1
|
Sims CM, Killgore JP, Mansfield E, Downing JR, de Moraes ACM, Hersam MC, Fagan JA. Analytical Ultracentrifugation Characterization of Differential Sedimentation Size-Separated Graphene Dispersions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410459. [PMID: 40214718 DOI: 10.1002/smll.202410459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/14/2025] [Indexed: 05/20/2025]
Abstract
Analytical ultracentrifugation (AUC) is applied to the characterization of as-dispersed graphene nanoplatelet dispersions and differential sedimentation separated daughter dispersions. The liquid-phase characterization of AUC is demonstrated to resolve both the broad sedimentation coefficient distributions of as-dispersed samples and changes in daughter dispersions determined by a protocol of applied differential sedimentation process steps. Comparison is made to measurements on deposited samples by scanning electron microscopy and atomic force microscopy. The value of AUC to rapidly monitor changes in the sedimentation distribution of each particle population is demonstrated to allow tailoring of the differential sedimentation protocol to produce significantly narrower population distributions. This rapid characterization is particularly important for technologies in which dispersed nanoparticles cannot be removed from a solvent solution for microscopy analysis.
Collapse
Affiliation(s)
- Christopher M Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jason P Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ana C M de Moraes
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
2
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Synnatschke K, Moses Badlyan N, Wrzesińska A, Lozano Onrubia G, Hansen AL, Wolff S, Tornatzky H, Bensch W, Vaynzof Y, Maultzsch J, Backes C. Sonication-assisted liquid phase exfoliation of two-dimensional CrTe 3 under inert conditions. ULTRASONICS SONOCHEMISTRY 2023; 98:106528. [PMID: 37506508 PMCID: PMC10407284 DOI: 10.1016/j.ultsonch.2023.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties' associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions. Here, we demonstrate the inert exfoliation of the oxidation-sensitive van der Waals crystal, CrTe3. The pristine nanomaterial was purified and size-selected by centrifugation, nanosheet dimensions in the fractions quantified by atomic force microscopy and studied by Raman, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and photo spectroscopic measurements. We find a dependence of the relative intensities of the CrTe3 Raman modes on the propagation direction of the incident light, which prevents a correlation of the Raman spectral profile to the nanosheet dimensions. XPS and EDX reveal that the contribution of surface oxides to the spectra is reduced after exfoliation compared to the bulk material. Further, the decomposition mechanism of the nanosheets was studied by time-dependent extinction measurements after water titration experiments to initially dry solvents, which suggest that water plays a significant role in the material decomposition.
Collapse
Affiliation(s)
- Kevin Synnatschke
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; School of Physics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Narine Moses Badlyan
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Angelika Wrzesińska
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany
| | - Guillermo Lozano Onrubia
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Anna-Lena Hansen
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein, Germany; Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Stefan Wolff
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Hans Tornatzky
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Yana Vaynzof
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany
| | - Janina Maultzsch
- Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Claudia Backes
- Chair of Physical Chemistry of Nanomaterials, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
| |
Collapse
|
4
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
5
|
Jiang X, Cheng J, Liu P, Gao Q, Liu L. Facile Preparation of Four-Layer MoS 2 Nanosheets and Their Application to Organic Light-Emitting Diode. NANOSCALE RESEARCH LETTERS 2022; 17:87. [PMID: 36066777 PMCID: PMC9448836 DOI: 10.1186/s11671-022-03726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
High-quality four-layer molybdenum disulfide (MoS2) nanosheets with lateral dimension of about 11 µm were prepared by ultrasonic treatment of MoS2 powder with assistance of 1-methyl-2-pyrrolidone (NMP) solvent. The optimal preparation conditions for the preparation of MoS2 nanosheets were investigated from the aspects of ultrasonic processing time, ultrasonic power and amount ratio of MoS2 powder and NMP solvent. At the same time, the MoS2 nanosheets were employed as anode buffer layer in organic light-emitting diode (OLED) with copper nanowire (CuNW) film being anode. MoS2 nanosheets can reduce roughness of CuNW film, protect CuNW film from oxidation and improve work function of CuNW film. Experiments show that MoS2 nanosheets can significantly improve the current density and brightness of the OLED with CuNW film being anode. The maximum brightness of the OLED with MoS2 anode buffer layer is 2.15 times that of the OLED without MoS2 anode buffer layer. The current density of the OLED with MoS2 anode buffer layer is also obviously increased compared with the OLED without MoS2 anode buffer layer.
