1
|
Parveen S, Pal PK, Mukhopadhyay S, Majumder S, Bisoi S, Rahman A, Barman A. Hot carrier dynamics in the BA 2PbBr 4/MoS 2 heterostructure. NANOSCALE 2025; 17:2800-2809. [PMID: 39831799 DOI: 10.1039/d4nr03866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BA2PbBr4 perovskite and its heterostructure with MoS2. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS2, leading to enhancement in the photoluminescence intensity of MoS2. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure. A generalized two-temperature model was introduced to include competing effects of electron cooling in the rate equation of electron and lattice relaxation dynamics. The hot phonon bottleneck effect is more enhanced in the BA2PbBr4/MoS2 heterostructure than in pristine BA2PbBr4, resulting in a longer electron relaxation time. By developing a heterostructure platform with 2D BA2PbBr4 and MoS2 hybrid materials, this work provides a unique opportunity to understand and tailor carrier dynamics, interfacial coupling, and long-lived hot electrons, ultimately enhancing the efficiency of optoelectronic devices.
Collapse
Affiliation(s)
- Sumaiya Parveen
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
| | - Pratap Kumar Pal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
| | - Suchetana Mukhopadhyay
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
| | - Sudipta Majumder
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhaba Road, Pune 411008, India
| | - Swapneswar Bisoi
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhaba Road, Pune 411008, India
| | - Atikur Rahman
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhaba Road, Pune 411008, India
| | - Anjan Barman
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
| |
Collapse
|
2
|
Zhang S, Jin L, Lu Y, Zhang L, Yang J, Zhao Q, Sun D, Thompson JJP, Yuan B, Ma K, Akriti, Park JY, Lee YH, Wei Z, Finkenauer BP, Blach DD, Kumar S, Peng H, Mannodi-Kanakkithodi A, Yu Y, Malic E, Lu G, Dou L, Huang L. Moiré superlattices in twisted two-dimensional halide perovskites. NATURE MATERIALS 2024; 23:1222-1229. [PMID: 38906993 DOI: 10.1038/s41563-024-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.
Collapse
Affiliation(s)
- Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akriti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yoon Ho Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Blake P Finkenauer
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Sarath Kumar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Hussain SA, Zheng B, Xu Z, Liu Y, Wang H, Sun X, Zhu C, Wu G, Zheng W, Zhu X, Li D, Jiang Y, Pan A. Enhancing photoluminescence of WSe 2 in vapor grown WSe 2/VOCl bilayer heterojunctions via surface passivation. OPTICS LETTERS 2024; 49:3970-3973. [PMID: 39008753 DOI: 10.1364/ol.529048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024]
Abstract
Monolayer tungsten selenide (WSe2) has attracted attention due to its direct bandgap-generated strong light emission and light-matter interaction. Herein, vertical WSe2/VOCl bilayer heterojunctions with enhanced PL of WSe2 were synthesized by the vapor growth method. The morphology, crystal structure, and chemical composition of the WSe2/VOCl heterojunctions were systematically investigated, which confirmed the successful formation of the heterojunctions. The PL emission intensity of WSe2 obtained from the WSe2/VOCl heterojunction was about 2.4 times higher than that of the WSe2 monolayer, demonstrating the high optical quality of the WSe2/VOCl heterojunction, which was further confirmed by time-resolved PL measurements. The insulator top VOCl, which was deposited on the surface of the semiconductor bottom WSe2 as a surface passivation material, reducing the impurities and resulting in an atomically clean surface, successfully enhanced the PL emission of the bottom WSe2. This vertical WSe2/VOCl bilayer heterojunction with PL enhancement could provide a promising platform for optical devices.
Collapse
|
4
|
Soni A, Ghosal S, Kundar M, Pati SK, Pal SK. Long-Lived Interlayer Excitons in WS 2/Ruddlesden-Popper Perovskite van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35841-35851. [PMID: 38935613 DOI: 10.1021/acsami.4c07346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and perovskites hold substantial promise for various optoelectronic applications such as light emission, photodetection, and energy harvesting. However, each of these materials possesses certain limitations that can be overcome by synergistically combining them to form heterostructures, thereby unveiling intriguing optical properties. In this study, we present an uncomplicated technique for crafting a van der Waals (vdW) heterojunction comprising monolayer WS2 and a Ruddlesden-Popper (RP) perovskite, namely (TEA)2PbI4. By utilizing ultrafast transient absorption (TA) spectroscopy, we explored the charge carrier dynamics within the WS2/(TEA)2PbI4 heterostructure. Our findings uncover a type-II band alignment in the heterostructure, facilitating rapid (within 260 fs) hole transfer from WS2 to the perovskite and leading to the formation of interlayer excitons (IXs) with a much longer lifetime (728 ps). This strategic approach has the potential to contribute to the development of hybrid systems aimed at achieving high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Ashish Soni
- School of Physical Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
| | - Supriya Ghosal
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Milon Kundar
- School of Physical Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Suman Kalyan Pal
- School of Physical Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
5
|
Qin C, Wang W, Song J, Jiao Z, Ma S, Zheng S, Zhang J, Jia G, Jiang Y, Zhou Z. Carrier transfer in quasi-2D perovskite/MoS 2 monolayer heterostructure. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4495-4505. [PMID: 39634701 PMCID: PMC11501760 DOI: 10.1515/nanoph-2023-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2024]
Abstract
Two-dimensional layered semiconductors have attracted intense interest in recent years. The van der Waals coupling between the layers tolerates stacking various materials and establishing heterostructures with new characteristics for a wide range of optoelectronic applications. The interlayer exciton dynamics at the interface within the heterostructure are vitally important for the performance of the photodetector and photovoltaic device. Here, a heterostructure comprising two-dimensional organic-inorganic Ruddlesden-Popper perovskites and transition metal dichalcogenide monolayer was fabricated and its ultrafast charge separation processes were systematically studied by using femtosecond time-resolved transient absorption spectroscopy. Significant hole and electron transfer processes in the ps and fs magnitude at the interface of the heterostructure were observed by tuning pump wavelengths of the pump-probe geometries. The results emphasize the realization of the exciton devices based on semiconductor heterostructures of two-dimensional perovskite and transition metal dichalcogenide.
