department of Physics, Inha University, Incheon, Republic of Korea
| | - YoonYeong Ko
- Department of Physics, Inha University, Incheon, Republic of Korea
| | - SeokJae Yoo
- Department of Physics, Inha University, Incheon, Republic of Korea
| |
Collapse
|
10
|
Ni X, Carini G, Ma W, Renzi EM, Galiffi E, Wasserroth S, Wolf M, Li P, Paarmann A, Alù A. Observation of directional leaky polaritons at anisotropic crystal interfaces. Nat Commun 2023; 14:2845. [PMID: 37202412 DOI: 10.1038/s41467-023-38326-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Extreme anisotropy in some polaritonic materials enables light propagation with a hyperbolic dispersion, leading to enhanced light-matter interactions and directional transport. However, these features are typically associated with large momenta that make them sensitive to loss and poorly accessible from far-field, being bound to the material interface or volume-confined in thin films. Here, we demonstrate a new form of directional polaritons, leaky in nature and featuring lenticular dispersion contours that are neither elliptical nor hyperbolic. We show that these interface modes are strongly hybridized with propagating bulk states, sustaining directional, long-range, sub-diffractive propagation at the interface. We observe these features using polariton spectroscopy, far-field probing and near-field imaging, revealing their peculiar dispersion, and - despite their leaky nature - long modal lifetime. Our leaky polaritons (LPs) nontrivially merge sub-diffractive polaritonics with diffractive photonics onto a unified platform, unveiling opportunities that stem from the interplay of extreme anisotropic responses and radiation leakage.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Giulia Carini
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Weiliang Ma
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics and Wuhan National high Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Enrico Maria Renzi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Emanuele Galiffi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Sören Wasserroth
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Peining Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics and Wuhan National high Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China.
- Optics Valley Laboratory, Hubei, 430074, China.
| | | | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
11
|
Emami-Nejad H, Mir A, Lorestaniweiss Z, Farmani A, Talebzadeh R. First designing of a silicene-based optical MOSFET with outstanding performance. Sci Rep 2023; 13:6563. [PMID: 37085566 PMCID: PMC10121722 DOI: 10.1038/s41598-023-33620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
Miniaturized integrated optical devices with low power consumption have long been considered hot candidates for plasmonic applications. While 2D materials such as graphene have been proposed for this purpose, they suffer from large propagation loss and low controllability at room temperature. Here, a silicene-based optical MOSFET with excellent performance is designed to achieve integrated circuit optical technology. The designed device is comprised of a silicene optical waveguide whose switching operation is performed by a gate and has a structure similar to an enhancement MOSFET with a formed channel. Unlike graphene, the surface conductivity of silicene can be controlled by both chemical potential and an electric field perpendicular to its surface. This unique feature of silicene is used to design and simulate an optical-MOSFET with transverse electric polarization at 300 K. The salient characteristics of the optical device include its nanoscale dimensions, ultra-low insertion loss of 0.13 dB, infinite extinction ratio, and quality factor of 688, proposing it as a promising tool for optical integration.
Collapse
Affiliation(s)
| | - Ali Mir
- Faculty of Engineering, Lorestan University, Khorramabad, Iran.
| | | | - Ali Farmani
- Faculty of Engineering, Lorestan University, Khorramabad, Iran
| | - Reza Talebzadeh
- Faculty of Engineering, Lorestan University, Khorramabad, Iran
| |
Collapse
|
12
|
Guo X, Lyu W, Chen T, Luo Y, Wu C, Yang B, Sun Z, García de Abajo FJ, Yang X, Dai Q. Polaritons in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2201856. [PMID: 36121344 DOI: 10.1002/adma.202201856] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/15/2022] [Indexed: 05/17/2023]
Abstract
2D monolayers supporting a wide variety of highly confined plasmons, phonon polaritons, and exciton polaritons can be vertically stacked in van der Waals heterostructures (vdWHs) with controlled constituent layers, stacking sequence, and even twist angles. vdWHs combine advantages of 2D material polaritons, rich optical structure design, and atomic scale integration, which have greatly extended the performance and functions of polaritons, such as wide frequency range, long lifetime, ultrafast all-optical modulation, and photonic crystals for nanoscale light. Here, the state of the art of 2D material polaritons in vdWHs from the perspective of design principles and potential applications is reviewed. Some fundamental properties of polaritons in vdWHs are initially discussed, followed by recent discoveries of plasmons, phonon polaritons, exciton polaritons, and their hybrid modes in vdWHs. The review concludes with a perspective discussion on potential applications of these polaritons such as nanophotonic integrated circuits, which will benefit from the intersection between nanophotonics and materials science.
Collapse
Affiliation(s)
- Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tinghan Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Yang Luo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Ogawa S, Fukushima S, Shimatani M. Hexagonal Boron Nitride for Photonic Device Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2005. [PMID: 36903116 PMCID: PMC10004243 DOI: 10.3390/ma16052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Hexagonal boron nitride (hBN) has emerged as a key two-dimensional material. Its importance is linked to that of graphene because it provides an ideal substrate for graphene with minimal lattice mismatch and maintains its high carrier mobility. Moreover, hBN has unique properties in the deep ultraviolet (DUV) and infrared (IR) wavelength bands owing to its indirect bandgap structure and hyperbolic phonon polaritons (HPPs). This review examines the physical properties and applications of hBN-based photonic devices that operate in these bands. A brief background on BN is provided, and the theoretical background of the intrinsic nature of the indirect bandgap structure and HPPs is discussed. Subsequently, the development of DUV-based light-emitting diodes and photodetectors based on hBN's bandgap in the DUV wavelength band is reviewed. Thereafter, IR absorbers/emitters, hyperlenses, and surface-enhanced IR absorption microscopy applications using HPPs in the IR wavelength band are examined. Finally, future challenges related to hBN fabrication using chemical vapor deposition and techniques for transferring hBN to a substrate are discussed. Emerging techniques to control HPPs are also examined. This review is intended to assist researchers in both industry and academia in the design and development of unique hBN-based photonic devices operating in the DUV and IR wavelength regions.