Collapse
Affiliation(s)
- Xingwang Jiang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
- College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, 528402, China
| | - Jie Cheng
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Liu
- College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, 528402, China.
| | - Qingguo Gao
- College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, 528402, China
| | - Liming Liu
- College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, 528402, China
| |
Collapse
|
6
|
Kim J, Song O, Cho YS, Jung M, Rhee D, Kang J. Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics. ACS MATERIALS AU 2022; 2:382-393. [PMID: 36855703 PMCID: PMC9928402 DOI: 10.1021/acsmaterialsau.2c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the significant discovery of van der Waals (vdW) layered materials with diverse electronic properties over more than a decade ago, the scalable production of high-quality vdW layered materials has become a critical goal to enable the transformation of fundamental studies into practical applications in electronics. To this end, solution-based processing has been proposed as a promising technique to yield vdW layered materials in large quantities. Moreover, the resulting dispersions are compatible with cost-effective device fabrication processes such as inkjet printing and roll-to-roll manufacturing. Despite these advantages, earlier works on solution-based processing methods (i.e., direct liquid-phase exfoliation or alkali-metal intercalation) have several challenges in achieving high-performance electronic devices, such as structural polydispersity in thickness and lateral size or undesired phase transformation. These challenges hinder the utilization of the solution-processed materials in the limited fields of electronics such as electrodes and conductors. In the meantime, the groundbreaking discovery of another solution-based approach, molecular intercalation-based electrochemical exfoliation, has shown significant potential for the use of vdW layered materials in scalable electronics owing to the nearly ideal structure of the exfoliated samples. The resulting materials are highly monodispersed, atomically thin, and reasonably large, enabling the preparation of electronically active thin-film networks via successful vdW interface formation. The formation of vdW interfaces is highly important for efficient plane-to-plane charge transport and mechanical stability under various deformations, which are essential to high-performance, flexible electronics. In this Perspective, we survey the latest developments in solution-based processing of vdW layered materials and their electronic applications while also describing the field's future outlook in the context of its current challenges.
Collapse
Affiliation(s)
- Jihyun Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Okin Song
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Yun Seong Cho
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Myeongjin Jung
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Dongjoon Rhee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Joohoon Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea,KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea,
| |
Collapse
|
7
|
Rao VJ, Qi H, Berger FJ, Grieger S, Kaiser U, Backes C, Zaumseil J. Liquid Phase Exfoliation of Rubrene Single Crystals into Nanorods and Nanobelts. ACS NANO 2021; 15:20466-20477. [PMID: 34813291 DOI: 10.1021/acsnano.1c08965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid phase exfoliation (LPE) is a popular method to create dispersions of two-dimensional nanosheets from layered inorganic van der Waals crystals. Here, it is applied to orthorhombic and triclinic single crystals of the organic semiconductor rubrene with only noncovalent interactions (mainly π-π) between the molecules. Distinct nanorods and nanobelts of rubrene are formed, stabilized against aggregation in aqueous sodium cholate solution, and isolated by liquid cascade centrifugation. Selected-area electron diffraction and Raman spectroscopy confirm the crystallinity of the rubrene nanorods and nanobelts while the optical properties (absorbance, photoluminescence) of the dispersions are similar to rubrene solutions due to their randomized orientations. The formation of these stable crystalline rubrene nanostructures with only a few molecular layers by LPE confirms that noncovalent interactions in molecular crystals can be strong enough to enable mechanical exfoliation similar to inorganic layered materials.
Collapse
Affiliation(s)
- Vaishnavi J Rao
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Haoyuan Qi
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Felix J Berger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Grieger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ute Kaiser
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Claudia Backes
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Synergistic effect between 1T’-ReS2 nanosheet arrays and FeS2 nano-spindle in 1T’-ReS2@FeS2@NC heterostructured anode for Na+ storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Fadhel MM, Ali N, Rashid H, Sapiee NM, Hamzah AE, Zan MSD, Aziz NA, Arsad N. A Review on Rhenium Disulfide: Synthesis Approaches, Optical Properties, and Applications in Pulsed Lasers. NANOMATERIALS 2021; 11:nano11092367. [PMID: 34578683 PMCID: PMC8471421 DOI: 10.3390/nano11092367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.
Collapse
|
10
|
Alzakia FI, Tan SC. Liquid-Exfoliated 2D Materials for Optoelectronic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003864. [PMID: 34105282 PMCID: PMC8188210 DOI: 10.1002/advs.202003864] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Indexed: 05/14/2023]
Abstract
Two-dimensional (2D) materials have attracted tremendous research attention in recent days due to their extraordinary and unique properties upon exfoliation from the bulk form, which are useful for many applications such as electronics, optoelectronics, catalysis, etc. Liquid exfoliation method of 2D materials offers a facile and low-cost route to produce large quantities of mono- and few-layer 2D nanosheets in a commercially viable way. Optoelectronic devices such as photodetectors fabricated from percolating networks of liquid-exfoliated 2D materials offer advantages compared to conventional devices, including low cost, less complicated process, and higher flexibility, making them more suitable for the next generation wearable devices. This review summarizes the recent progress on metal-semiconductor-metal (MSM) photodetectors fabricated from percolating network of 2D nanosheets obtained from liquid exfoliation methods. In addition, hybrids and mixtures with other photosensitive materials, such as quantum dots, nanowires, nanorods, etc. are also discussed. First, the various methods of liquid exfoliation of 2D materials, size selection methods, and photodetection mechanisms that are responsible for light detection in networks of 2D nanosheets are briefly reviewed. At the end, some potential strategies to further improve the performance the devices are proposed.