Collapse
Affiliation(s)
- Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Wenjing Wang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Jian Song
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Zhaoyong Jiao
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Shuhong Ma
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Shuwen Zheng
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Jicai Zhang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Guangrui Jia
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Yuhai Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Zhongpo Zhou
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| |
Collapse
|
6
|
Jin KH, Jiang W, Sethi G, Liu F. Topological quantum devices: a review. NANOSCALE 2023; 15:12787-12817. [PMID: 37490310 DOI: 10.1039/d3nr01288c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The introduction of the concept of topology into condensed matter physics has greatly deepened our fundamental understanding of transport properties of electrons as well as all other forms of quasi particles in solid materials. It has also fostered a paradigm shift from conventional electronic/optoelectronic devices to novel quantum devices based on topology-enabled quantum device functionalities that transfer energy and information with unprecedented precision, robustness, and efficiency. In this article, the recent research progress in topological quantum devices is reviewed. We first outline the topological spintronic devices underlined by the spin-momentum locking property of topology. We then highlight the topological electronic devices based on quantized electron and dissipationless spin conductivity protected by topology. Finally, we discuss quantum optoelectronic devices with topology-redefined photoexcitation and emission. The field of topological quantum devices is only in its infancy, we envision many significant advances in the near future.
Collapse
Affiliation(s)
- Kyung-Hwan Jin
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Wei Jiang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Gurjyot Sethi
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
7
|
Singh S, Gong W, Stevens CE, Hou J, Singh A, Zhang H, Anantharaman SB, Mohite AD, Hendrickson JR, Yan Q, Jariwala D. Valley-Polarized Interlayer Excitons in 2D Chalcogenide-Halide Perovskite-van der Waals Heterostructures. ACS NANO 2023; 17:7487-7497. [PMID: 37010369 DOI: 10.1021/acsnano.2c12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Interlayer excitons (IXs) in two-dimensional (2D) heterostructures provide an exciting avenue for exploring optoelectronic and valleytronic phenomena. Presently, valleytronic research is limited to transition metal dichalcogenide (TMD) based 2D heterostructure samples, which require strict lattice (mis) match and interlayer twist angle requirements. Here, we explore a 2D heterostructure system with experimental observation of spin-valley layer coupling to realize helicity-resolved IXs, without the requirement of a specific geometric arrangement, i.e., twist angle or specific thermal annealing treatment of the samples in 2D Ruddlesden-Popper (2DRP) halide perovskite/2D TMD heterostructures. Using first-principle calculations, time-resolved and circularly polarized luminescence measurements, we demonstrate that Rashba spin-splitting in 2D perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-dependent optical selection rules to the IXs. Consequently, a robust valley polarization of ∼14% with a long exciton lifetime of ∼22 ns is obtained in type-II band aligned 2DRP/TMD heterostructure at ∼1.54 eV measured at 80 K. Our work expands the scope for studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.
Collapse
Affiliation(s)
- Simrjit Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher E Stevens
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- KBR Inc., Beavercreek, Ohio 45431, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Aditya Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Huiqin Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aditya D Mohite
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Aftab S, Iqbal MZ, Hegazy HH, Azam S, Kabir F. Trends in energy and charge transfer in 2D and integrated perovskite heterostructures. NANOSCALE 2023; 15:3610-3629. [PMID: 36728545 DOI: 10.1039/d2nr07141j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructured transition metal dichalcogenides (TMDs) open up new possibilities for a wide range of optoelectronic applications. Interlayer couplings are responsible for several fascinating physics phenomena, which are in addition to the multifunctionalities that have been discovered in the field of optoelectronics. These couplings can influence the overall charge, or the energy transfer processes via stacking, separation, and dielectric angles. This focused review article summarizes the most recent and promising strategies for interlayer exciton emission in 2D or integrated perovskites and TMD heterostructures. These types of devices require a thorough comprehension and effective control of interlayer couplings in order to realize their functionalities and improve performance, which is demonstrated in this article with the energy or charge transfer mechanisms in the individual devices. An ideal platform for examining the interlayer coupling and the related physical processes is provided by a summary of the recent research findings in 2D perovskites and TMDs. Furthermore, it would encourage more investigation into the comprehension and regulation of excitonic effects and the related optoelectronic applications in vdW heterostructures over a broad spectral response range. Finally, the current challenges and prospects are summarized in this paper.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea.