Collapse
Affiliation(s)
- Shinpei Ogawa
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki 661-8661, Hyogo, Japan
| | | | | |
Collapse
|
14
|
Gholizadeh E, Jafari B, Golmohammadi S. Graphene-based optofluidic tweezers for refractive-index and size-based nanoparticle sorting, manipulation, and detection. Sci Rep 2023; 13:1975. [PMID: 36737494 PMCID: PMC9898258 DOI: 10.1038/s41598-023-29122-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
This work proposes a novel design composed of graphene nanoribbons-based optofluidic tweezers to manipulate and sort bio-particles with radii below 2.5 nm. The suggested structure has been numerically investigated by the finite difference time domain (FDTD) method employing Maxwell's stress tensor analysis (MST). The finite element method (FEM) has been used to obtain the electrostatic response of the proposed structure. The tweezer main path is a primary channel in the center of the structure, where the microfluidic flow translates the nanoparticle toward this channel. Concerning the microfluid's drag force, the nanoparticles tend to move along the length of the main channel. The graphene nanoribbons are fixed near the main channel at different distances to exert optical forces on the moving nanoparticles in the perpendicular direction. In this regard, sub-channels embedding in the hBN layer on the Si substrate deviate bio-particles from the main path for particular nanoparticle sizes and indices. Intense hotspots with electric field enhancements up to 900 times larger than the incident light are realized inside and around the graphene ribbons. Adjusting the gap distance between the graphene nanoribbon and the main channel allows us to separate the individual particle with a specific size from others, thus guiding that in the desired sub-channel. Furthermore, we demonstrated that in a structure with a large gap between channels, particles experience weak field intensity, leading to a low optical force that is insufficient to detect, trap, and manipulate nanoparticles. By varying the chemical potential of graphene associated with the electric field intensity variations in the graphene ribbons, we realized tunability in sorting nanoparticles while structural parameters remained constant. In fact, by adjusting the graphene Fermi level via the applied gate voltage, nanoparticles with any desired radius will be quickly sorted. Moreover, we exhibited that the proposed structure could sort nanoparticles based on their refractive indices. Therefore, the given optofluidic tweezer can easily detect bio-particles, such as cancer cells and viruses of tiny size.
Collapse
Affiliation(s)
- Elnaz Gholizadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Behnam Jafari
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
| | - Saeed Golmohammadi
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
15
|
Zhang K, Zhang B, Song J, Luo Z, Cheng Q. NFRHT modulation between graphene/SiC core-shell and hBN plate through strain. OPTICS LETTERS 2023; 48:723-726. [PMID: 36723573 DOI: 10.1364/ol.480166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
We numerically investigate the near-field radiative heat transfer (NFRHT) between a graphene/SiC core-shell (GSCS) nanoparticle and a hexagonal boron nitride (hBN) plate. By applying a compressive strain to the hBN plate, its hyperbolic modes can be tuned. Consequently, the hyperbolic phonon polaritons (HPPs) of hBN and the high-frequency localized surface resonance (LSR) of GSCS nanoparticle can couple and decouple, thus allowing for the active control of NFRHT. Furthermore, we predict that, combining with the effect of the chemical potential of graphene shell on NFRHT, a thermal rectification ratio of up to 13.6 can be achieved. This work enriches the phonon-polariton coupling mechanism and also facilitates dynamic thermal management at the nanoscale.
Collapse
|
16
|
Jafari B, Gholizadeh E. Multifunctional graphene-based optoelectronic structure based on a Fabry-Perot cavity enhanced by a metallic nanoantenna. APPLIED OPTICS 2022; 61:10658-10668. [PMID: 36606924 DOI: 10.1364/ao.471989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Optical communications systems are continuously miniaturized to integrate several previously separate optoelectronic devices, organized with silicon-based incorporated circuits, onto a distinct substrate. Modulators and photodetectors have essential roles in photonic systems and operate with different mechanisms. Integrating them into one device is complex and challenging, but these multifunctional devices have numerous advantages. This article uses a graphene/hBN-based structure to modulate, detect, and absorb any signal with the desired frequency in the THz range. The proposed system comprises one unpatterned graphene sheet embedded in bulk hBN with the periodic gold/palladium nanostructure beneath and below it. The perfect absorption, a modulation depth of 100%, and photodetection of more than 20 A/W at any desired frequency can be verified.
Collapse
|
17
|
Xiang L, Liu W, Wei Z, Meng H, Liu H, Guo J, Zhi Y, Huang Z, Li H, Wang F. Strong enhancement of Goos-Hänchen shift through the resonant optical tunneling effect. OPTICS EXPRESS 2022; 30:47338-47349. [PMID: 36558664 DOI: 10.1364/oe.476166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The resonant optical tunneling effect (ROTE) originates from the frustrated total reflection effect because unique transmission characteristics are used to study high-sensitivity sensors. In this study, we theoretically demonstrated that choosing a suitable transmission gap made it possible for the ROTE structure based on hexagonal boron nitride and graphene to obtain a large Goos-Hänchen shift as high as tens of thousands of times the incident wavelength at a specific incident angle. The amplitude of the Goos-Hänchen shift was found to be sensitive to the central layer thickness but was also modulated by the tunneling gap on both sides. In addition, adjusting the chemical potential and relaxation time of the graphene sheets could alter the Goos-Hänchen shift. Our work provides a new way to explore the Goos-Hänchen effect and opens the possibility for the application of high-precision measurement technology based on the ROTE.
Collapse
|
18
|
Jia G, Luo J, Wang H, Ma Q, Liu Q, Dai H, Asgari R. Two-dimensional natural hyperbolic materials: from polaritons modulation to applications. NANOSCALE 2022; 14:17096-17118. [PMID: 36382501 DOI: 10.1039/d2nr04181b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Natural hyperbolic materials (HMs) in two dimensions (2D) have an extraordinarily high anisotropy and a hyperbolic dispersion relation. Some of them can even sustain hyperbolic polaritons with great directional propagation and light compression to deeply sub-wavelength scales due to their inherent anisotropy. Herein, the anisotropic optical features of 2D natural HMs are reviewed. Four hyperbolic polaritons (i.e., phonon polaritons, plasmon polaritons, exciton polaritons, and shear polaritons) as well as their generation mechanism are discussed in detail. The natural merits of 2D HMs hold promise for practical quantum photonic applications such as valley quantum interference, mid-infrared polarizers, spontaneous emission enhancement, near-field thermal radiation, and a new generation of optoelectronic components, among others. The conclusion of these analyses outlines existing issues and potential interesting directions for 2D natural HMs. These findings could spur more interest in anisotropic 2D atomic crystals in the future, as well as the quick generation of natural HMs for new applications.
Collapse
Affiliation(s)
- Guangyi Jia
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
| | - Jinxuan Luo
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
| | - Huaiwen Wang
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, P. R. China
| | - Qiaoyun Ma
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
| | - Qinggang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P. R. China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, P. R. China.
| | - Reza Asgari
- School of Physics, Institute for Research in Fundamental Sciences, IPM, Tehran 19395-5531, Iran.
| |
Collapse
|
19
|
Bapat A, Dixit S, Gupta Y, Low T, Kumar A. Gate tunable light-matter interaction in natural biaxial hyperbolic van der Waals heterostructures. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2329-2340. [PMID: 39678093 PMCID: PMC11636507 DOI: 10.1515/nanoph-2022-0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2024]
Abstract
The recent discovery of natural biaxial hyperbolicity in van der Waals crystals, such as α-MoO3, has opened up new avenues for mid-IR nanophotonics due to their deep subwavelength phonon polaritons. However, a significant challenge is the lack of active tunability of these hyperbolic phonon polaritons. In this work, we investigate heterostructures of graphene and α-MoO3 for actively tunable hybrid plasmon phonon polariton modes via electrostatic gating in the mid-infrared spectral region. We observe a unique propagation direction dependent hybridization of graphene plasmon polaritons with hyperbolic phonon polaritons for experimentally feasible values of graphene chemical potential. We further report an application to tunable valley quantum interference in this system with a broad operational bandwidth due to the formation of these hybrid modes. This work presents a lithography-free alternative for actively tunable, anisotropic spontaneous emission enhancement using a sub-wavelength thick naturally biaxial hyperbolic material.