Collapse
Affiliation(s)
- Fuad Indra Alzakia
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| | - Swee Ching Tan
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| |
Collapse
|
11
|
Ott S, Lakmann M, Backes C. Impact of Pretreatment of the Bulk Starting Material on the Efficiency of Liquid Phase Exfoliation of WS 2. NANOMATERIALS 2021; 11:nano11051072. [PMID: 33921953 PMCID: PMC8143503 DOI: 10.3390/nano11051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Liquid phase exfoliation (LPE) is widely used to produce colloidal dispersions of nanomaterials, in particular two-dimensional nanosheets. The degree of exfoliation, i.e., the length to thickness aspect ratio was shown to be intrinsically limited by the ratio of in-plane to out-of-plane binding strength. In this work, we investigate whether simple pretreatment of the starting material can be used to change the in-plane to out-of-plane binding strength through mild intercalation to improve the sample quality in sonication-assisted LPE. Five different pretreatment conditions of WS2 were tested and the dispersions size-selected through centrifugation. From optical spectroscopy (extinction, Raman, photoluminescence), information on nanosheet dimension (average lateral size, layer number, monolayer size) and optical quality (relative photoluminescence quantum yield) was extracted. We find that the pretreatment has a minor impact on the length/thickness aspect ratio, but that photoluminescence quantum yield can be increased in particular using mild sonication conditions. We attribute this to the successful exfoliation of nanosheets with a lower degree of basal plane defectiveness. This work emphasizes the complexity of the exfoliation process and suggests that the role of defects has to be considered for a comprehensive picture.
Collapse
|
12
|
Hu CX, Shin Y, Read O, Casiraghi C. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. NANOSCALE 2021; 13:460-484. [PMID: 33404043 DOI: 10.1039/d0nr05514j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The extensive research on liquid-phase exfoliation (LPE) performed in the last 10 years has enabled a low cost and mass scalable approach to the successful production of a range of solution-processed 2-dimensional (2D) materials suitable for many applications, from composites to energy storage and printed electronics. However, direct LPE requires the use of specific solvents, which are typically toxic and expensive. Dispersant-assisted LPE allows us to overcome this problem by enabling production of solution processed 2D materials in a wider range of solvents, including water. This approach is based on the inclusion of an additive, typically an amphiphilic molecule, designed to interact with both the nanosheet and the solvent, enabling exfoliation and stabilization at the same time. This method has been extensively used for the LPE of graphene and has been discussed in many reviews, whilst little attention has been given to dispersant-assisted LPE of 2D materials beyond graphene. Considering the increasing number of 2D materials and their potential in many applications, from nanomedicine to energy storage and catalysis, this review focuses on the dispersant-assisted LPE of transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN) and less studied 2D materials. We first provide an introduction to the fundamentals of LPE and the type of dispersants that have been used for the production of graphene, we then discuss each class of 2D material, providing an overview on the concentration and properties of the nanosheets obtained. Finally, a perspective is given on some of the challenges that need to be addressed in this field of research.
Collapse
Affiliation(s)
- Chen-Xia Hu
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| | - Oliver Read
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, M139PL, Manchester, UK.
| |
Collapse
|
13
|
Schiettecatte P, Rousaki A, Vandenabeele P, Geiregat P, Hens Z. Liquid-Phase Exfoliation of Rhenium Disulfide by Solubility Parameter Matching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15493-15500. [PMID: 33315400 DOI: 10.1021/acs.langmuir.0c02517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this work, we provide a detailed account of the liquid-phase exfoliation (LPE) of rhenium disulfide (ReS2), a promising new-generation two-dimensional material. By screening LPE in a wide range of solvents, we show that the most optimal solvents are characterized by similar Hildebrand or dispersive Hansen solubility parameters of 25 and 18 MPa1/2, respectively. Such values are attained by solvents such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, and 1-butanol. In line with solution thermodynamics, we interpret the conditions for high-yield exfoliation as a matching of the solvent and ReS2 solubility parameters. Using N-methyl-2-pyrrolidone as an exemplary exfoliation solvent, we undertook a detailed analysis of the exfoliated ReS2. In-depth morphological, structural, and elemental characterization outlined that the LPE procedure presented here produces few-layer, anisotropically stacked, and chemically pure ReS2 platelets with long-term stability against oxidation. These results underscore the suitability of LPE to batch-produce few-layer and pristine ReS2 in solvents that have a solubility parameter close to 25 MPa1/2.
Collapse
Affiliation(s)
- Pieter Schiettecatte
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Anastasia Rousaki
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Peter Vandenabeele
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
14
|
Hao S, Zhao X, Cheng Q, Xing Y, Ma W, Wang X, Zhao G, Xu X. A Mini Review of the Preparation and Photocatalytic Properties of Two-Dimensional Materials. Front Chem 2020; 8:582146. [PMID: 33363106 PMCID: PMC7755974 DOI: 10.3389/fchem.2020.582146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
The successful preparation and application of graphene shows that it is feasible for the materials with a thickness of a single atom or few atomic layers to exist stably in nature. These materials can exhibit unusual physical and chemical properties due to their special dimension effects. At present, researchers have made great achievements in the preparation, characterization, modification, and theoretical research of 2D materials. Because the structure of 2D materials is often similar, it has a certain degree of qualitative versatility. Besides, 2D materials often carry good catalytic performance on account of their more active sites and adjustable harmonic electronic structure. In this review, taking 2D materials as examples [graphene, boron nitride (h-BN), transition metal sulfide and so on], we review the crystal structure and preparation methods of these materials in recent years, focus on their photocatalyst properties (carbon dioxide reduction and hydrogen production), and discuss their applications and development prospects in the future.