| | - Muhammad Zahir Iqbal
- Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa, Pakistan
| | - Hosameldin Helmy Hegazy
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikander Azam
- Department of Physics, Faculty of Engineering and Applied Sciences, Riphah International University, I-14 Campus, Islamabad, Islamabad, Pakistan.
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
9
|
Canet-Albiach R, Kreĉmarová M, Bailach JB, Gualdrón-Reyes AF, Rodríguez-Romero J, Gorji S, Pashaei-Adl H, Mora-Seró I, Martínez Pastor JP, Sánchez-Royo JF, Muñoz-Matutano G. Revealing Giant Exciton Fine-Structure Splitting in Two-Dimensional Perovskites Using van der Waals Passivation. NANO LETTERS 2022; 22:7621-7627. [PMID: 36074722 DOI: 10.1021/acs.nanolett.2c02729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic-inorganic layered perovskites are currently some of the most promising 2D van der Waals materials. Low crystal quality usually broadens the exciton line width, obscuring the fine structure of the exciton in conventional photoluminescence experiments. Here, we propose a mechanical approach to reducing the effect of spectral diffusion by means of hBN capping on layered perovskites, revealing the exciton fine structure. We used a stochastic model to link the reduction of the spectral line width with the population of charge fluctuation centers present in the organic spacer. van der Waals forces between both lattices cause the partial clamping of the perovskite organic spacer molecules, and hence the amplitude of the overall spectral diffusion effect is reduced. Our work provides a low-cost solution to the problem of accessing important fine-structure excitonic state information, along with an explanation of the important carrier dynamics present in the organic spacer that affect the quality of the optical emission.
Collapse
Affiliation(s)
- Rodolfo Canet-Albiach
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Marie Kreĉmarová
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - José Bosch Bailach
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Andrés F Gualdrón-Reyes
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
- Facultad de Ciencias, Instituto de Ciencias Químicas, Isla Teja, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Jesús Rodríguez-Romero
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Coyoacán, 04510 Mexico City, Mexico
| | - Setatira Gorji
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Hamid Pashaei-Adl
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Juan P Martínez Pastor
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | | | | |
Collapse
|
10
|
Kirubasankar B, Won YS, Adofo LA, Choi SH, Kim SM, Kim KK. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem Sci 2022; 13:7707-7738. [PMID: 35865881 PMCID: PMC9258346 DOI: 10.1039/d2sc01398c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and their heterostructures have attracted significant interest in both academia and industry because of their unusual physical and chemical properties. They offer numerous applications, such as electronic, optoelectronic, and spintronic devices, in addition to energy storage and conversion. Atomic and structural modifications of van der Waals layered materials are required to achieve unique and versatile properties for advanced applications. This review presents a discussion on the atomic-scale and structural modifications of 2D TMDs and their heterostructures via post-treatment. Atomic-scale modifications such as vacancy generation, substitutional doping, functionalization and repair of 2D TMDs and structural modifications including phase transitions and construction of heterostructures are discussed. Such modifications on the physical and chemical properties of 2D TMDs enable the development of various advanced applications including electronic and optoelectronic devices, sensing, catalysis, nanogenerators, and memory and neuromorphic devices. Finally, the challenges and prospects of various post-treatment techniques and related future advanced applications are addressed.
Collapse
Affiliation(s)
- Balakrishnan Kirubasankar
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Yo Seob Won
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Laud Anim Adofo
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| |
Collapse
|
11
|
Liang Z, Ni L, Zhang Y, Yuan C, Huang L, Yang Y, Xiao Y. Effects of Tellurium Doping on Environmental Stability and Luminous Performance of CsPbBr 3 Quantum Dots. ACS OMEGA 2022; 7:21800-21807. [PMID: 35785286 PMCID: PMC9245131 DOI: 10.1021/acsomega.2c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The effects of elemental tellurium doping and decorating on the photoluminescence quantum yield (PL QY) and the environmental stability of the CsPbBr3 quantum dots (QDs) have been systematically studied. The PL spectra blue-shifts from 520 to 464 nm gradually with the increase in the amount of Te, and the full width at half-maximum (FWHM) increases from 20 to 62 nm and decreases to 27 nm accordingly. The morphology of the untreated samples has a rectangular shape with distinct boundaries, whereas the Te-doped samples have a semi-core-shell structure with partially coated CsPb2Br5 after tellurium doping. Furthermore, the apparent size of the nanocomposites increases to 20 nm, but the crystal size of the core decreases slightly according to the broadened peaks of X-ray diffraction (XRD). Further investigation by X-ray photoelectron spectroscopy shows that the binding energy of Pb-Br increases and Pb-Te bonds are formed in Te-doped samples, which can enhance the stability of QDs from the view of strengthening the chemical bonds and inhibiting the detaching behavior of bromine under moisture. At the nominal content of Pb/Te = 1:0.4, the thermal decomposition temperature of the QDs increases from 300 to 500 °C; the maximum of PL QY increases to 70% for the 1:0.4 sample and the relative PL peak intensity maintains 50% of the initial value after a 60 h aging simulation. Finally, the nanocomposite materials are fabricated into a white light-emitting device (WLED). Under the illumination of a commercial GaN chip, the device shows a good Commission Internationale de lEclairage (CIE) color coordination of (0.3291,0.3318).