Collapse
Affiliation(s)
- Aneesh Bapat
- Laboratory of Optics of Quantum Materials, Physics Department, IIT Bombay, Mumbai400076, India
| | - Saurabh Dixit
- Laboratory of Optics of Quantum Materials, Physics Department, IIT Bombay, Mumbai400076, India
| | - Yashika Gupta
- Laboratory of Optics of Quantum Materials, Physics Department, IIT Bombay, Mumbai400076, India
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN55455, USA
| | - Anshuman Kumar
- Laboratory of Optics of Quantum Materials, Physics Department, IIT Bombay, Mumbai400076, India
| |
Collapse
|
20
|
Audhkhasi R, Zhao B, Fan S, Yu Z, Povinelli ML. Spectral emissivity modeling in multi-resonant systems using coupled-mode theory. OPTICS EXPRESS 2022; 30:9463-9472. [PMID: 35299373 DOI: 10.1364/oe.453275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The ability to design multi-resonant thermal emitters is essential to the advancement of a wide variety of applications, including thermal management and sensing. These fields would greatly benefit from the development of more efficient tools for predicting the spectral response of coupled, multi-resonator systems. In this work, we propose a semi-analytical prediction tool based on coupled-mode theory. In our approach, a complex thermal emitter is fully described by a set of coupled-mode parameters, which can be straightforwardly calculated from simulations of unit cells containing single and double resonators. We demonstrate the accuracy of our method by predicting and optimizing spectral response in a coupled, multi-resonant system based on hBN ribbons. The approach described here can greatly reduce the computational overhead associated with spectral design tasks in coupled, multi-resonant systems.
Collapse
|
21
|
Duan J, Alfaro-Mozaz FJ, Taboada-Gutiérrez J, Dolado I, Álvarez-Pérez G, Titova E, Bylinkin A, Tresguerres-Mata AIF, Martín-Sánchez J, Liu S, Edgar JH, Bandurin DA, Jarillo-Herrero P, Hillenbrand R, Nikitin AY, Alonso-González P. Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104954. [PMID: 34964174 DOI: 10.1002/adma.202104954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Optical nanoantennas are of great importance for photonic devices and spectroscopy due to their capability of squeezing light at the nanoscale and enhancing light-matter interactions. Among them, nanoantennas made of polar crystals supporting phonon polaritons (phononic nanoantennas) exhibit the highest quality factors. This is due to the low optical losses inherent in these materials, which, however, hinder the spectral tuning of the nanoantennas due to their dielectric nature. Here, active and passive tuning of ultranarrow resonances in phononic nanoantennas is realized over a wide spectral range (≈35 cm-1 , being the resonance linewidth ≈9 cm-1 ), monitored by near-field nanoscopy. To do that, the local environment of a single nanoantenna made of hexagonal boron nitride is modified by placing it on different polar substrates, such as quartz and 4H-silicon carbide, or covering it with layers of a high-refractive-index van der Waals crystal (WSe2 ). Importantly, active tuning of the nanoantenna polaritonic resonances is demonstrated by placing it on top of a gated graphene monolayer in which the Fermi energy is varied. This work presents the realization of tunable polaritonic nanoantennas with ultranarrow resonances, which can find applications in active nanooptics and (bio)sensing.
Collapse
Affiliation(s)
- Jiahua Duan
- Department of Physics, University of Oviedo, Oviedo, 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | | | - Javier Taboada-Gutiérrez
- Department of Physics, University of Oviedo, Oviedo, 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | - Irene Dolado
- CIC nanoGUNE, BRTA, Donostia-San Sebastian, 20018, Spain
| | - Gonzalo Álvarez-Pérez
- Department of Physics, University of Oviedo, Oviedo, 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | - Elena Titova
- Programmable Functional Materials Lab, Brain and Consciousness Research Center, Moscow, 121205, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Andrei Bylinkin
- CIC nanoGUNE, BRTA, Donostia-San Sebastian, 20018, Spain
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, 20018, Spain
| | - Ana Isabel F Tresguerres-Mata
- Department of Physics, University of Oviedo, Oviedo, 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | - Javier Martín-Sánchez
- Department of Physics, University of Oviedo, Oviedo, 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | - Song Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Denis A Bandurin
- Department of Physics, Massachusetts Institute of Technology (MIT), Boston, MA, 02139, USA
| | - Pablo Jarillo-Herrero
- Department of Physics, Massachusetts Institute of Technology (MIT), Boston, MA, 02139, USA
| | - Rainer Hillenbrand
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
- CIC nanoGUNE, BRTA and Department of Electricity and Electronics, EHU/UPV, Donostia-San Sebastián, 20018, Spain
| | - Alexey Y Nikitin
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Pablo Alonso-González
- Department of Physics, University of Oviedo, Oviedo, 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| |
Collapse
|
22
|
Jie Liu Y, Yuan Dong H, Dong ZG, Wang J. Engineering multimode resonances for tunable multifrequency superscattering. OPTICS EXPRESS 2022; 30:1219-1227. [PMID: 35209286 DOI: 10.1364/oe.444393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate a rigorous multimode engineering method to achieve multifrequency superscattering with flexible controllability in a subwavelength graphene/hexagonal boron nitride (hBN) cylindrical system. Through delicately tuning the chemical potential of graphene, different resonance channels of the proposed stucture can be spectrally overlapped to construct the multiple superscattering points. Consequently, the scattering cross section is enhanced effectively and the so-called superscattering beyond the single-channel scattering limit can be attained. Numerical calculations on scattering spectra, near-field, and far-field distributions are performed to confirm the scattering enhancement. The general principles presented here may suggest an accurate and efficient approach to actively tune the light-matter interaction at the subwavelength scale.
Collapse
|
23
|
Tu PY, Huang CC. Analysis of hybrid plasmon-phonon-polariton modes in hBN/graphene/hBN stacks for mid-infrared waveguiding. OPTICS EXPRESS 2022; 30:2863-2876. [PMID: 35209418 DOI: 10.1364/oe.449287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Guiding mid-infrared (mid-IR) signals provide wide-ranging applications including chemical sensing, thermal imaging, and optical waveguiding. To manipulate mid-IR signals on photonic chips, it is critical to build a waveguide that provides both sub-diffraction field confinement and low loss. We present a mid-IR waveguide made up of a multilayer graphene/hexagonal boron nitride (hBN) stacking (MLGhS) and a high-refractive index nanowire. The guided mode of the proposed waveguide structure is formed by coupling the fundamental volume plasmon polariton with the fundamental hyperbolic phonon polariton in hBN, and is then modulated by a high-index nanowire. Interestingly, we found that the effective index, propagation length, and mode area of the guided mode vary as the dependences of N-1, N, and N3/2, where N is the number of graphene layers. In addition, an anomalous result, which reveals Lp and Am monotonously decrease as Fermi energy increases that is not observed in conventional graphene plasmon waveguides, occurs in the present structure. The modal properties are analyzed by altering geometry effects and material parameters, and by crossing the upper Reststrahlen band of hBN from the wavevector k = 1,300 to 1,500 cm-1. Furthermore, crosstalk between adjacent waveguides are investigated to assess the degree of integration. The proposed idea not only provides a potential approach for designing tunable and large-area photonic integrated circuits, but it also has the potential to be extended to other 2D materials such as silicone, germanene, and stanene.
