1
|
Sun Y, Jing M, Meng W, Zhao B, Gao X, Li B, Gou L, Fan X. In-situ produced three-dimensional hierarchical porous Cu@Bi enables ultra-long sodium storage. J Colloid Interface Sci 2025; 695:137790. [PMID: 40339290 DOI: 10.1016/j.jcis.2025.137790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Bismuth (Bi) is considered as one promising alloying-based anode for sodium-ion batteries due to its suitable electrode potential and high theoretical capacity, however suffered an unsatisfied cycle lifespan caused by tremendous volumetric changes, unstable electrode/electrolyte interface and sluggish ionic transport. Herein, a 3D Cu@Bi electrode is synthesized by electrodepositing Bi layer in self-synthesized three-dimensional porous copper (3D Cu). The hierarchical porous structure consists of micrometer-sized pores of 3D Cu and in-situ formed nanopores of Bi layer during sodium insertion/extraction can provide rapid ionic transferring channels, and simultaneous provides sufficient free space for volumetric changes of Bi electrode to enable active materials integrity, and avoid the active materials crushing and losing electrical contact of Bi with the current collector. Additionally, a uniform solid electrolyte interphase (SEI) layer forms on the electrode surface during cycling, further optimizing the electrochemistry performance. As a result, the 3D Cu@Bi electrode exhibits ultra-long sodium storage cyclability (260 mAh g-1 after 15,500 cycles at 10 A g-1 with a retention of 67.5 %) and exceptional rate capability (352 mAh g-1 at 40 A g-1). This work provides a novel thought combing the hierarchical porous structure and interface modification to construct Bi anode for ultralong cyclability sodium-ion battery.
Collapse
Affiliation(s)
- Yuhan Sun
- Shaanxi University Engineering Research Center of Transportation New Energy Materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Maosen Jing
- Shaanxi University Engineering Research Center of Transportation New Energy Materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Weijia Meng
- Xi'an Key Laboratory of Advanced Transport Power Machinery, School of Energy and Electrical Engineering, Chang'an University, Xi'an 710061, China.
| | - Baoyan Zhao
- Shaanxi University Engineering Research Center of Transportation New Energy Materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Xin Gao
- Shaanxi University Engineering Research Center of Transportation New Energy Materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Ben Li
- Shaanxi University Engineering Research Center of Transportation New Energy Materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Lei Gou
- Shaanxi University Engineering Research Center of Transportation New Energy Materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Xiaoyong Fan
- Shaanxi University Engineering Research Center of Transportation New Energy Materials, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| |
Collapse
|
2
|
Zhang WD, Ge XY, Zhao KK, Zhang Q, Cao FH, Guo X, Zhang CL. ZIF-67 nanocubes assembly-derived CoTe 2 nanoparticles encapsulated hierarchical carbon nanofibers enables efficient lithium storage. J Colloid Interface Sci 2025; 682:1028-1039. [PMID: 39662229 DOI: 10.1016/j.jcis.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Tellurides are promising anode materials for lithium-ion batteries (LIBs) because of their high electronic conductivity and energy density. However, the slow kinetics and poor structural stability lead to decreased electrochemical performance. In this work, by utilizing the interface magnetization mechanism and assembly effect, high-performance CoTe2 nanoparticles encapsulated hierarchical N-doped porous carbon nanofibers were rationally designed and prepared (ES-CoTe2@NC) via facile tellurization of one-dimensional (1D) ZIF-67 nanocube assemblies. Benefiting from the synergistic effects of the unique structure and component, the ES-CoTe2@NC anode exhibits a high reversible capacity of 1020 mAh/g at 0.1 A/g after 200 cycles, along with excellent long-term cycling stability, retaining a capacity of 780 mAh/g at 1 A g-1 after 500 cycles. Notably, the ES-CoTe2@NC anode retains a remarkable capacity of 502 mAh/g even after 1000 cycles at a high current density of 5 A g-1, highlighting its exceptional cycling stability. Besides, the Full cell coupled with LiFePO4 cathode delivers a high reversible capacity of 151.1 mAh g-1 at 0.1 A g-1 with stable cycling performance. The kinetics analysis reveals that the ES-CoTe2@NC anode has high pseudocapacitive properties, high electronic conductivity, and fast Li+ diffusion capability. Moreover, the ex-situ characterization clarifies the conversion reaction mechanism of ES-CoTe2@NC. This work provides a facile but effective way to construct high-performance CoTe2-based electrodes.