Collapse
|
12
|
Karpińska M, Jasiński J, Kempt R, Ziegler JD, Sansom H, Taniguchi T, Watanabe K, Snaith HJ, Surrente A, Dyksik M, Maude DK, Kłopotowski Ł, Chernikov A, Kuc A, Baranowski M, Plochocka P. Interlayer excitons in MoSe 2/2D perovskite hybrid heterostructures - the interplay between charge and energy transfer. NANOSCALE 2022; 14:8085-8095. [PMID: 35611659 DOI: 10.1039/d2nr00877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
van der Waals crystals have opened a new and exciting chapter in heterostructure research, removing the lattice matching constraint characteristics of epitaxial semiconductors. They provide unprecedented flexibility for heterostructure design. Combining two-dimensional (2D) perovskites with other 2D materials, in particular transition metal dichalcogenides (TMDs), has recently emerged as an intriguing way to design hybrid opto-electronic devices. However, the excitation transfer mechanism between the layers (charge or energy transfer) remains to be elucidated. Here, we investigate PEA2PbI4/MoSe2 and (BA)2PbI4/MoSe2 heterostructures by combining optical spectroscopy and density functional theory (DFT) calculations. We show that band alignment facilitates charge transfer. Namely, holes are transferred from TMDs to 2D perovskites, while the electron transfer is blocked, resulting in the formation of interlayer excitons. Moreover, we show that the energy transfer mechanism can be turned on by an appropriate alignment of the excitonic states, providing a rule of thumb for the deterministic control of the excitation transfer mechanism in TMD/2D-perovskite heterostructures.
Collapse
Affiliation(s)
- M Karpińska
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France.
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - J Jasiński
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - R Kempt
- Technische Universität Dresden, Bergstr. 66c, 01062 Dresden, Germany
| | - J D Ziegler
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
| | - H Sansom
- University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - H J Snaith
- University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | - A Surrente
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - M Dyksik
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France.
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - D K Maude
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France.
| | - Ł Kłopotowski
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - A Chernikov
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - A Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany.
| | - M Baranowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - P Plochocka
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France.
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| |
Collapse
|
13
|
Karmakar A, Al-Mahboob A, Petoukhoff CE, Kravchyna O, Chan NS, Taniguchi T, Watanabe K, Dani KM. Dominating Interlayer Resonant Energy Transfer in Type-II 2D Heterostructure. ACS NANO 2022; 16:3861-3869. [PMID: 35262327 DOI: 10.1021/acsnano.1c08798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Type-II heterostructures (HSs) are essential components of modern electronic and optoelectronic devices. Earlier studies have found that in type-II transition metal dichalcogenide (TMD) HSs, the dominating carrier relaxation pathway is the interlayer charge transfer (CT) mechanism. Here, this report shows that, in a type-II HS formed between monolayers of MoSe2 and ReS2, nonradiative energy transfer (ET) from higher to lower work function material (ReS2 to MoSe2) dominates over the traditional CT process with and without a charge-blocking interlayer. Without a charge-blocking interlayer, the HS area shows 3.6 times MoSe2 photoluminescence (PL) enhancement as compared to the MoSe2 area alone. In a completely encapsulated sample, the HS PL emission further increases by a factor of 6.4. After completely blocking the CT process, more than 1 order of magnitude higher MoSe2 PL emission was achieved from the HS area. This work reveals that the nature of this ET is truly a resonant effect by showing that in a similar type-II HS formed by ReS2 and WSe2, CT dominates over ET, resulting in a severely quenched WSe2 PL. This study not only provides significant insight into the competing interlayer processes but also shows an innovative way to increase the PL emission intensity of the desired TMD material using the ET process by carefully choosing the right material combination for HS.