Collapse
|
24
|
Deng A, Hu C, Shen P, Chen J, Luo X, Lyu B, Watanabe K, Taniguchi T, Wang R, Liang Q, Ma J, Shi Z. Non-Local Electrostatic Gating Effect in Graphene Revealed by Infrared Nano-Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105687. [PMID: 34837309 DOI: 10.1002/smll.202105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Electrostatic gating lies in the heart of field effect transistor (FET) devices and modern integrated circuits. To achieve efficient gate tunability, the gate electrode has to be placed very close to the conduction channel, typically a few nanometers. Remote control of a FET device through a gate electrode located far away is highly desirable, because it not only reduces the complexity of device fabrication, but also enables the design of novel devices with new functionalities. Here, a non-local electrostatic gating effect in graphene devices using scanning near-field optical microscopy (SNOM)-a technique that can probe local charge density in graphene-is reported. Remarkably, the charge density of the graphene region tens of micrometers away from a local gate can be efficiently tuned. The observed non-local gating effect is initially driven by an in-plane electric field induced by the quantum capacitance of graphene, and further largely enhanced by adsorbed polarized water molecules. This study reveals a non-local phenomenon of Dirac electrons, provides a deep understanding of in-plane screening from Dirac electrons, and paves the way for designing novel electronic devices with remote gate control.
Collapse
Affiliation(s)
- Aolin Deng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| | - Cheng Hu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| | - Peiyue Shen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| | - Jiajun Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| | - Xingdong Luo
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| | - Bosai Lyu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qi Liang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| | - Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
| |
Collapse
|
25
|
Tang G, Zhang L, Zhang Y, Chen J, Chan CT. Near-Field Energy Transfer between Graphene and Magneto-Optic Media. PHYSICAL REVIEW LETTERS 2021; 127:247401. [PMID: 34951812 DOI: 10.1103/physrevlett.127.247401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
We consider the near-field radiative energy transfer between two separated parallel plates: graphene supported by a substrate and a magneto-optic medium. We first study the scenario in which the two plates have the same temperature. An electric current through the graphene gives rise to nonequilibrium fluctuations and induces energy transfer. Both the magnitude and direction of the energy flux can be controlled by the electric current and an in-plane magnetic field in the magneto-optic medium. This is due to the interplay between the nonreciprocal photon occupation number in the graphene and nonreciprocal surface modes in the magneto-optic plate. Furthermore, we report that a tunable thermoelectric current can be generated in the graphene in the presence of a temperature difference between the two plates.
Collapse
Affiliation(s)
- Gaomin Tang
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Lei Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yong Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China
| | - Jun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
| | - C T Chan
- Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
26
|
Su C, Fu C. Surface and volume phonon polaritons in a uniaxial hyperbolic material: optic axis parallel versus perpendicular to the surface. OPTICS EXPRESS 2021; 29:39824-39837. [PMID: 34809338 DOI: 10.1364/oe.444358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Uniaxial hyperbolic materials enable excitation of phonon polaritons with utrahigh wavevectors that have been shown to be promising for many optical and thermal radiative applications and thus have attracted much attention recently. However, the characteristics of surface and volume phonon polaritons excited with uniaxial hyperbolic materials that exhibit in-plane anisotropy or in-plane isotropy have not been discussed thoroughly and some issues have so far remained elusive. In this paper, we conducted a comprehensive investigation on surface and volume phonon polaritons in a bulk or a thin slab of hexagonal boron nitride (hBN). We clarified the excitation, characteristics and topology of surface and volume phonon polaritons in such a uniaxial hyperbolic material. In particular, we showed that hyperbolic surface phonon polaritons (HSPhPs) can exist in the Type I hyperbolic band of hBN with confined wavevectors when the optic axis (OA) is parallel to the surface. For a thin hBN slab, we revealed a split of HSPhPs and a smooth transition between HSPhPs and HVPhPs in the Type II hyperbolic band. Furthermore, we also identified non-Dyakonov surface phonon polaritons excited without evanescent ordinary waves. These findings may extend the understanding of phonon polaritons in hyperbolic materials and offer new theoretical guidance for the design of infrared optical devices with hyperbolic materials.
Collapse
|
27
|
Lee M, Lee E, So S, Byun S, Son J, Ge B, Lee H, Park HS, Shim W, Pee JH, Min B, Cho SP, Shi Z, Noh TW, Rho J, Kim JY, Chung I. Bulk Metamaterials Exhibiting Chemically Tunable Hyperbolic Responses. J Am Chem Soc 2021; 143:20725-20734. [PMID: 34783563 DOI: 10.1021/jacs.1c08446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extraordinary properties of traditional hyperbolic metamaterials, not found in nature, arise from their man-made subwavelength structures causing unique light-matter interactions. However, their preparation requiring nanofabrication processes is highly challenging and merely provides nanoscale two-dimensional structures. Stabilizing their bulk forms via scalable procedures has been a sought-goal for broad applications of this technology. Herein, we report a new strategy of designing and realizing bulk metamaterials with finely tunable hyperbolic responses. We develop a facile two-step process: (1) self-assembly to obtain heterostructured nanohybrids of building blocks and (2) consolidation to convert nanohybrid powders to dense bulk pellets. Our samples have centimeter-scale dimensions typically, readily further scalable. Importantly, the thickness of building blocks and their relative concentration in bulk materials serve as a delicate means of controlling hyperbolic responses. The resulting new bulk heterostructured material system consists of the alternating h-BN and graphite/graphene nanolayers and exhibits significant modulation in both type-I and type-II hyperbolic resonance modes. It is the first example of real bulk hyperbolic metamaterials, consequently displaying the capability of tuning their responses along both in-plane and out-of-plane directions of the materials for the first time. It also distinctly interacts with unpolarized and polarized transverse magnetic and electronic beams to give unique hyperbolic responses. Our achievement can be a new platform to create various bulk metamaterials without complicated nanofabrication techniques. Our facile synthesis method using common laboratory techniques can open doors to broad-range researchers for active interdisciplinary studies for this otherwise hardly accessible technology.