Collapse
Affiliation(s)
- Shuhua Hao
- Laboratory of Functional Micro and Nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan, China
| | - Xinpei Zhao
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, China
| | - Qiyang Cheng
- Laboratory of Functional Micro and Nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan, China
| | - Yupeng Xing
- Laboratory of Functional Micro and Nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan, China
| | - Wenxuan Ma
- Laboratory of Functional Micro and Nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan, China
| | - Xiaoke Wang
- Laboratory of Functional Micro and Nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan, China
| | - Gang Zhao
- Laboratory of Functional Micro and Nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan, China
| | - Xijin Xu
- Laboratory of Functional Micro and Nano Materials and Devices, School of Physics and Technology, University of Jinan, Jinan, China
| |
Collapse
|
15
|
Li X, Chen C, Yang Y, Lei Z, Xu H. 2D Re-Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002320. [PMID: 33304762 PMCID: PMC7709994 DOI: 10.1002/advs.202002320] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Indexed: 05/16/2023]
Abstract
The rise of 2D transition-metal dichalcogenides (TMDs) materials has enormous implications for the scientific community and beyond. Among TMDs, ReX2 (X = S, Se) has attracted significant interest regarding its unusual 1T' structure and extraordinary properties in various fields during the past 7 years. For instance, ReX2 possesses large bandgaps (ReSe2: 1.3 eV, ReS2: 1.6 eV), distinctive interlayer decoupling, and strong anisotropic properties, which endow more degree of freedom for constructing novel optoelectronic, logic circuit, and sensor devices. Moreover, facile ion intercalation, abundant active sites, together with stable 1T' structure enable them great perspective to fabricate high-performance catalysts and advanced energy storage devices. In this review, the structural features, fundamental physicochemical properties, as well as all existing applications of Re-based TMDs materials are comprehensively introduced. Especially, the emerging synthesis strategies are critically analyzed and pay particular attention is paid to its growth mechanism with probing the assembly process of domain architectures. Finally, current challenges and future opportunities regarding the controlled preparation methods, property, and application exploration of Re-based TMDs are discussed.
Collapse
Affiliation(s)
- Xiaobo Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Chao Chen
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Yang Yang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| |
Collapse
|
16
|
Fu B, Sun J, Wang G, Shang C, Ma Y, Ma J, Xu L, Scardaci V. Solution-processed two-dimensional materials for ultrafast fiber lasers (invited). NANOPHOTONICS 2020; 9:2169-2189. [DOI: 10.1515/nanoph-2019-0558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Abstract
Since graphene was first reported as a saturable absorber to achieve ultrafast pulses in fiber lasers, many other two-dimensional (2D) materials, such as topological insulators, transition metal dichalcogenides, black phosphorus, and MXenes, have been widely investigated in fiber lasers due to their broadband operation, ultrafast recovery time, and controllable modulation depth. Recently, solution-processing methods for the fabrication of 2D materials have attracted considerable interest due to their advantages of low cost, easy fabrication, and scalability. Here, we review the various solution-processed methods for the preparation of different 2D materials. Then, the applications and performance of solution-processing-based 2D materials in fiber lasers are discussed. Finally, a perspective of the solution-processed methods and 2D material-based saturable absorbers are presented.
Collapse
Affiliation(s)
- Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Jingxuan Sun
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Gang Wang
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Yuxuan Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Lijun Xu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Vittorio Scardaci
- Dipartimento di Scienze Chimiche , Universitá degli Studi di Catania , Catania , Italy
| |
Collapse
|
17
|
Martín-García B, Spirito D, Bellani S, Prato M, Romano V, Polovitsyn A, Brescia R, Oropesa-Nuñez R, Najafi L, Ansaldo A, D'Angelo G, Pellegrini V, Krahne R, Moreels I, Bonaccorso F. Extending the Colloidal Transition Metal Dichalcogenide Library to ReS 2 Nanosheets for Application in Gas Sensing and Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904670. [PMID: 31788951 DOI: 10.1002/smll.201904670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Among the large family of transition metal dichalcogenides, recently ReS2 has stood out due to its nearly layer-independent optoelectronic and physicochemical properties related to its 1T distorted octahedral structure. This structure leads to strong in-plane anisotropy, and the presence of active sites at its surface makes ReS2 interesting for gas sensing and catalysts applications. However, current fabrication methods use chemical or physical vapor deposition (CVD or PVD) processes that are costly, time-consuming and complex, therefore limiting its large-scale production and exploitation. To address this issue, a colloidal synthesis approach is developed, which allows the production of ReS2 at temperatures below 360 °C and with reaction times shorter than 2h. By combining the solution-based synthesis with surface functionalization strategies, the feasibility of colloidal ReS2 nanosheet films for sensing different gases is demonstrated with highly competitive performance in comparison with devices built with CVD-grown ReS2 and MoS2 . In addition, the integration of the ReS2 nanosheet films in assemblies together with carbon nanotubes allows to fabricate electrodes for electrocatalysis for H2 production in both acid and alkaline conditions. Results from proof-of-principle devices show an electrocatalytic overpotential competitive with devices based on ReS2 produced by CVD, and even with MoS2 , WS2 , and MoSe2 electrocatalysts.