Collapse
Affiliation(s)
- Arka Karmakar
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Abdullah Al-Mahboob
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Christopher E Petoukhoff
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Oksana Kravchyna
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Nicholas S Chan
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Keshav M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| |
Collapse
|
14
|
Zhou H, Lai H, Sun X, Zhang N, Wang Y, Liu P, Zhou Y, Xie W. Van der Waals MoS 2/Two-Dimensional Perovskite Heterostructure for Sensitive and Ultrafast Sub-Band-Gap Photodetection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3356-3362. [PMID: 34990549 DOI: 10.1021/acsami.1c15861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) hybrid perovskites have been extensively studied as the promising light-sensitive materials in the photodetectors owing to their improved structural stability over that of their three-dimensional counterparts. However, the application of the 2D perovskite-based photodetector in the near-infrared (NIR) region is obstructed by the large intrinsic optical band gap. Herein, we develop a novel van der Waals heterostructure composed of few-layer 2D perovskite/MoS2 nanoflakes, which exhibits high-sensitivity detection performance over a broad spectral region, from the visible region to the telecommunication wavelength (i.e., 1550 nm). In particular, the photoresponsivity and specific detectivity under an 860 nm laser reach 121 A W-1 and 4.3 × 1014 Jones, respectively, whereas the individual nanoflakes show no response under the same wavelength. Meanwhile, the response time at the microsecond (μs) level is obtained, shortened by around 3 orders of magnitude compared to that of the constituting layers. The sensitive and ultrafast photoresponse at the NIR wavelength stems from the strong interlayer transition of sub-band-gap photons and the rapid separation of the photogenerated carriers by the built-in field within the heterojunction area. Our results not only provide an effective approach to achieve sub-band-gap photodetection in 2D perovskite-based structures but also suggest a universal strategy to fabricate high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Huabin Zhou
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Haojie Lai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao Sun
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ning Zhang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuee Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Pengyi Liu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Zhou
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weiguang Xie
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
15
|
Ago H, Okada S, Miyata Y, Matsuda K, Koshino M, Ueno K, Nagashio K. Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:275-299. [PMID: 35557511 PMCID: PMC9090349 DOI: 10.1080/14686996.2022.2062576] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 05/22/2023]
Abstract
The past decades of materials science discoveries are the basis of our present society - from the foundation of semiconductor devices to the recent development of internet of things (IoT) technologies. These materials science developments have depended mainly on control of rigid chemical bonds, such as covalent and ionic bonds, in organic molecules and polymers, inorganic crystals and thin films. The recent discovery of graphene and other two-dimensional (2D) materials offers a novel approach to synthesizing materials by controlling their weak out-of-plane van der Waals (vdW) interactions. Artificial stacks of different types of 2D materials are a novel concept in materials synthesis, with the stacks not limited by rigid chemical bonds nor by lattice constants. This offers plenty of opportunities to explore new physics, chemistry, and engineering. An often-overlooked characteristic of vdW stacks is the well-defined 2D nanospace between the layers, which provides unique physical phenomena and a rich field for synthesis of novel materials. Applying the science of intercalation compounds to 2D materials provides new insights and expectations about the use of the vdW nanospace. We call this nascent field of science '2.5 dimensional (2.5D) materials,' to acknowledge the important extra degree of freedom beyond 2D materials. 2.5D materials not only offer a new field of scientific research, but also contribute to the development of practical applications, and will lead to future social innovation. In this paper, we introduce the new scientific concept of this science of '2.5D materials' and review recent research developments based on this new scientific concept.
Collapse
Affiliation(s)
- Hiroki Ago
- Global Innovation Center, Kyushu University, Fukuoka, Japan
- CONTACT Hiroki Ago Global Innovation Center, Kyushu University, Fukuoka816-8580, Japan
| | - Susumu Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji, Japan
| | | | | | - Kosei Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Hokkaido, Japan
| | - Kosuke Nagashio
- Department of Materials Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Baranowski M, Surrente A, Plochocka P. Two Dimensional Perovskites/Transition Metal Dichalcogenides Heterostructures: Puzzles and Challenges. Isr J Chem 2021. [DOI: 10.1002/ijch.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Michal Baranowski
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
| | - Alessandro Surrente
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
| | - Paulina Plochocka
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
- Laboratoire National des Champs Magnétiques Intenses UPR 3228 CNRS-UGA-UPS-INSA 38042, 31400 Grenoble, Toulouse France
| |
Collapse
|
17
|
Wang H, Ma J, Li D. Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures. J Phys Chem Lett 2021; 12:8178-8187. [PMID: 34415173 DOI: 10.1021/acs.jpclett.1c02290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) hybrid perovskites, as newly emerging materials, have become the center of attention in optoelectronic fields within a few years because of their unique optoelectronic properties, including tunable bandgap, long carrier diffusion length, and high absorption coefficient. 2D perovskite-based van der Waals heterostructures via integration of 2D perovskites with other layered materials provide new platforms for many optoelectronic devices with prominent performance, such as photodetectors, light-emitting diodes (LEDs), and phototransistors. In this Perspective, the unique properties of 2D perovskites will be first introduced to explore why this material is attractive and popular. Subsequently, various types of heterostructures based on 2D perovskites will be illustrated, including the heterostructure construction approaches as well as their optical and optoelectronic applications. Finally, potential research directions based on 2D perovskite heterostructures are also proposed.