Collapse
Affiliation(s)
- Wu-Di Zhang
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiao-Ye Ge
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kang-Kang Zhao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Zhang
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fu-Hu Cao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xingyu Guo
- Key Laboratory for Computational Physical Sciences (MOE), Institute of Computational Physics, Department of Physics, Fudan University, Shanghai 200433, China.
| | - Chuan-Ling Zhang
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Guo H, Wang H, Ma F, Lan J, Yu Y, Yuan H, Yang X. Realizing Ultrahigh Cycle Life Anode for Sodium-Ion Batteries through Heterostructure Design and Introducing Electro Active Polymer Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54028-54037. [PMID: 39348096 DOI: 10.1021/acsami.4c13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bi2S3 has attracted increasing attention in sodium-ion batteries (SIBs) for its high theoretical capacity and low discharge platform. However, the sodium storage performance of Bi2S3 is limited by poor electrical conductivity and volume expansion during cycling. Herein, we report a special polypyrrole (PPy)-coated MoS2/Bi2S3 (MBS@PPy) heterostructure composite obtained by hydrothermal reaction as an anode material for SIB. As a result, the MBS@PPy composites demonstrate exceptional electrochemical performance in SIB, exhibiting a high capacity of 361.1 mA h g-1 at 10 A g-1 and showcasing remarkable rate performance. Even under a high current density of 35 A g-1, the specific capacity remains stable at 280 mA h g-1 after 2,000 cycles. Furthermore, a successfully assembled Na3V2(PO4)3//MBS@PPy sodium-ion full cell can achieve an impressive specific capacity of approximately 400 mA h g-1 after 300 cycles at 0.5 A g-1. In MBS@PPy composites, the polypyridine coating not only improves the interfacial conductivity of nanorods but also effectively inhibits the agglomeration between nanorods due to large volume changes. The MoS2 heterostructure further inhibits the coarsening of the internal structure, improves electron transport and reaction kinetics, and increases the rate capability of the material. This work provides an effective strategy to develop energy storage materials with superior electrochemical properties.
Collapse
Affiliation(s)
- Huanhuan Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Haihong Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - FengXin Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Yunhua Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Haocheng Yuan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Wang L, Huang F, Song X, Li J, Zhu G, Jin Z, Dai Z. Rational Design of Quasi-1D Multicore-Shell MnSe@N-Doped Carbon Nanorods as High-Performance Anode Material for Sodium-Ion Batteries. NANO LETTERS 2024; 24:11349-11357. [PMID: 39235045 DOI: 10.1021/acs.nanolett.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g-1 at 5 A g-1) and long lifespan (132.7 mA h g-1 after 2000 cycles at 5 A g-1), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic in situ microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Fei Huang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Xinmei Song
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jiayi Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
5
|
Jia JH, Bai J, Yang CC, Jiang Q. Scale Construction of "Breathing" Bi/N-CNSs Quasi-Array Structure with Hierarchical Bi Distribution for Sodium-Ion Battery. NANO LETTERS 2024; 24:11393-11402. [PMID: 39230971 DOI: 10.1021/acs.nanolett.4c01958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sodium ion batteries (SIBs) are promising postlithium battery technologies with high safety and low cost. However, their development is hampered by complicated electrode material preparation and unsatisfactory sodium storage performance. Here, a bismuth/N-doped carbon nanosheets (Bi/N-CNSs) composite featuring a quasi-array structure (alternated porous Bi layers and N-CNSs) with hierarchical Bi distribution (large particles of ∼35 nm in Bi layers and ultrafine Bi of ∼8 nm on N-CNSs) is prepared. Bi/N-CNSs delivers an ultralong-lifespan of 26000 cycles at 5 A g-1 and prominent rate capability of 91.5% capacity retention at 100 A g-1. Even at -40 °C, it exhibits a high rate capability of 161 mAh g-1 at 5 A g-1. Notably, the involved preparation method is characterized by a high yield of 14.53 g in a single laboratory batch, which can be further scaled up, and such a method can also be extended to synthesize other metallic-based materials.
Collapse
Affiliation(s)
- Jian Hui Jia
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Jie Bai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
6
|
Yao Q, Zheng C, Liu K, Wang M, Song J, Cui L, Huang D, Wang N, Dou SX, Bai Z, Yang J. Bi Nanospheres Embedded in N-Doped Carbon Nanowires Facilitate Ultrafast and Ultrastable Sodium Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401730. [PMID: 38696659 PMCID: PMC11267272 DOI: 10.1002/advs.202401730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Indexed: 05/04/2024]
Abstract
Sodium ion batteries (SIBs) are considered as the ideal candidates for the next generation of electrochemical energy storage devices. The major challenges of anode lie in poor cycling stability and the sluggish kinetics attributed to the inherent large Na+ size. In this work, Bi nanosphere encapsulated in N-doped carbon nanowires (Bi@N-C) is assembled by facile electrospinning and carbonization. N-doped carbon mitigates the structure stress/strain during alloying/dealloying, optimizes the ionic/electronic diffusion, and provides fast electron transfer and structural stability. Due to the excellent structure, Bi@N-C shows excellent Na storage performance in SIBs in terms of good cycling stability and rate capacity in half cells and full cells. The fundamental mechanism of the outstanding electrochemical performance of Bi@N-C has been demonstrated through synchrotron in-situ XRD, atomic force microscopy, ex-situ scanning electron microscopy (SEM) and density functional theory (DFT) calculation. Importantly, a deeper understanding of the underlying reasons of the performance improvement is elucidated, which is vital for providing the theoretical basis for application of SIBs.