Collapse
Affiliation(s)
- Beatriz Martín-García
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Davide Spirito
- Optoelectronics Group, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Valentino Romano
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | - Anatolii Polovitsyn
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | | | - Leyla Najafi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Giovanna D'Angelo
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional Spa., Via Albisola 121, 16163, Genova, Italy
| | - Roman Krahne
- Optoelectronics Group, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Iwan Moreels
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional Spa., Via Albisola 121, 16163, Genova, Italy
| |
Collapse
|
18
|
Sun J, Choi Y, Choi YJ, Kim S, Park JH, Lee S, Cho JH. 2D-Organic Hybrid Heterostructures for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803831. [PMID: 30786064 DOI: 10.1002/adma.201803831] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/10/2019] [Indexed: 05/08/2023]
Abstract
The unique properties of hybrid heterostructures have motivated the integration of two or more different types of nanomaterials into a single optoelectronic device structure. Despite the promising features of organic semiconductors, such as their acceptable optoelectronic properties, availability of low-cost processes for their fabrication, and flexibility, further optimization of both material properties and device performances remains to be achieved. With the emergence of atomically thin 2D materials, they have been integrated with conventional organic semiconductors to form multidimensional heterostructures that overcome the present limitations and provide further opportunities in the field of optoelectronics. Herein, a comprehensive review of emerging 2D-organic heterostructures-from their synthesis and fabrication to their state-of-the-art optoelectronic applications-is presented. Future challenges and opportunities associated with these heterostructures are highlighted.
Collapse
Affiliation(s)
- Jia Sun
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yongsuk Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Young Jin Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jin-Hong Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Sungjoo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jeong Ho Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| |
Collapse
|
19
|
Islam SM, Sangwan VK, Li Y, Kang J, Zhang X, He Y, Zhao J, Murthy A, Ma S, Dravid VP, Hersam MC, Kanatzidis MG. Abrupt Thermal Shock of (NH 4) 2Mo 3S 13 Leads to Ultrafast Synthesis of Porous Ensembles of MoS 2 Nanocrystals for High Gain Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38193-38200. [PMID: 30299078 DOI: 10.1021/acsami.8b12406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrafast synthesis of high-quality transition-metal dichalcogenide nanocrystals, such as molybdenum disulfide (MoS2), is technologically relevant for large-scale production of electronic and optoelectronic devices. Here, we report a rapid solid-state synthesis route for MoS2 using the chemically homogeneous molecular precursor, (NH4)2Mo3S13·H2O, resulting in nanoparticles with estimated size down to 25 nm only in 10 s at 1000 °C. Despite the extreme nonequilibrium conditions, the resulting porous MoS2 nanoparticles remain aggregated to preserve the form of the original rod shape bulk morphology of the molecular precursor. This ultrafast synthesis proceeds through the rapid decomposition of the precursor and rearrangement of Mo and S atoms coupled with simultaneous efficient release of massive gaseous species, to create nanoscale porosity in the resulting isomorphic pseudocrystals, which are composed of the MoS2 nanoparticles. Despite the very rapid escape of massive amounts of NH3, H2O, H2S, and S gases from the (NH4)2Mo3S13·H2O mm sized crystals, they retain their original shape as they convert to MoS2 rather than undergo explosive destruction from the rapid escape process of the gases. The obtained pseudocrystals are made of aggregated MoS2 nanocrystals exhibit a Brunauer-Emmett-Teller surface area of ∼35 m2/g with an adsorption average pore width of ∼160 Å. The nanoporous MoS2 crystals are solution processable by dispersing in ethanol and water and can be cast into large-area uniform composite films. Photodetectors fabricated from these films show more than 2 orders of magnitude higher conductivity (∼6.25 × 10-6 S/cm) and photoconductive gain (20 mA/W) than previous reports of MoS2 composite films. The optoelectronic properties of this nanoporous MoS2 imply that the shallow defects that originate from the ultrafast synthesis act as sensitizing centers that increase the photocurrent gain via two-level recombination kinetics.