Collapse
Affiliation(s)
- Haizhen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Karpińska M, Liang M, Kempt R, Finzel K, Kamminga M, Dyksik M, Zhang N, Knodlseder C, Maude DK, Baranowski M, Kłopotowski Ł, Ye J, Kuc A, Plochocka P. Nonradiative Energy Transfer and Selective Charge Transfer in a WS 2/(PEA) 2PbI 4 Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33677-33684. [PMID: 34227384 DOI: 10.1021/acsami.1c08377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
van der Waals heterostructures are currently the focus of intense investigation; this is essentially due to the unprecedented flexibility offered by the total relaxation of lattice matching requirements and their new and exotic properties compared to the individual layers. Here, we investigate the hybrid transition-metal dichalcogenide/2D perovskite heterostructure WS2/(PEA)2PbI4 (where PEA stands for phenylethylammonium). We present the first density functional theory (DFT) calculations of a heterostructure ensemble, which reveal a novel band alignment, where direct electron transfer is blocked by the organic spacer of the 2D perovskite. In contrast, the valence band forms a cascade from WS2 through the PEA to the PbI4 layer allowing hole transfer. These predictions are supported by optical spectroscopy studies, which provide compelling evidence for both charge transfer and nonradiative transfer of the excitation (energy transfer) between the layers. Our results show that TMD/2D perovskite (where TMD stands for transition-metal dichalcogenides) heterostructures provide a flexible and convenient way to engineer the band alignment.
Collapse
Affiliation(s)
- Miriam Karpińska
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Minpeng Liang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Roman Kempt
- Technische Universität Dresden, Bergstr. 66c, 01062 Dresden, Germany
| | - Kati Finzel
- Technische Universität Dresden, Bergstr. 66c, 01062 Dresden, Germany
| | - Machteld Kamminga
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mateusz Dyksik
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Nan Zhang
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
| | - Catherine Knodlseder
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
| | - Duncan K Maude
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
| | - Michał Baranowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | | | - Jianting Ye
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Agnieszka Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Paulina Plochocka
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
20
|
Wang Q, Wee ATS. Upconversion Photovoltaic Effect of WS 2/2D Perovskite Heterostructures by Two-Photon Absorption. ACS NANO 2021; 15:10437-10443. [PMID: 34009945 DOI: 10.1021/acsnano.1c02782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photovoltaic devices work by converting sunlight energy into electric energy. The efficiency of current photovoltaic devices, however, is significantly limited by the transmission loss of photons with energies below the bandgap of channel semiconductors, which can be circumvented by photon energy upconversion. Energy upconversion has been widely employed to improve the efficiency of traditional solar cells. However, the employment of energy upconversion in two-dimensional (2D) heterostructure photovoltaic devices has not been investigated yet. Here, we report the upconversion photovoltaic effect of WS2 monolayer/(C6H5C2H4NH3)2PbI4 (PEPI) 2D perovskite heterostructures by below-bandgap two-photon absorption via a virtual intermediate state. An open circuit voltage of 0.37 V and short circuit current of 7.4 pA are obtained with a photoresponsivity of 771 pA/W and current on/off ratio of 130:1. This work demonstrates that upconversion by two-photon absorption may potentially be a strategy for boosting the efficiency of 2D material-based photovoltaic devices by virtue of the absorption of photons below the bandgap energy of channel semiconductors.
Collapse
Affiliation(s)
- Qixing Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Block S14, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
21
|
Zhang Z, Wang S, Liu X, Chen Y, Su C, Tang Z, Li Y, Xing G. Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. SMALL METHODS 2021; 5:e2000937. [PMID: 34927847 DOI: 10.1002/smtd.202000937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Indexed: 05/24/2023]
Abstract
The past decade has witnessed the great success achieved by metal halide perovskites (MHPs) in photovoltaic and related fields. However, challenges still remain in further improving their performance, as well as, settling the stability issue for future commercialization. Recently, MHP/2D material heterostructures that combining MHPs with the low-cost and solution-processable 2D materials have demonstrated unprecedented improvement in both performance and stability due to the distinctive features at hetero-interface. The diverse fabrication techniques of MHPs and 2D materials allow them to be assembled as heterostructures with different configurations in a variety of ways. Moreover, the large families of MHPs and 2D materials provide the opportunity for the rational design and modification on compositions and functionalities of MHP/2D materials heterostructures. Herein, a comprehensive review of MHP/2D material heterostructures from syntheses to applications is presented. First, various fabrication techniques for MHP/2D material heterostructures are introduced by classifying them into solid-state methods and solution-processed methods. Then the applications of MHP/2D heterostructures in various fields including photodetectors, solar cells, and photocatalysis are summarized in detail. Finally, current challenges for the development of MHP/2D material heterostructures are highlighted, and future opportunities for the advancements in this research field are also provided.