Collapse
Affiliation(s)
- Qian Yao
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Cheng Zheng
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Kejun Liu
- Department of Biomedical EngineeringResearch Center for Nano‐Biomaterials & Regenerative MedicineCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Mingyue Wang
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongInnovation Campus, Squires WayWollongongNSW2500Australia
| | - Jinmei Song
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Lifeng Cui
- Shandong Hualu‐Hengsheng Chemical Co., Ltd.Dezhou253024P. R. China
| | - Di Huang
- Department of Biomedical EngineeringResearch Center for Nano‐Biomaterials & Regenerative MedicineCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Nana Wang
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongInnovation Campus, Squires WayWollongongNSW2500Australia
| | - Shi Xue Dou
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongInnovation Campus, Squires WayWollongongNSW2500Australia
- Institute of Energy Materials Science (IEMS)University of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Zhongchao Bai
- Institute of Energy Materials Science (IEMS)University of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| |
Collapse
|
7
|
Cheng X, Li D, Jiang Y, Huang F, Li S. Advances in Electrochemical Energy Storage over Metallic Bismuth-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:21. [PMID: 38203875 PMCID: PMC10780295 DOI: 10.3390/ma17010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Bismuth (Bi) has been prompted many investigations into the development of next-generation energy storage systems on account of its unique physicochemical properties. Although there are still some challenges, the application of metallic Bi-based materials in the field of energy storage still has good prospects. Herein, we systematically review the application and development of metallic Bi-based anode in lithium ion batteries and beyond-lithium ion batteries. The reaction mechanism, modification methodologies and their relationship with electrochemical performance are discussed in detail. Additionally, owing to the unique physicochemical properties of Bi and Bi-based alloys, some innovative investigations of metallic Bi-based materials in alkali metal anode modification and sulfur cathodes are systematically summarized for the first time. Following the obtained insights, the main unsolved challenges and research directions are pointed out on the research trend and potential applications of the Bi-based materials in various energy storage fields in the future.
Collapse
Affiliation(s)
- Xiaolong Cheng
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Dongjun Li
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China;
| | - Yu Jiang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Fangzhi Huang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Shikuo Li
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| |
Collapse
|
8
|
Wei S, Li W, Ma Z, Deng X, Li Y, Wang X. Novel Bismuth Nanoflowers Encapsulated in N-Doped Carbon Frameworks as Superb Composite Anodes for High-Performance Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304265. [PMID: 37469204 DOI: 10.1002/smll.202304265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Bismuth (Bi) has attracted attention as a promising anode for sodium-ion batteries (SIBs) owing to its suitable potential and high theoretical capacity. However, the large volumetric changes during cycling leads to severe degradation of electrochemical performance and limits its practical application. Herein, Bi nanoflowers are encapsulated in N-doped carbon frameworks to construct a novel Bi@NC composite via a facile solvothermal method and carbonization strategy. The well-designed composite structure endows the Bi@NC with uniformly dispersed Bi nanoflowers to alleviate the attenuation while the N-doped carbon frameworks improve the conductivity and ion transport of the whole electrode. As for sodium-ion half-cell, the electrode exhibits a high specific capacity (384.8 mAh g-1 at 0.1 A g-1 ) and excellent rate performance (341.5 mAh g-1 at 10 A g-1 ), and the capacity retention rate still remains at 94.9% after 5000 cycles at 10 A g-1 . Furthermore, the assembled full-cell with Na3 V2 (PO4 )3 cathode and Bi@NC anode can deliver a high capacity of 251.5 mAh g-1 at 0.1 A g-1 , and its capacity attenuates only 0.009% in each cycle after 2000 times at 5.0 A g-1 . This work offers a convenient, low-cost, and eco-friendliness approach for high-performance electrodes in the field of sodium ion electrochemical storage technology.