Collapse
Affiliation(s)
- Myeongjeong Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Eunsil Lee
- Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Incheon 17303, Republic of Korea.,Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunae So
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sejin Byun
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jaeseok Son
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Bangzhi Ge
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hyungseok Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Hyun Sung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Hwan Pee
- Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Incheon 17303, Republic of Korea
| | - Bumki Min
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sung-Pyo Cho
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Republic of Korea
| | - Zhongqi Shi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Young Kim
- Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Incheon 17303, Republic of Korea
| | - In Chung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi MASR, Lai J, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu Z, Iyengar SA, Autreto PADS, Oliveira EF, Gao G, Birdwell AG, Neupane MR, Ivanov TG, Taha-Tijerina J, Yadav RM, Arepalli S, Vajtai R, Ajayan PM. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101589. [PMID: 34561916 DOI: 10.1002/adma.202101589] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Indexed: 05/09/2023]
Abstract
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ashokkumar Meiyazhagan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sandhya Susarla
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Sreehari K Saju
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mai Kim Tran
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lucas M Sassi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jiawei Lai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Onur Sahin
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Bhuvaneswari Dharmarajan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Devashish Salpekar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Nithya Chakingal
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Abhijit Baburaj
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xinting Shuai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Aparna Adumbumkulath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Alec Ajnsztajn
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Thibeorchews Prasankumar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | | | - Ved Ojha
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Harikishan Kannan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ali Zein Khater
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Zhenwei Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sathvik Ajay Iyengar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pedro Alves da Silva Autreto
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001-Bangú, Santo André - SP, Santo André, 09210-580, Brazil
| | - Eliezer Fernando Oliveira
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - A Glen Birdwell
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Mahesh R Neupane
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Tony G Ivanov
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Jaime Taha-Tijerina
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Engineering Department, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza Garcí, Monterrey, Nuevo Leon, 66238, Mexico
- Department of Manufacturing and Industrial Engineering, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Physics, VSSD College, Kanpur, Uttar Pradesh, 208002, India
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| |
Collapse
|
29
|
Electric Field Induced Twisted Bilayer Graphene Infrared Plasmon Spectrum. NANOMATERIALS 2021; 11:nano11092433. [PMID: 34578749 PMCID: PMC8465028 DOI: 10.3390/nano11092433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
In this work, we investigate the role of an external electric field in modulating the spectrum and electronic structure behavior of twisted bilayer graphene (TBG) and its physical mechanisms. Through theoretical studies, it is found that the external electric field can drive the relative positions of the conduction band and valence band to some extent. The difference of electric field strength and direction can reduce the original conduction band, and through the Fermi energy level, the band is significantly influenced by the tunable electric field and also increases the density of states of the valence band passing through the Fermi level. Under these two effects, the valence and conduction bands can alternately fold, causing drastic changes in spectrum behavior. In turn, the plasmon spectrum of TBG varies from semiconductor to metal. The dielectric function of TBG can exhibit plasmon resonance in a certain range of infrared.
Collapse
|
30
|
Kumari R, Yadav A, Sharma S, Das Gupta T, Varshney SK, Lahiri B. Tunable Van der Waal's optical metasurfaces (VOMs) for biosensing of multiple analytes. OPTICS EXPRESS 2021; 29:25800-25811. [PMID: 34614900 DOI: 10.1364/oe.432284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Van der Waal's heterostructure assembling low dimensional materials are the new paradigm in the field of nanophotonics. In this work, we theoretically investigate Van der Waal's optical metasurfaces consisting of graphene and hBN for the application of biosensing of multiple analytes in the mid-infrared (MIR) region. Phonon polaritons of hexagonal boron nitride (hBN) show an advantage over plasmon polaritons, as the phonon polaritons are lossless and possess high momentum and enhanced lifetime. The hybrid phonon mode produced at 6.78 µm in the mid-infrared (MIR) region with near-perfect absorption is used for surface-enhanced infrared absorption (SEIRA) based detection of organic analytes. Moreover, by adding the graphene layer, the device's overall resonance responses can be tuned, enabling it to identify multiple organic analytes-such as 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) and nitrobenzene (Nb) [C6H5NO2], just by changing graphene's fermi potential (Ef). Owing to large wave vector of phonon polariton, the device has the capability to detect small amount of number of molecules (390 for CBP and 1990 for nitrobenzene), thus creating a highly sensitive optical biosensor.
Collapse
|
31
|
Karanikolas V, Thanopulos I, Paspalakis E. Strong coupling regime and bound states in the continuum between a quantum emitter and phonon-polariton modes. OPTICS EXPRESS 2021; 29:23408-23420. [PMID: 34614606 DOI: 10.1364/oe.428459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
We investigate the population dynamics of a two-level quantum emitter (QE) placed near a hexagonal boron nitride (h-BN) layer. The h-BN layer supports two energy phonon-polariton bands. In the case that the transition energy of the QE is resonant to them, its relaxation rate is enhanced several orders of magnitude compared to its free-space value and the population of the QE excited state shows reversible dynamics. We further show that for specific parameters of the QE/h-BN layer system, the QE population can be trapped in the excited state, keeping a constant value over long periods of time, thus demonstrating that the h-BN layer is a platform that can provide the strong light-matter interaction conditions needed for the formation of bound states in the electromagnetic continuum of modes. Semi-analytical methods are employed for determining whether such a bound state can be formed for given coupling conditions, as well as for computing the amount of initial population trapped in it. The bound states in the continuum are important for designing practical future quantum applications.
Collapse
|
32
|
Extraordinary Optical Transmission by Hybrid Phonon-Plasmon Polaritons Using hBN Embedded in Plasmonic Nanoslits. NANOMATERIALS 2021; 11:nano11061567. [PMID: 34198718 PMCID: PMC8232318 DOI: 10.3390/nano11061567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022]
Abstract
Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices.
Collapse
|
33
|
Yin H, Xing K, Zhang Y, Dissanayake DMAS, Lu Z, Zhao H, Zeng Z, Yun JH, Qi DC, Yin Z. Periodic nanostructures: preparation, properties and applications. Chem Soc Rev 2021; 50:6423-6482. [PMID: 34100047 DOI: 10.1039/d0cs01146k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodic nanostructures, a group of nanomaterials consisting of single or multiple nano units/components periodically arranged into ordered patterns (e.g., vertical and lateral superlattices), have attracted tremendous attention in recent years due to their extraordinary physical and chemical properties that offer a huge potential for a multitude of applications in energy conversion, electronic and optoelectronic applications. Recent advances in the preparation strategies of periodic nanostructures, including self-assembly, epitaxy, and exfoliation, have paved the way to rationally modulate their ferroelectricity, superconductivity, band gap and many other physical and chemical properties. For example, the recent discovery of superconductivity observed in "magic-angle" graphene superlattices has sparked intensive studies in new ways, creating superlattices in twisted 2D materials. Recent development in the various state-of-the-art preparations of periodic nanostructures has created many new ideas and findings, warranting a timely review. In this review, we discuss the current advances of periodic nanostructures, including their preparation strategies, property modulations and various applications.
Collapse
Affiliation(s)
- Hang Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Peng C, Ou K, Li G, Zhao Z, Li X, Liu C, Li X, Chen X, Lu W. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared. OPTICS EXPRESS 2021; 29:12893-12902. [PMID: 33985035 DOI: 10.1364/oe.422519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Inspired by the growing family of Van der Waals materials, hBN supported phonon polaritons have attracted much attention due to their inherent hyperbolic dispersion properties in the mid-infrared. However, the lack of tunability imposes a severe restriction on the diversified, functional and integrated applications. Here, we propose a phase-gradient heterostructure metasurface to realize a dynamically tunable and polarization-sensitive perfect absorber in the mid-infrared through combining hBN and phase change VO2. Narrow-band perfect absorption at 7.2 µm can be switched to broadband around 11.2 µm through controlling the temperature of VO2. The governed physics of the bandwidth and absorption differences are demonstrated. Phonon polaritons in hBN phase-gradient configurations and plasmon polaritons in periodic VO2 blocks are respectively excited. We also investigate the absorption dependence on the polarization states of designed absorber. The method of engineering the absorption through controlling the temperature and polarization states opens up a new avenue for tunable applications such as data storage and integrated optical circuits.