Collapse
Affiliation(s)
- Zhipeng Zhang
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Sisi Wang
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center of Excellence for Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Ying Li
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| |
Collapse
|
22
|
Rahman S, Liu B, Wang B, Tang Y, Lu Y. Giant Photoluminescence Enhancement and Resonant Charge Transfer in Atomically Thin Two-Dimensional Cr 2Ge 2Te 6/WS 2 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7423-7433. [PMID: 33535756 DOI: 10.1021/acsami.0c20110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybridization of two-dimensional (2D) magnetic semiconductors with transition-metal dichalcogenides (TMDC) monolayers can significantly engineer the light-matter interactions and provide a promising platform for enhanced excitonic systems with artificially tailored band alignments. Here, we report the fabrication of heterostructures with monolayer WS2 on 2D Cr2Ge2Te6 (CGT), which displayed giant photoluminescence enhancement at specific CGT layer numbers. The highly enhanced quantum yield obtained can be explained by novel photoexcited carrier dynamics, facilitated by alternate relaxation channels, resulting in resonance charge transfer at the heterointerface. 2D CGT revealed a strongly layer-dependent work function (up to ∼750 meV), which greatly modulates the band positioning in the heterostructure. These heterostructures conceived both type I and type II band alignments, which are verified by Kelvin probe force microscopy and PL measurements. In addition to layer modulation, we uncover temperature and power dependence of the resonance charge transfer in the multilayer heterostructure. Our findings provide further insights into the ultrafast charge dynamics occurring at the atomic interfaces. The results may pave the way for novel optoelectronics based on van der Waals heterostructures.
Collapse
Affiliation(s)
- Sharidya Rahman
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| | - Boqing Liu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| | - Bowen Wang
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| | - Yilin Tang
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| | - Yuerui Lu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| |
Collapse
|
23
|
Blancon JC, Even J, Stoumpos CC, Kanatzidis MG, Mohite AD. Semiconductor physics of organic-inorganic 2D halide perovskites. NATURE NANOTECHNOLOGY 2020; 15:969-985. [PMID: 33277622 DOI: 10.1038/s41565-020-00811-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
Achieving technologically relevant performance and stability for optoelectronics, energy conversion, photonics, spintronics and quantum devices requires creating atomically precise materials with tailored homo- and hetero-interfaces, which can form functional hierarchical assemblies. Nature employs tunable sequence chemistry to create complex architectures, which efficiently transform matter and energy, however, in contrast, the design of synthetic materials and their integration remains a long-standing challenge. Organic-inorganic two-dimensional halide perovskites (2DPKs) are organic and inorganic two-dimensional layers, which self-assemble in solution to form highly ordered periodic stacks. They exhibit a large compositional and structural phase space, which has led to novel and exciting physical properties. In this Review, we discuss the current understanding in the structure and physical properties of 2DPKs from the monolayers to assemblies, and present a comprehensive comparison with conventional semiconductors, thereby providing a broad understanding of low-dimensional semiconductors that feature complex organic-inorganic hetero-interfaces.
Collapse
Affiliation(s)
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France
| | - Costas C Stoumpos
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
| | - Mercouri G Kanatzidis
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
24
|
Wang Q, Zhang Q, Luo X, Wang J, Zhu R, Liang Q, Zhang L, Yong JZ, Yu Wong CP, Eda G, Smet JH, Wee ATS. Optoelectronic Properties of a van der Waals WS 2 Monolayer/2D Perovskite Vertical Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45235-45242. [PMID: 32924427 DOI: 10.1021/acsami.0c14398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) Ruddlesden-Popper perovskites have been demonstrated to possess great potential for optical and optoelectronic devices. Because they exhibit better ambient stability than three-dimensional (3D) perovskites, they have been considered as potential substitutes for 3D perovskites as light absorbing layers to improve the photoresponsivity of monolayer transition metal dichalcogenide (TMDC)-based photodetectors. Investigation of the optoelectronic properties of TMDC monolayer/2D perovskite vertical heterostructures is however at an early stage. Here, we address the photovoltaic effect and the photodetection performance in tungsten disulfide (WS2) monolayer/2D perovskite (C6H5C2H4NH3)2PbI4 (PEPI) vertical heterostructures. A vertical device geometry with separate graphene contacts to both heterointerface constituents acted as a photovoltaic device and self-driven photodetector. The photovoltaic device exhibited an open circuit voltage of -0.57 V and a short circuit current of 41.6 nA. A photoresponsivity of 0.13 mA/W at the WS2/PEPI heterointerface was achieved, which was signified by a factor of 5 compared to that from the individual WS2 region. The current on/off ratio of the self-driven photodetector was approximately 1500. The photoresponsivity and external quantum efficiency of the self-driven photodetector were estimated to be 24.2 μA/W and 5.7 × 10-5, respectively. This work corroborates that 2D perovskites are promising light absorbing layers in optoelectronic devices with a TMDC-based heterointerface.