Collapse
Affiliation(s)
- Shiwei Wei
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wei Li
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zizai Ma
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaoyang Deng
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongfeng Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
9
|
Hu K, Chen Y, Zheng C, Du X, Wang M, Yao Q, Wang H, Fan K, Wang W, Yan X, Wang N, Bai Z, Dou S. Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for sodium-ion batteries. RSC Adv 2023; 13:25552-25560. [PMID: 37636507 PMCID: PMC10450392 DOI: 10.1039/d3ra03767c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Bismuth is a promising anode material for sodium-ion batteries (SIBs) due to its high capacity and suitable working potential. However, the large volume change during alloying/dealloying would lead to poor cycling performance. Herein, we have constructed a 3D hierarchical structure assembled by bismuth nanosheets, addressing the challenges of fast kinetics, and providing efficient stress and strain relief room. The uniform bismuth nanosheets are prepared via a molten salt-assisted aluminum thermal reduction method. Compared with the commercial bismuth powder, the bismuth nanosheets present a larger specific surface area and interlayer spacing, which is beneficial for sodium ion insertion and release. As a result, the bismuth nanosheet anode presents excellent sodium storage properties with an ultralong cycle life of 6500 cycles at a high current density of 10 A g-1, and an excellent capacity retention of 87% at an ultrahigh current rate of 30 A g-1. Moreover, the full SIBs that paired with the Na3V2(PO4)3/rGO cathode exhibited excellent performance. This work not only presents a novel strategy for preparing bismuth nanosheets with significantly increased interlayer spacing but also offers a straightforward synthesis method utilizing low-cost precursors. Furthermore, the outstanding performance demonstrated by these nanosheets indicates their potential for various practical applications.
Collapse
Affiliation(s)
- Kunkun Hu
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Yuan Chen
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Cheng Zheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan P. R. China
| | - Xinyu Du
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Mingyue Wang
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Qian Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan P. R. China
| | - Han Wang
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Kai Fan
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Wensheng Wang
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiangshun Yan
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Nana Wang
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Zhongchao Bai
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| |
Collapse
|
10
|
Zhang X, Qiu X, Lin J, Lin Z, Sun S, Yin J, Alshareef HN, Zhang W. Structure and Interface Engineering of Ultrahigh-Rate 3D Bismuth Anodes for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302071. [PMID: 37104851 DOI: 10.1002/smll.202302071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Sodium-ion batteries (SIBs) have attracted tremendous attention as promising low-cost energy storage devices in future grid-scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g-1 ). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin-derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether-based electrolytes enable robust and stable SEI films. These two merits enable the long-term cycling process of the LC-Bi anode. The LC-Bi composite delivers outstanding sodium-ion storage performance with an ultra-long cycle life of 10 000 cycles at a high current density of 5 A g-1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g-1 . Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.
Collapse
Affiliation(s)
- Xiaoshan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Jinxin Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Zehua Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Shirong Sun
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenli Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
- School of Advanced Manufacturing, Guangdong University of Technology (GDUT), Jieyang, 522000, China
| |
Collapse
|
11
|
Huang G, Huang Q, Cui Z, Zhu J, Gao M, Wang W, Weng F, Liu Q, Zou R. Bi nanoparticles confined in N,S co-doped carbon nanoribbons with excellent rate performance for sodium-ion batteries. Dalton Trans 2023; 52:10537-10544. [PMID: 37458233 DOI: 10.1039/d3dt01015e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Bismuth (Bi) has emerged as a promising candidate for sodium-ion battery anodes because of its unique layered crystal structure, superior volumetric capacity, and high theoretical gravimetric capacity. However, the large volume expansion and severe aggregation of Bi during the alloying/dealloying reactions are extremely detrimental to cycling stability, which seriously hinders its practical application. To overcome these issues, we propose an effective synthesis of composite materials, encapsulating Bi nanoparticles in N,S co-doped carbon nanoribbons and composites with carbon nanotubes (N,S-C@Bi/CNT), using Bi2S3 nanobelts as templates. The uniform distribution of Bi nanoparticles and the structure of carbon nanoribbons can reduce the diffusion path of ions/electrons, efficiently buffer the large volume change and prevent Bi from aggregating during cycles. As expected, the N,S-C@Bi/CNT electrode shows superior sodium storage performance in half cells, including a high specific capacity (345.3 mA h g-1 at 1.0 A g-1), long cycling stability (1000 cycles), and superior rate capability (336.0 mA h g-1 at 10.0 A g-1).