Collapse
|
35
|
Breslin VM, Ratchford DC, Giles AJ, Dunkelberger AD, Owrutsky JC. Hyperbolic phonon polariton resonances in calcite nanopillars. OPTICS EXPRESS 2021; 29:11760-11772. [PMID: 33984951 DOI: 10.1364/oe.417405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
We report the first experimental observation of hyperbolic phonon polariton (HP) resonances in calcite nanopillars, demonstrate that the HP modes redshift with increasing aspect ratio (AR = 0.5 to 1.1), observe a new, possibly higher order mode as the pitch is reduced, and compare the results to both numerical simulations and an analytical model. This work shows that a wide variety of polar dielectric materials can support phonon polaritons by demonstrating HPs in a new material, which is an important first step towards creating a library of materials with the appropriate phonon properties to extend phonon polariton applications throughout the infrared.
Collapse
|
36
|
Wang L, Liu J, Ren B, Song J, Jiang Y. Tuning of mid-infrared absorption through phonon-plasmon-polariton hybridization in a graphene/hBN/graphene nanodisk array. OPTICS EXPRESS 2021; 29:2288-2298. [PMID: 33726427 DOI: 10.1364/oe.415337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we utilize a heterostructured graphene/hBN/graphene nanodisk array to implement an electrically tunable absorber in and out of the Reststrahlen band (RSB) region of hBN. Tuning of phonon-type resonance absorption in the RSB region is achieved through phonon-plasmon-polariton hybridization. The hybrid phonon mode enabled a 290 nm shift of the resonant wavelength, and the sensitivity of absorption peak to the electrical control is 362.5 nm/eV. Simultaneously, the nearly perfect absorption is obtained in the condition of high chemical potential of graphene. Moreover, the plasmon polaritons are strongly modified by phonon polaritons of hBN, so the FWHM of absorption peaks out of the RSB region reduce to 45-49 nm, and the maximum Q of absorption reaches 220.44 at EF=0.65 eV, which is paving a way toward coherent emission at the atmospheric transparent band. Importantly, graphene-assisted hyperbolic phonon polaritons of hBN will enable future phonon devices with high optical performance and wide tunability.
Collapse
|
37
|
Li N, Guo X, Yang X, Qi R, Qiao T, Li Y, Shi R, Li Y, Liu K, Xu Z, Liu L, García de Abajo FJ, Dai Q, Wang EG, Gao P. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. NATURE MATERIALS 2021; 20:43-48. [PMID: 32807920 DOI: 10.1038/s41563-020-0763-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/09/2020] [Indexed: 05/21/2023]
Abstract
Phonon polaritons enable light confinement at deep subwavelength scales, with potential technological applications, such as subdiffraction imaging, sensing and engineering of spontaneous emission. However, the trade-off between the degree of confinement and the excitation efficiency of phonon polaritons prevents direct observation of these modes in monolayer hexagonal boron nitride (h-BN), where they are expected to reach ultrahigh confinement. Here, we use monochromatic electron energy-loss spectroscopy (about 7.5 meV energy resolution) in a scanning transmission electron microscope to measure phonon polaritons in monolayer h-BN, directly demonstrating the existence of these modes as the phonon Reststrahlen band (RS) disappears. We find phonon polaritons in monolayer h-BN to exhibit high confinement (>487 times smaller wavelength than that of light in free space) and ultraslow group velocity down to about 10-5c. The large momentum compensation provided by electron beams additionally allows us to excite phonon polaritons over nearly the entire RS band of multilayer h-BN. These results open up a broad range of opportunities for the engineering of metasurfaces and strongly enhanced light-matter interactions.
Collapse
Affiliation(s)
- Ning Li
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- International Center for Quantum Materials, Peking University, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiangdong Guo
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Xiaoxia Yang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Ruishi Qi
- International Center for Quantum Materials, Peking University, Beijing, China
| | - Tianyu Qiao
- International Center for Quantum Materials, Peking University, Beijing, China
| | - Yifei Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Ruochen Shi
- International Center for Quantum Materials, Peking University, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Yuehui Li
- International Center for Quantum Materials, Peking University, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Zhi Xu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
| | - Lei Liu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Qing Dai
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - En-Ge Wang
- International Center for Quantum Materials, Peking University, Beijing, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- School of Physics, Liaoning University, Shenyang, China
| | - Peng Gao
- International Center for Quantum Materials, Peking University, Beijing, China.
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
38
|
García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE. Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Anal Bioanal Chem 2021; 413:663-672. [PMID: 33284404 PMCID: PMC7808977 DOI: 10.1007/s00216-020-03068-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
2D hexagonal boron nitride (2D-hBN) is a lesser utilised material than other 2D counterparts in electrochemistry due to initial reports of it being non-conductive. As we will demonstrate in this review, this common misconception is being challenged, and researchers are starting to utilise 2D-hBN in the field of electrochemistry, particularly as the basis of electroanalytical sensing platforms. In this critical review, we overview the use of 2D-hBN as an electroanalytical sensing platform summarising recent developments and trends and highlight future developments of this interesting, often overlooked, 2D material.
Collapse
Affiliation(s)
| | - Samuel J Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
39
|
Khan I, Fang Z, Palei M, Lu J, Nordin L, Simmons EL, Dominguez O, Islam SM, Xing HG, Jena D, Podolskiy VA, Wasserman D, Hoffman AJ. Engineering the Berreman mode in mid-infrared polar materials. OPTICS EXPRESS 2020; 28:28590-28599. [PMID: 32988126 DOI: 10.1364/oe.401733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate coupling to and control over the broadening and dispersion of a mid-infrared leaky mode, known as the Berreman mode, in samples with different dielectric environments. We fabricate subwavelength films of AlN, a mid-infrared epsilon-near-zero material that supports the Berreman mode, on materials with a weakly negative permittivity, strongly negative permittivity, and positive permittivity. Additionally, we incorporate ultra-thin AlN layers into a GaN/AlN heterostructure, engineering the dielectric environment above and below the AlN. In each of the samples, coupling to the Berreman mode is observed in angle-dependent reflection measurements at wavelengths near the longitudinal optical phonon energy. The measured dispersion of the Berreman mode agrees well with numerical modes. Differences in the dispersion and broadening for the different materials is quantified, including a 13 cm-1 red-shift in the energy of the Berreman mode for the heterostructure sample.