Collapse
Affiliation(s)
- Qixing Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany (current position)
| | - Qi Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Xin Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Junyong Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Rui Zhu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Qijie Liang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Justin Zhou Yong
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Calvin Pei Yu Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Block S14, 6 Science Drive 2, Singapore 117546, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jurgen H Smet
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany (current position)
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Block S14, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
25
|
Zhang Q, Linardy E, Wang X, Eda G. Excitonic Energy Transfer in Heterostructures of Quasi-2D Perovskite and Monolayer WS 2. ACS NANO 2020; 14:11482-11489. [PMID: 32790345 DOI: 10.1021/acsnano.0c03893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quasi-two-dimensional (2D) organic-inorganic hybrid perovskite is a re-emerging material with strongly excitonic absorption and emission properties that are attractive for photonics and optoelectronics. Here we report the experimental observation of excitonic energy transfer (ET) in van der Waals heterostructures consisting of quasi-2D hybrid perovskite (C6H5C2H4NH3)2PbI4 (PEPI) and monolayer WS2. Photoluminescence excitation spectroscopy reveals a distinct ground exciton resonance feature of perovskite, evidencing ET from perovskite to WS2. We find unexpectedly high photoluminescence enhancement factors of up to ∼8, which cannot be explained by single-interface ET. Our analysis reveals that interlayer ET across the bulk of the layered perovskite also contributes to the large enhancement factor. Further, from the weak temperature dependence of the lower-limit ET rate, which we found to be ∼3 ns-1, we conclude that the Förster-type mechanism is responsible.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | - Eric Linardy
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
| | - Xinyun Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
26
|
Gil B, Kim J, Yun AJ, Park K, Cho J, Park M, Park B. CuCrO 2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1669. [PMID: 32858913 PMCID: PMC7558584 DOI: 10.3390/nano10091669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/03/2022]
Abstract
High-mobility inorganic CuCrO2 nanoparticles are co-utilized with conventional poly(bis(4-phenyl)(2,5,6-trimethylphenyl)amine) (PTAA) as a hole transport layer (HTL) for perovskite solar cells to improve device performance and long-term stability. Even though CuCrO2 nanoparticles can be readily synthesized by hydrothermal reaction, it is difficult to form a uniform HTL with CuCrO2 alone due to the severe agglomeration of nanoparticles. Herein, both CuCrO2 nanoparticles and PTAA are sequentially deposited on perovskite by a simple spin-coating process, forming uniform HTL with excellent coverage. Due to the presence of high-mobility CuCrO2 nanoparticles, CuCrO2/PTAA HTL demonstrates better carrier extraction and transport. A reduction in trap density is also observed by trap-filled limited voltages and capacitance analyses. Incorporation of stable CuCrO2 also contributes to the improved device stability under heat and light. Encapsulated perovskite solar cells with CuCrO2/PTAA HTL retain their efficiency over 90% after ~900-h storage in 85 °C/85% relative humidity and under continuous 1-sun illumination at maximum-power point.
Collapse
Affiliation(s)
- Bumjin Gil
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Alan Jiwan Yun
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Kimin Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Jaemin Cho
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Minjun Park
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Byungwoo Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Hong G, Chen R, Xu L, Lu X, Yang Z, Zhou G, Li L, Chen W, Peng H. One-pot ultrasonic synthesis of multifunctional Au nanoparticle-ferrocene-WS 2 nanosheet composite for the construction of an electrochemical biosensing platform. Anal Chim Acta 2020; 1099:52-59. [PMID: 31986277 DOI: 10.1016/j.aca.2019.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/04/2019] [Accepted: 11/16/2019] [Indexed: 01/11/2023]
Abstract
Structuring of noble metal nanoparticles on transition metal dichalcogenide nanosheets induces significantly enhanced electronic, optical, and catalytic functions. However, the synthesis of multifunctional hybrids is always time-consuming and involves multiple steps. Herein, a ternary Au nanoparticle-ferrocene-WS2 nanosheet (AFW) composite has been prepared by a facile one-step sonochemical approach. Stripped WS2 nanosheets were functionalized with ferrocene monocarboxylic acid (FMC) and gold nanoparticles (AuNPs) by making use of the strong coordinative interaction of carboxyl groups with tungsten atoms. The AuNPs decorating the WS2 nanosheet not only increase the water solubility of WS2 nanosheet and surface area of the modified electrode, but also act as electron transport bridges to aid the tunneling of electrons from the small redox molecule, FMC, through the space to the electrode on which they are mounted. Furthermore, the ternary AFW nanocomposite could effectively avoid the leaching of FMC from the nanocomposite matrix and provided a suitable environment for the immobilized biomolecules. Combining the immune magnetic beads technology and the AFW nanocomposite with aforementioned advantages, a high-performance electrochemical immunosensor was successfully developed using carbohydrate antigen 72-4 (CA72-4) as a model analyte. A linear relationship in the range of 2-50 U/L for the detection of CA72-4 was found with a low detection limit of 0.6 U/L. In addition, the biosensor showed excellent performance in selectivity, stability, and reproducibility. Thus, this work not only proposes a facile avenue for preparing a 2D WS2 nanocomposite with multifunctional properties but also opens up a new method to extend the application of WS2-based materials in biological sensing.
Collapse
Affiliation(s)
- Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Ruiting Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Luyao Xu
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Xing Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Zhenqing Yang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China.
| | - Huaping Peng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|