Collapse
Affiliation(s)
- Guirong Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qiushi Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhe Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jinqi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Mengluan Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wenqing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Fuming Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qian Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
12
|
Lin J, Lu S, Zhang Y, Zeng L, Zhang Y, Fan H. Selenide-doped bismuth sulfides (Bi 2S 3-xSe x) and their hierarchical heterostructure with ReS 2for sodium/potassium-ion batteries. J Colloid Interface Sci 2023; 645:654-662. [PMID: 37167914 DOI: 10.1016/j.jcis.2023.04.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
In this work, selenide-doped bismuth sulfides (Bi2S3-xSex) was successfully prepared through Se doping Bi2S3 Se to improve the electronic conductivity and increase the interlayer spacing. Then the anisotropic ReS2 nanosheet arrays were grown on the surface of Bi2S3-xSex to form a hierarchical heterostructure (Bi2S3-xSex@ReS2). The doping and construction of heterostructure processes can greatly improve the electrochemical conductivity of electrode materials and relieve the volume expansion during the continuous charge/discharge processes. While applied as SIBs anode, the specific capacity of 330 mAh g-1 was maintained after 450 cycles at the current density of 1.0 A g-1. It can also keep 200 mAh g-1 specific capacity after 900 cycles at 1.0 A g-1 for the anode of PIBs. This heterogeneous engineering and doping dual strategies could provide a good idea for the synthesis of new bimetallic sulfides with outstanding battery performance for SIBs and PIBs.
Collapse
Affiliation(s)
- Jinyi Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shengjun Lu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yufei Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Yi Zhang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Yu J, Zhao D, Ma C, Feng L, Zhang Y, Zhang L, Liu Y, Guo S. Vapor-phase derived ultra-fine Bismuth nanoparticles embedded in carbon nanotube networks as anodes for sodium and potassium ion batteries. J Colloid Interface Sci 2023; 643:409-419. [PMID: 37084621 DOI: 10.1016/j.jcis.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Bismuth (Bi) is a promising material as the anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to its characteristics such as reasonable price and high theoretical volumetric capacity (3800 mAh cm-3). Nevertheless, considerable drawbacks have hindered the practical applications of Bi, including its relatively low electrical conductivity and inevitable volumetric change during the alloying/dealloying processes. To solve these problems, we proposed a novel design:Bi nanoparticles were synthesized via a single-step low-pressure vapor-phase reaction and embedded onto the surfaces of multi-walled carbon nanotubes (MWCNTs). After being vaporized at 650℃ and 10-5 Pa, Bi nanoparticles less than 10 nm were uniformly distributed in the three-dimensional (3D) MWCNT networks to form a Bi/MWNTs composite. In this unique design, the nanostructured Bi can reduce the risk of structural rupture during cycling, and the structure of the MWCMT network is beneficial in shortening the electron/ion transport path. In addition, MWCNTs can improve the overall conductivity of the Bi/MWCNTs composite and prevent particle aggregation, thus improving the cycling stability and rate performance. As an anode material for SIB, the Bi/MWCNTs composite has demonstrated excellent fast charging performance with a reversible capacity of 254 mAh/g at 20 A/g. A capacity of 221mAhg-1 after cycling at 10 A/g for 8000 cycles has also been achieved for SIB. As an anode material for PIB, the Bi/MWCNTs composite has delivered excellent rate performances with a reversible capacity of 251 mAh/g at 20 A/g. A specific capacity of 270mAhg-1 after cycling at 1Ag-1 for 5000 cycles has also been achieved for PIB.
Collapse
Affiliation(s)
- Jian Yu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Zhao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chuansheng Ma
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yonghao Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lifeng Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yi Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shouwu Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Pu B, Liu Y, Bai J, Chu X, Zhou X, Qing Y, Wang Y, Zhang M, Ma Q, Xu Z, Zhou B, Yang W. Iodine-Ion-Assisted Galvanic Replacement Synthesis of Bismuth Nanotubes for Ultrafast and Ultrastable Sodium Storage. ACS NANO 2022; 16:18746-18756. [PMID: 36343214 DOI: 10.1021/acsnano.2c07472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bismuth (Bi) has emerged as a promising anode material for fast-charging and long-cycling sodium-ion batteries (SIBs). However, its dramatically volumetric variations during cycling will undesirably cause the pulverization of active materials, severely limiting the electrochemical performance of Bi-based electrodes. Constructing hollow nanostructures is recognized as an effective way to resolve the volume expansion issues of alloy-type anodes but remains a great challenge for metallic bismuth. Here, we report a facile iodine-ion-assisted galvanic replacement approach for the synthesis of Bi nanotubes (NTs) for high-rate, long-term and high-capacity sodium storage. The hollow tubular structure effectively alleviates the structural strain during sodiation/desodiation processes, resulting in excellent structural stability; the thin wall and large surface area enable ultrafast sodium ion transport. Benefiting from the structural merits, the Bi NT electrode exhibits extraordinary rate capability (84% capacity retention at 150 A g-1) and outstanding cycling stability (74% capacity retention for 65,000 cycles at 50 A g-1), which represent the best rate performance and longest cycle life among all reported anodes for SIBs. Moreover, when coupled with the Na3(VOPO4)2F cathode in full cells, this electrode also demonstrates excellent cycling performance, showing the great promise of Bi NTs for practical application. A combination of advanced research techniques reveals that the excellent performance originates from the structural robustness of the Bi NTs and the fast electrochemical kinetics during cycling.