Collapse
Affiliation(s)
- Saiful M Islam
- Department of Chemistry, Physics and Atmospheric Sciences , Jackson State University , Jackson , Mississippi 39217 , United States
| | | | | | | | | | | | | | | | - Shulan Ma
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | | | | | | |
Collapse
|
20
|
Nazir G, Rehman MA, Khan MF, Dastgeer G, Aftab S, Afzal AM, Seo Y, Eom J. Comparison of Electrical and Photoelectrical Properties of ReS 2 Field-Effect Transistors on Different Dielectric Substrates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32501-32509. [PMID: 30182711 DOI: 10.1021/acsami.8b06728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As one of the newly discovered transition-metal dichalcogenides (TMDs), rhenium disulfide (ReS2) has been investigated mostly because of its unique characteristics such as the direct band gap nature even in bulk form, which is not prominent in other TMDs (e.g., MoS2, WSe2, etc.). However, this material possesses a low mobility and an on/off ratio, which restrict its usage in high-speed and fast switching applications. Low mobilities or on/off ratios can also be caused by substrate scattering as well as environmental effects. In this study, we used few-layer ReS2 (FL-ReS2) as a channel material to investigate the substrate-dependent mobility, current on/off ratio, Schottky barrier height (SBH), and trap density of states of different dielectric substrates. The hexagonal boron nitride (h-BN)/FL-ReS2/h-BN structure was observed to exhibit a high mobility of 45 cm2 V-1 s-1, current on/off ratio of about 107, the lowest SBH of about 12 mV at a zero back-gate voltage ( Vbg), and a low trap density of states of about 5 × 1013 cm-3. These quantities are reasonably superior compared to the FL-ReS2 devices on SiO2 substrates. We also observed a nearly 5-fold improvement in the photoresponsivity and external quantum efficiency values for the FL-ReS2 devices on h-BN substrates. We believe that the photonic characteristics of TMDs can be improved by using h-BN as the substrate and capping layer.
Collapse
|
21
|
Kang J, Wells SA, Sangwan VK, Lam D, Liu X, Luxa J, Sofer Z, Hersam MC. Solution-Based Processing of Optoelectronically Active Indium Selenide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802990. [PMID: 30095182 DOI: 10.1002/adma.201802990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Indexed: 05/24/2023]
Abstract
Layered indium selenide (InSe) presents unique properties for high-performance electronic and optoelectronic device applications. However, efforts to process InSe using traditional liquid phase exfoliation methods based on surfactant-assisted aqueous dispersions or organic solvents with high boiling points compromise electronic properties due to residual surface contamination and chemical degradation. Here, these limitations are overcome by utilizing a surfactant-free, low boiling point, deoxygenated cosolvent system. The resulting InSe flakes and thin films possess minimal processing residues and are structurally and chemically pristine. When employed in photodetectors, individual InSe nanosheets exhibit a maximum photoresponsivity of ≈5 × 107 A W-1 , which is the highest value of any solution-processed monolithic semiconductor to date. Furthermore, the surfactant-free cosolvent system not only stabilizes InSe dispersions but is also amenable to the assembly of electronically percolating InSe flake arrays without posttreatment, which enables the realization of ultrahigh performance thin-film photodetectors. This surfactant-free, deoxygenated cosolvent approach can be generalized to other layered materials, thereby presenting additional opportunities for solution-processed thin-film electronic and optoelectronic technologies.
Collapse
Affiliation(s)
- Joohoon Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Spencer A Wells
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - David Lam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
22
|
Li Q, Xu Y, Yao Z, Kang J, Liu X, Wolverton C, Hersam MC, Wu J, Dravid VP. Revealing the Effects of Electrode Crystallographic Orientation on Battery Electrochemistry via the Anisotropic Lithiation and Sodiation of ReS 2. ACS NANO 2018; 12:7875-7882. [PMID: 29986135 DOI: 10.1021/acsnano.8b02203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The crystallographic orientation of battery electrode materials can significantly impact electrochemical performance, such as rate capability and cycling stability. Among the layered transition metal dichalcogenides, rhenium disulfide (ReS2) has the largest anisotropic ratio between the two main axes in addition to exceptionally weak interlayer coupling, which serves as an ideal system to observe and analyze anisotropy of electrochemical phenomena. Here, we report anisotropic lithiation and sodiation of exfoliated ReS2 at atomic resolution using in situ transmission electron microscopy. These results reveal the role of crystallographic orientation and anisotropy on battery electrode electrochemistry. Complemented with density functional theory calculations, the lithiation of ReS2 is found to begin with intercalation of Li-ions, followed by a conversion reaction that results in Re nanoparticles and Li2S nanocrystals. The reaction speed is highly anisotropic, occurring faster along the in-plane ReS2 layer than along the out-of-plane direction. Sodiation of ReS2 is found to proceed similarly to lithiation, although the intercalation step is relatively quicker. Furthermore, the microstructure and morphology of the reaction products after lithiation/sodiation show clear anisotropy along the in-plane and out-of-plane directions. These results suggest that crystallographic orientation in highly anisotropic electrode materials can be exploited as a design parameter to improve battery electrochemical performance.
Collapse
Affiliation(s)
- Qianqian Li
- Materials Genome Institute , Shanghai University , Shanghai 200444 , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Han JH, Kwak M, Kim Y, Cheon J. Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. Chem Rev 2018; 118:6151-6188. [PMID: 29926729 DOI: 10.1021/acs.chemrev.8b00264] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The precise control in size/thickness, composition, crystal phases, doping, defects, and surface properties of two-dimensional (2D) layered transition metal chalcogenide (TMC) is important for the investigation of interwoven relationship between structures, functions, and practical applications. Of the multiple synthetic routes, solution-based top-down and bottom-up chemical methods have been uniquely important for their potential to control the size and composition at the molecular level in addition to their scalability, competitive production cost, and solution processability. Here, we introduce an overview of the recent advances in the solution-based preparation routes of 2D layered TMC nanostructures along with important scientific developments.