Collapse
|
40
|
Lee S, Baek S, Kim TT, Cho H, Lee S, Kang JH, Min B. Metamaterials for Enhanced Optical Responses and their Application to Active Control of Terahertz Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000250. [PMID: 32187763 DOI: 10.1002/adma.202000250] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Metamaterials, artificially constructed structures that mimic lattices in natural materials, have made numerous contributions to the development of unconventional optical devices. With an increasing demand for more diverse functionalities, terahertz (THz) metamaterials are also expanding their domain, from the realm of mere passive devices to the broader area where functionalized active THz devices are particularly required. A brief review on THz metamaterials is given with a focus on research conducted in the authors' group. The first part is centered on enhanced THz optical responses from tightly coupled meta-atom structures, such as high refractive index, enhanced optical activity, anomalous wavelength scaling, large phase retardation, and nondispersive polarization rotation. Next, electrically gated graphene metamaterials are reviewed with an emphasis on the functionalization of enhanced THz optical responses. Finally, the linear frequency conversion of THz waves in a rapidly time-variant THz metamaterial is briefly discussed in the more general context of spatiotemporal control of light.
Collapse
Affiliation(s)
- Seojoo Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soojeong Baek
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Teun-Teun Kim
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, 16419, Republic of Korea
| | - Hyukjoon Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sangha Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hun Kang
- Department of Optical Engineering, Kongju National University, Cheonan, 31080, Republic of Korea
| | - Bumki Min
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
41
|
Hu J, Xie W, Chen J, Zhou L, Liu W, Li D, Zhan Q. Strong hyperbolic-magnetic polaritons coupling in an hBN/Ag-grating heterostructure. OPTICS EXPRESS 2020; 28:22095-22104. [PMID: 32752477 DOI: 10.1364/oe.398182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Strong coupling between hyperbolic phonon-polaritons (HP) and magnetic polaritons (MP) is theoretically studied in a hexagonal boron nitride (hBN) covered deep silver grating structure. It is found that MP in grating trenches strongly interacts with HP in an anisotropic hBN thin film, leading to a large Rabi splitting with near-perfect dual band light absorption. Numerical results indicate that MP-HP coupling can be tuned by geometric parameters of the structure. More intriguingly, the resonantly enhanced fields for two branches of the hybrid mode demonstrate unusually different field patterns. One exhibits a volume-confined Zigzag propagation pattern in the hBN film, while the other shows a field-localization near the grating corners. Furthermore, resonance frequencies of these strongly coupled modes are very robust over a wide-angle range. The angle-insensitive strong interaction of hyperbolic-magnetic polaritons with dual band intense light absorption in this hybrid system offers a new paradigm for the development of various optical detecting, sensing and thermal emitting devices.
Collapse
|
42
|
Zhang Y, Wang X, Zhang D, Fu S, Zhou S, Wang XZ. Unusual spin and angular momentum of Dyakonov waves at the hyperbolic-material surface. OPTICS EXPRESS 2020; 28:19205-19217. [PMID: 32672202 DOI: 10.1364/oe.395594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Three Dyakonov-like polaritons (DLPs) exist at the interface between a hyperbolic material (HM) and a covering medium (CM). Each DLP is a hybridized-polarization surface polariton composed of two evanescent waves on both sides of the interface. We investigated their spin and angular momentum. We analytically found that any DLP carries two spins producing mutually orthogonal spin angular-momentum (SAM) components. The spins and angular-momentum have different features on both sides of the interface, and further differences among the three DLPs are very obvious. For the interface structure formed by hexagonal boron nitride (hBN) and air, the SAM mainly distributes in the air for DLP-I, the SAM is approximately transverse to the propagating direction for DLP-II, and it is surprisingly large in the hBN for DLP-III and can reach several ten times that in the usual situation. There is the spin-k locking for every DLP, but the spin-k locking is different for different DLPs. These properties do not exist for traditional surface polaritons or ordinary evanescent waves. The above unique results can support some potential applications in the fields of nano- and micro-photonics, optoelectronics and mechanics, as well as relevant technologies.
Collapse
|
43
|
Dai Z, Hu G, Ou Q, Zhang L, Xia F, Garcia-Vidal FJ, Qiu CW, Bao Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem Rev 2020; 120:6197-6246. [DOI: 10.1021/acs.chemrev.9b00592] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Francisco J. Garcia-Vidal
- Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
- Donostia International Physics Center (DIPC), Donostia−San Sebastian E-20018, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
44
|
Yang J, Mayyas M, Tang J, Ghasemian MB, Yang H, Watanabe K, Taniguchi T, Ou Q, Li LH, Bao Q, Kalantar-Zadeh K. Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. ACS NANO 2020; 14:1123-1132. [PMID: 31854973 DOI: 10.1021/acsnano.9b08895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phonon-polaritons (PhPs) in layered crystals, including hexagonal boron nitride (hBN), have been investigated by combined scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. Nevertheless, many of such s-SNOM-based FTIR spectra features remain unexplored, especially those originated from the impact of boundaries. Here we observe real-space PhP propagations in thin-layer hBN sheets either supported or suspended by s-SNOM imaging. Then with a high-power broadband IR laser source, we identify two major peaks and multiple auxiliary peaks in the near-field amplitude spectra, obtained using scattering-type near-field FTIR spectroscopy, from both supported and suspended hBN. The major PhP propagation interference peak moves toward the major in-plane phonon peak when the IR illumination moves away from the hBN edge. Specific differences between the auxiliary peaks in the near-field amplitude spectra from supported and suspended hBN sheets are investigated regarding different boundary conditions, associated with edges and substrate interfaces. The outcomes may be explored in heterostructures for advanced nanophotonic applications.
Collapse
Affiliation(s)
- Jiong Yang
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Mohannad Mayyas
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Jianbo Tang
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Honghua Yang
- Bruker Nano , 112 Robin Hill Road , Santa Barbara , California 93117 United States
| | - Kenji Watanabe
- National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) , Monash University , Clayton , Victoria 3800 Australia
| | - Lu Hua Li
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 Australia
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) , Monash University , Clayton , Victoria 3800 Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| |
Collapse
|
45
|
García-Miranda Ferrari A, Brownson DAC, Abo Dena AS, Foster CW, Rowley-Neale SJ, Banks CE. Tailoring the electrochemical properties of 2D-hBN via physical linear defects: physicochemical, computational and electrochemical characterisation. NANOSCALE ADVANCES 2020; 2:264-273. [PMID: 36133988 PMCID: PMC9418537 DOI: 10.1039/c9na00530g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 05/21/2023]
Abstract
Monolayer hexagonal-boron nitride films (2D-hBN) are typically reported within the literature to be electrochemically inactive due to their considerable band gap (ca. 5.2-5.8 eV). It is demonstrated herein that introducing physical linear defects (PLDs) upon the basal plane surface of 2D-hBN gives rise to electrochemically useful signatures. The reason for this transformation from insulator to semiconductor (inferred from physicochemical and computational characterisation) is likely due to full hydrogenation and oxygen passivation of the boron and/or nitrogen at edge sites. This results in a decrease in the band gap (from ca. 6.11 to 2.36/2.84 eV; theoretical calculated values, for the fully hydrogenated oxygen passivation at the N or B respectively). The 2D-hBN films are shown to be tailored through the introduction of PLDs, with the electrochemical behaviour dependent upon the surface coverage of edge plane-sites/defects, which is correlated with electrochemical performance towards redox probes (hexaammineruthenium(iii) chloride and Fe2+/3+) and the hydrogen evolution reaction. This manuscript de-convolutes, for the first time, the fundamental electron transfer properties of 2D-hBN, demonstrating that through implementation of PLDs, one can beneficially tailor the electrochemical properties of this nanomaterial.