Collapse
Affiliation(s)
- Ben Pu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yan Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jia Bai
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xiang Chu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xuefeng Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, PR China
| | - Yue Qing
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yongbin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Mingzhe Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Qingshan Ma
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, PR China
| | - Zhong Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Bin Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, PR China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
15
|
Fan R, Zhao C, Ma J, Wu J, He T, Dong Y, Dai J, Cai Y. Rich Self-Generated Phase Boundaries of Heterostructured VS 4 /Bi 2 S 3 @C Nanorods for Long Lifespan Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205175. [PMID: 36156854 DOI: 10.1002/smll.202205175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Rationally designing on sundry multiphase compounds has come into the spotlight for sodium-ion batteries (SIBs) due to enhanced structural stability and improved electrochemical performances. Nevertheless, there is still a lack of thorough understanding of the reaction mechanism of high-active phase boundaries existing between multiphase compounds. Here, a VS4 /Bi2 S3 @C composite anode for SIBs with rich phase boundaries in heterostructure is successfully synthesized. In situ X-ray diffraction analyses demonstrate a multistep redox mechanism in the heterostructures and ex situ transmission electron microscopy results confirm that tremendous self-generated phase boundaries are obtained and well-maintained during cycling, dramatically leading to stable reaction interfaces and better structural integrity. Combining experimental and theoretical results, a self-built-in electric field forming between phase boundaries acts as a dominate driving force for Na+ transport kinetics. Benefiting from the fast reaction kinetics of phase boundaries, the heterojunction provides an efficient approach to avoid abnormal voltage failure. As expected, the VS4 /Bi2 S3 @C heterostructure displays superior sodium storage performances, especially an excellent long-term cycling stability (379.0 mAh g-1 after 1800 cycles at a current density up to 2 A g-1 ). This work confirms a critical role of phase boundaries on superior reversibility and structural stability, and provides a strategy for analogous conversion/alloying-type anodes.
Collapse
Affiliation(s)
- Runze Fan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Chenyu Zhao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jiahui Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jun Wu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Tao He
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yangtao Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Junjie Dai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
16
|
Liang Y, Song N, Zhang Z, Chen W, Feng J, Xi B, Xiong S. Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202673. [PMID: 35514175 DOI: 10.1002/adma.202202673] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy-type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi-based metal-organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium-storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g-1 with a capacity of 308.8 mAh g-1 . The unprecedented sodium-storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether-based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.
Collapse
Affiliation(s)
- Yazhan Liang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, P. R. China
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Weihua Chen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
17
|
Wang Z, Wang J, Ni J, Li L. Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201209. [PMID: 35362272 PMCID: PMC9165509 DOI: 10.1002/advs.202201209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Metals such as Sb and Bi are important anode materials for sodium-ion batteries because they feature a large capacity and low reaction potential. However, the accumulation of stress and strain upon sodium storage leads to the formation of cracks and fractures, resulting in electrode failure upon extended cycling. In this work, the design and construction of Bix Sb1-x bimetallic alloy films with a compositional gradient to mitigate the intrinsic structural instability is reported. In the gradient film, the top is rich in Sb, contributing to the capacity, while the bottom is rich in Bi, helping to reduce the stress in the interphase between the film and the substrate. Significantly, this gradient film affords a high reversible capacity of ≈500 mAh g-1 and sustains 82% of the initial capacity after 1000 cycles at 2 C, drastically outperforming the solid-solution counterpart and many recently reported alloy anodes. Such a gradient design can open up the possibilities to engineering high-capacity anode materials that are structurally unstable due to the huge volume variation upon energy storage.
Collapse
Affiliation(s)
- Zhenzhu Wang
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| | - Jie Wang
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| | - Jiangfeng Ni
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
- Light Industry Institute of Electrochemical Power SourcesSuzhou215699China
| | - Liang Li
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| |
Collapse
|
18
|
Zhu Y, Wang C, Cheng Z, Yao Q, Su J, Chen B, Yang J, Qian Y. Bimetallic Bi-Sn microspheres as high initial coulombic efficiency and long lifespan anodes for sodium-ion batteries. Chem Commun (Camb) 2022; 58:5140-5143. [PMID: 35381054 DOI: 10.1039/d2cc00833e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anode materials with a high initial coulombic efficiency and a long lifespan are highly desirable for sodium-ion batteries. Here, bimetallic μ-BiSn microspheres well combine the high capacity of Sn and the good stability of Bi together, exhibiting superior electrochemical performance, such as a high initial Coulombic efficiency (90.6%), a good cycling stability (541 mA h g-1 after 3000 cycles at 2 A g-1) and an excellent rate capability (393 mA h g-1 at 10 A g-1).