Collapse
Affiliation(s)
- Jae Hyo Han
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Minkyoung Kwak
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Youngsoo Kim
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| |
Collapse
|
24
|
Li P, Kumar A, Ma J, Kuang Y, Luo L, Sun X. Density gradient ultracentrifugation for colloidal nanostructures separation and investigation. Sci Bull (Beijing) 2018; 63:645-662. [PMID: 36658885 DOI: 10.1016/j.scib.2018.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023]
Abstract
In this article, we review the advancement in nanoseparation and concomitant purification of nanoparticles (NPs) by using density gradient ultracentrifugation technique (DGUC) and demonstrated by taking several typical examples. Study emphasizes the conceptual advances in classification, mechanism of DGUC and synthesis-structure-property relationships of NPs to provide the significant clue for the further synthesis optimization. Separation, concentration, and purification of NPs by DGUC can be achieved at the same time by introducing the water/oil interfaces into the separation chamber. We can develop an efficient method "lab in a tube" by introducing a reaction zone or an assembly zone in the gradient to find the surface reaction and assembly mechanism of NPs since the reaction time can be precisely controlled and the chemical environment change can be extremely fast. Finally, to achieve the best separation parameters for the colloidal systems, we gave the mathematical descriptions and computational optimized models as a new direction for making practicable and predictable DGUC separation method. Thus, it can be helpful for an efficient separation as well as for the synthesis optimization, assembly and surface reactions as a potential cornerstone for the future development in the nanotechnology and this review can be served as a plethora of advanced notes on the DGUC separation method.
Collapse
Affiliation(s)
- Pengsong Li
- State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Anuj Kumar
- State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Ma
- State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
25
|
Hu G, Kang J, Ng LWT, Zhu X, Howe RCT, Jones CG, Hersam MC, Hasan T. Functional inks and printing of two-dimensional materials. Chem Soc Rev 2018; 47:3265-3300. [PMID: 29667676 DOI: 10.1039/c8cs00084k] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Collapse
Affiliation(s)
- Guohua Hu
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Vinod K. Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
27
|
Borowiec J, Gillin WP, Willis MAC, Boi FS, He Y, Wen JQ, Wang SL, Schulz L. Room temperature synthesis of ReS 2 through aqueous perrhenate sulfidation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:055702. [PMID: 29324434 DOI: 10.1088/1361-648x/aaa474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1T') ReS2 with a low degree of layer stacking.
Collapse
Affiliation(s)
- Joanna Borowiec
- College of Physical Science and Technology, Sichuan University, 610064 Chengdu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Jang H, Ryder CR, Wood JD, Hersam MC, Cahill DG. 3D Anisotropic Thermal Conductivity of Exfoliated Rhenium Disulfide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700650. [PMID: 28722239 DOI: 10.1002/adma.201700650] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/30/2017] [Indexed: 06/07/2023]
Abstract
ReS2 represents a different class of 2D materials, which is characterized by low symmetry having 1D metallic chains within the planes and extremely weak interlayer bonding. Here, the thermal conductivity of single-crystalline ReS2 in a distorted 1T phase is determined at room temperature for the in-plane directions parallel and perpendicular to the Re-chains, and the through-plane direction using time-domain thermoreflectance. ReS2 is prepared in the form of flakes having thicknesses of 60-450 nm by micromechanical exfoliation, and their crystalline orientations are identified by polarized Raman spectroscopy. The in-plane thermal conductivity is higher along the Re-chains, (70 ± 18) W m-1 K-1 , as compared to transverse to the chains, (50 ± 13) W m-1 K-1 . As expected from the weak interlayer bonding, the through-plane thermal conductivity is the lowest observed to date for 2D materials, (0.55 ± 0.07) W m-1 K-1 , resulting in a remarkably high anisotropy of (130 ± 40) and (90 ± 30) for the two in-plane directions. The thermal conductivity and interface thermal conductance of ReS2 are discussed relative to the other 2D materials.