Collapse
Affiliation(s)
- Alejandro García-Miranda Ferrari
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Dale A C Brownson
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Ahmed S Abo Dena
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
- National Organization for Drug Control and Research (NODCAR) P.O. Box 29 Giza Egypt
| | - Christopher W Foster
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Samuel J Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
46
|
Henriques JCG, Ventura GB, Fernandes CDM, Peres NMR. Optical absorption of single-layer hexagonal boron nitride in the ultraviolet. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:025304. [PMID: 31553957 DOI: 10.1088/1361-648x/ab47b3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper we theoretically describe the absorption of hexagonal boron nitride (hBN) single layer. We develop the necessary formalism and present an efficient method for solving the Wannier equation for excitons. We give predictions for the absorption of hBN on quartz and on graphite. We compare our predictions with recently published results (Elias et al 2019 Nat. Commun. 10 2639) for a monolayer of hBN on graphite. The spontaneous radiative lifetime of excitons in hBN is also computed. We argue that the optical properties of hBN in the ultraviolet are very useful for the study of peptides and other biomolecules.
Collapse
Affiliation(s)
- J C G Henriques
- Department and Centre of Physics, and QuantaLab, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
47
|
Chaudhary K, Tamagnone M, Yin X, Spägele CM, Oscurato SL, Li J, Persch C, Li R, Rubin NA, Jauregui LA, Watanabe K, Taniguchi T, Kim P, Wuttig M, Edgar JH, Ambrosio A, Capasso F. Polariton nanophotonics using phase-change materials. Nat Commun 2019; 10:4487. [PMID: 31582738 PMCID: PMC6776658 DOI: 10.1038/s41467-019-12439-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Polaritons formed by the coupling of light and material excitations enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride interacting with the surrounding dielectric environment comprising the low-loss phase change material Ge3Sb2Te6. We demonstrate rewritable waveguides, refractive optical elements such as lenses, prisms, and metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. This method will enable the realization of programmable miniaturized integrated optoelectronic devices and on-demand biosensors based on high quality phonon resonators. Here, the authors experimentally demonstrate a platform for tunable polariton refractive and meta-optics based on hexagonal boron nitride and phase change Ge3Sb2Te6. This combination has the advantage of the long-lived phonon-polariton with switchable refractive index of the phase change material.
Collapse
Affiliation(s)
- Kundan Chaudhary
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Michele Tamagnone
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Xinghui Yin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Christina M Spägele
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Stefano L Oscurato
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Department of Physics "E. Pancini", University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Jiahan Li
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Christoph Persch
- 1. Physikalisches Institut IA, RWTH Aachen University, 52056, Aachen, Germany
| | - Ruoping Li
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Noah A Rubin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Luis A Jauregui
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Philip Kim
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Matthias Wuttig
- 1. Physikalisches Institut IA, RWTH Aachen University, 52056, Aachen, Germany
| | - James H Edgar
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Antonio Ambrosio
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA.,CNST - Fondazione Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milano, Italy
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
48
|
Hajati M, Monfared YE. Modal properties of a cylindrical graphene-coated nanowire deposited on a hexagonal boron nitride substrate. APPLIED OPTICS 2019; 58:6666-6671. [PMID: 31503598 DOI: 10.1364/ao.58.006666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Due to complementary chemical and optical characteristics, structural integration of graphene and hexagonal boron nitride (hBN) can lead to a promising platform for development of novel plasmonic devices. In this paper, we numerically investigate the modal behavior of a cylindrical graphene-coated nanowire (GNW) deposited on a thin hBN (GNW-hBN) substrate in the mid-infrared range. Our studies revealed that GNW-hBN can support hybridized plasmon-phonon modes in the upper reststrahlen band of hBN, which mainly originates from the strong coupling between plasmon modes in GNW and phonon modes in hBN. The characteristics of these hybrid modes can be effectively tuned by changing the chemical potential of graphene, hBN thickness, and gap distance between GNW and hBN. According to the results, by choosing smaller gap distances and tuning the chemical potential of graphene, GNW-hBN can exhibit a fundamental mode (m=0, where m is the azimuthal mode number) with higher effective index such that Real(neff) varies from 131.2-62.3 when the hBN thickness changes from 2-20 nm. In addition, the presence of an hBN slab can break the azimuthal symmetry of the high-order graphene plasmon modes (m≥1) in the GNW-hBN structure.
Collapse
|
49
|
He MJ, Qi H, Wang YF, Ren YT, Cai WH, Ruan LM. Near-field radiative heat transfer in multilayered graphene system considering equilibrium temperature distribution. OPTICS EXPRESS 2019; 27:A953-A966. [PMID: 31510483 DOI: 10.1364/oe.27.00a953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
In the present work, the near-field radiative heat transfer of a multilayered graphene system is investigated within the framework of the many-body theory. For the first time, the temperature distribution corresponding to the steady state of the system is investigated. Unique temperature steps are observed near both boundaries of the system, especially in the strong near-field regime. By utilizing the effective radiative thermal conductance, the thermal freedom of heat flux in different regions of the system is analyzed quantitatively, and the cause of various temperature distributions is explained accordingly. To characterize the heat transfer ability of the whole system, we evaluate the system with two heat transfer coefficients (HTC), transient heat transfer coefficient (THTC), and steady heat transfer coefficient (SHTC). A unique many-body enhancement is observed, which causes a red-shift of resonance peak corresponding to graphene surface plasmon polaritons. Furthermore, a three-body enhancement of SHTC emerges thanks to the relay effect and the complexity of the system. The regime of heat transport can be tuned by changing the chemical potentials of graphene and undergoes a transition from diffusive to quasi-ballistic transport in the strong near-field regime.
Collapse
|
50
|
Deng G, Song X, Dereshgi SA, Xu H, Aydin K. Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure. OPTICS EXPRESS 2019; 27:23576-23584. [PMID: 31510632 DOI: 10.1364/oe.27.023576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we present a patterned graphene-hBN metamaterial structure and theoretically demonstrate the tunable multi-wavelength absorption within the hybrid structure. The simulation results show that the hybrid plasmon-phonon polariton modes originate from the coupling between plasmon polaritons in graphene and phonons in hBN, which are responsible for the triple-band absorption. By varying the Fermi level of graphene patterns, the absorption peaks can be tuned dynamically and continuously, and the surface plasmon-phonon polariton modes in the proposed structure enable high absorption and wideband tunability. In addition, how different structural parameters affect the absorption spectra is discussed. This work provides us a new method for the control and enhancement of plasmon-phonon polariton interactions.
Collapse
|