Collapse
Affiliation(s)
- Yansong Zhu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chunting Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Zhenjie Cheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Qian Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jie Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yitai Qian
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. .,Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
19
|
Mohd Sarofil AD, Devina W, Albertina I, Chandra C, Kim J. Toad egg-like bismuth nanoparticles encapsulated in an N-doped carbon microrod via supercritical acetone as anodes in lithium-ion batteries. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Zhang F, Liu X, Wang B, Wang G, Wang H. Bi@C Nanospheres with the Unique Petaloid Core-Shell Structure Anchored on Porous Graphene Nanosheets as an Anode for Stable Sodium- and Potassium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59867-59881. [PMID: 34874168 DOI: 10.1021/acsami.1c16946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bismuth (Bi) has emerged as a prospective candidate as Na-ion and potassium-ion battery anodes because of its unique advantages of low cost, high theoretical gravimetric capacity (386 mAh g-1), and superior volumetric capacity (3800 mAh cm-3). However, the low electronic conductivity and the huge volume expansion of Bi during the alloying/dealloying reactions are extremely detrimental to cycling stability, which seriously hinder its practical application. To overcome these issues, we propose a rational design: Bi@C nanospheres with the unique petaloid core-shell structure are synthesized in one step for the first time and then combined with different contents of graphene (GR) nanosheets to form the composites Bi@C@GR. The Bi@C nanospheres with a core-shell structure are beneficial to shortening the transmission path of electrons/ions and reducing the risk from structural rupture of the particles during cycling. In addition, the combination of Bi@C nanospheres and porous GR could greatly improve the conductivity and prevent the aggregation of particles, which is conducive to better cycling stability and rate performance. Consequently, Bi@C@GR-2 presents a superior reversible capacity for sodium storage (300 mAh g-1 over 80 cycles) and potassium storage (200 mAh g-1 over 70 cycles) at 0.1 A g-1. Furthermore, in situ electrochemical impedance spectroscopy and ex situ transmission electron microscopy are carried out to analyze and reflect the kinetic reaction mechanism and the phase change of the Bi@C@GR-2 electrode during the charge/discharge processes.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Beibei Wang
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Gang Wang
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| |
Collapse
|
21
|
Qiu X, Wang X, He Y, Liang J, Liang K, Tardy BL, Richardson JJ, Hu M, Wu H, Zhang Y, Rojas OJ, Manners I, Guo J. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. SCIENCE ADVANCES 2021; 7:eabh3482. [PMID: 34516887 PMCID: PMC8442931 DOI: 10.1126/sciadv.abh3482] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/20/2021] [Indexed: 05/22/2023]
Abstract
Soft structures in nature, such as supercoiled DNA and proteins, can organize into complex hierarchical architectures through multiple noncovalent molecular interactions. Identifying new classes of natural building blocks capable of facilitating long-range hierarchical structuring has remained an elusive goal. We report the bottom-up synthesis of a hierarchical metal-phenolic mesocrystal where self-assembly proceeds on different length scales in a spatiotemporally controlled manner. Phenolic-based coordination complexes organize into supramolecular threads that assemble into tertiary nanoscale filaments, lastly packing into quaternary mesocrystals. The hierarchically ordered structures are preserved after thermal conversion into a metal-carbon hybrid framework and can impart outstanding performance to sodium ion batteries, which affords a capability of 72.5 milliampere hours per gram at an ultrahigh rate of 200 amperes per gram and a 90% capacity retention over 15,000 cycles at a current density of 5.0 amperes per gram. This hierarchical structuring of natural polyphenols is expected to find widespread applications.