Collapse
Affiliation(s)
- Hyejin Jang
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
| | - Christopher R Ryder
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Joshua D Wood
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| | - David G Cahill
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
30
|
Colloidal 2D nanosheets of MoS 2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv Colloid Interface Sci 2017; 245:40-61. [PMID: 28477866 DOI: 10.1016/j.cis.2017.04.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
This review focuses on the exfoliation of transition metal dichalcogenides MQ2 (TMD, M=Mo, W, etc., Q=S, Se, Te) in liquid media, leading to the formation of 2D nanosheets dispersed in colloids. Nowadays, colloidal dispersions of MoS2, MoSe2, WS2 and other related materials are considered for a wide range of applications, including electronic and optoelectronic devices, energy storage and conversion, sensors for gases, catalysts and catalyst supports, biomedicine, etc. We address various methods developed so far for transferring these materials from bulk to nanoscale thickness, and discuss their stabilization and factors influencing it. Long-time known exfoliation through Li intercalation has received renewed attention in recent years, and is recognized as a method yielding highest dispersed concentrations of single-layer MoS2 and related materials. Latest trends in the intercalation/exfoliation approach include electrochemical lithium intercalation, experimenting with various intercalating agents, multi-step intercalation, etc. On the other hand, direct sonication in solvents is a much simpler technique that allows one to avoid dangerous reagents, long reaction times and purifying steps. The influence of the solvent characteristics on the colloid formation was closely investigated in numerous recent studies. Moreover, it is being recognized that, besides solvent properties, sonication parameters and solvent transformations may affect the process in a crucial way. The latest data on the interaction of MoS2 with solvents evidence that not only solution thermodynamics should be employed to understand the formation and stabilization of such colloids, but also general and organic chemistry. It appears that due to the sonolysis of the solvents and cutting of the MoS2 layers in various directions, the reactive edges of the colloidal nanosheets may bear various functionalities, which participate in their stabilization in the colloidal state. In most cases, direct exfoliation of MQ2 into colloidal nanosheets is conducted in organic solvents, while a small amount of works report low-concentrated colloids in pure water. To improve the dispersion abilities of transition metal dichalcogenides in water, various stabilizers are often introduced into the reaction media, and their interactions with nanosheets play an important role in the stabilization of the dispersions. Surfactants, polymers and biomolecules usually interact with transition metal dichalcogenide nanosheets through non-covalent mechanisms, similarly to the cases of graphene and carbon nanotubes. Finally, we survey covalent chemical modification of colloidal MQ2 nanosheets, a special and different approach, consisting in the functionalization of MQ2 surfaces with help of thiol chemistry, interaction with electrophiles, or formation of inorganic coordination complexes. The intentional design of surface chemistry of the nanosheets is a very promising way to control their solubility, compatibility with other moieties and incorporation into hybrid structures. Although the scope of the present review is limited to transition metal dichalcogenides, the dispersion in colloids of other chalcogenides (such as NbS3, VS4, Mo2S3, etc.) in many ways follows similar trends. We conclude the review by discussing current challenges in the area of exfoliation of MoS2 and its related materials.
Collapse
|
31
|
Kang J, Sangwan VK, Wood JD, Hersam MC. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Acc Chem Res 2017; 50:943-951. [PMID: 28240855 DOI: 10.1021/acs.accounts.6b00643] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exfoliation of single-layer graphene from bulk graphite and the subsequent discovery of exotic physics and emergent phenomena in the atomically thin limit has motivated the isolation of other two-dimensional (2D) layered nanomaterials. Early work on isolated 2D nanomaterial flakes has revealed a broad range of unique physical and chemical properties with potential utility in diverse applications. For example, the electronic and optical properties of 2D nanomaterials depend strongly on atomic-scale variations in thickness, enabling enhanced performance in optoelectronic technologies such as light emitters, photodetectors, and photovoltaics. Much of the initial research on 2D nanomaterials has relied on micromechanical exfoliation, which yields high-quality 2D nanomaterial flakes that are suitable for fundamental studies but possesses limited scalability for real-world applications. In an effort to overcome this limitation, solution-processing methods for isolating large quantities of 2D nanomaterials have emerged. Importantly, solution processing results in 2D nanomaterial dispersions that are amenable to roll-to-roll fabrication methods that underlie lost-cost manufacturing of thin-film transistors, transparent conductors, energy storage devices, and solar cells. Despite these advantages, solution-based exfoliation methods typically lack control over the lateral size and thickness of the resulting 2D nanomaterial flakes, resulting in polydisperse dispersions with heterogeneous properties. Therefore, post-exfoliation separation techniques are needed to achieve 2D nanomaterial dispersions with monodispersity in lateral size, thickness, and properties. In this Account, we survey the latest developments in solution-based separation methods that aim to produce monodisperse dispersions and thin films of emerging 2D nanomaterials such as graphene, boron nitride, transition metal dichalcogenides, and black phosphorus. First, we motivate the need for precise thickness control in 2D nanomaterials by reviewing thickness-dependent physical properties. Then we present a succinct survey of solution-based exfoliation methods that yield 2D nanomaterial dispersions in organic solvents and aqueous media. The Account subsequently focuses on separation methods, including a critical analysis of their relative strengths and weaknesses for 2D nanomaterials with different buoyant densities, van der Waals interactions, and chemical reactivities. Specifically, we evaluate sedimentation-based density gradient ultracentrifugation (sDGU) and isopycnic DGU (iDGU) for post-exfoliation 2D nanomaterial dispersion separation. The comparative advantages of sedimentation and isopycnic methods are presented in both aqueous and nonaqueous media for 2D nanomaterials with varying degrees of chemical reactivity. Finally, we survey methods for forming homogeneous thin films from 2D nanomaterial dispersions and emerging technologies that are likely to benefit from these structures. Overall, this Account provides not only an overview of the present state-of-the-art but also a forward-looking vision for the field of solution-processed monodisperse 2D nanomaterials.
Collapse
Affiliation(s)
- Joohoon Kang
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K. Sangwan
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua D. Wood
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C. Hersam
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Graduate
Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Medicine, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|