Collapse
Affiliation(s)
- Xiaoling Qiu
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Harvard John A. Paulson School of Engineering and
Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
| | - Jieying Liang
- School of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
| | - Blaise L. Tardy
- Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Joseph J. Richardson
- Department of Materials Engineering, School of
Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Hu
- School of Physics and Materials Science, East China
Normal University, Shanghai 200241, China
| | - Hao Wu
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Corresponding author. (H.W.); (Y.Z.); ,
(J.G.)
| | - Yun Zhang
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Corresponding author. (H.W.); (Y.Z.); ,
(J.G.)
| | - Orlando J. Rojas
- Bioproducts Institute, Departments of Chemical and
Biological Engineering, Chemistry, and Wood Science, The University of British
Columbia, Vancouver, BC, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria,
Victoria, BC V8W 3V6, Canada
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Harvard John A. Paulson School of Engineering and
Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Corresponding author. (H.W.); (Y.Z.); ,
(J.G.)
| |
Collapse
|
22
|
Tang Y, Wei Y, Hollenkamp AF, Musameh M, Seeber A, Jin T, Pan X, Zhang H, Hou Y, Zhao Z, Hao X, Qiu J, Zhi C. Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage. NANO-MICRO LETTERS 2021; 13:178. [PMID: 34402993 PMCID: PMC8371071 DOI: 10.1007/s40820-021-00686-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
As promising anodes for sodium-ion batteries, metal sulfides ubiquitously suffer from low-rate and high-plateau issues, greatly hindering their application in full-cells. Herein, exemplifying carbon nanotubes (CNTs)-stringed metal sulfides superstructure (CSC) assembled by nano-dispersed SnS2 and CoS2 phases, cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges. The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect, enabling the circumvention of intrinsic drawbacks of different metal sulfides. By utilizing ether-based electrolyte, the reversibility of metal sulfides is greatly improved, sustaining a long-life effectivity of cocktail-like mediation. As such, CSC effectively overcomes low-rate flaw of SnS2 and high-plateau demerit of CoS2, simultaneously realizes a high rate and a low plateau. In half-cells, CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anode at 20 A g-1, far outperforming those of monometallic sulfides (SnS2, CoS2) and their mixtures. Compared with CoS2 phase and SnS2/CoS2 mixture, CSC shows remarkably lowered average charge voltage up to ca. 0.62 V. As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability (0.05 ~ 1.0 A g-1, 120.3 mAh g-1electrode at 0.05 A g-1) and a high average discharge voltage up to 2.57 V, comparable to full-cells with alloy-type anodes. Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC, compared with single phase and mixed phases. Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS2 and CoS2 phases are responsible for the lowered charge voltage of CSC. This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes, which will boost the development of high-rate/-voltage sodium-ion full batteries.
Collapse
Affiliation(s)
- Yongchao Tang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Yue Wei
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Anthony F Hollenkamp
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia.
| | - Mustafa Musameh
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Aaron Seeber
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Tao Jin
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
- School of Resources and Environment Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, P. R. China
| | - Xin Pan
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Han Zhang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yanan Hou
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zongbin Zhao
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaojuan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia.
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
23
|
Sun H, Wang J, Li W, Yuan F, Wang Q, Zhang D, Wang B, Wu YA. Spanish-dagger shaped CoP blooms decorated N-doped carbon branch anode for high-performance lithium and sodium storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Hou T, Fan A, Sun X, Zhang X, Xu Z, Cai S, Zheng C. Improving cycling stability of Bi-encapsulated carbon fibers for lithium/sodium-ion batteries by Fe2O3 pinning. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Kale S, Chothe UP, Kale BB, Kulkarni MV, Pavitran S, Gosavi SW. Synergetic Strategy for the Fabrication of Self-Standing Distorted Carbon Nanofibers with Heteroatom Doping for Sodium-Ion Batteries. ACS OMEGA 2021; 6:15686-15697. [PMID: 34179612 PMCID: PMC8223205 DOI: 10.1021/acsomega.1c00922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Currently, the limited availability of lithium sources is escalating the cost of lithium-ion batteries (LIBs). Considering the fluctuating economics of LIBs, sodium-ion batteries (SIBs) have now drawn attention because sodium is an earth-abundant, low-cost element that exhibits similar chemistry to that of LIBs. Despite developments in different anode materials, there still remain several challenges in SIBs, including lighter cell design for SIBs. The presented work designs a facile strategy to prepare nitrogen-doped free-standing pseudo-graphitic nanofibers via electrospinning. A structural and morphological study implies highly disordered graphitic structured nanofibers having diameters of ∼120-170 nm, with a smooth surface. X-ray photoelectron spectroscopy analysis showed that nitrogen was successfully doped in carbon nanofibers (CNFs). When served as an anode material for SIBs, the resultant material exhibits excellent sodium-ion storage properties in terms of long-term cycling stability and high rate capability. Notably, a binder-free self-standing CNF without a current collector was used as an anode for SIBs that delivered capacities of 210 and 87 mA h g-1 at 20 and 1600 mA g-1, respectively, retaining a capacity of 177 mA h g-1 when retained at 20 mA g-1. The as-synthesized CNFs demonstrate a long cycle life with a relatively high Columbic efficiency of 98.6% for the 900th cycle, with a stable and excellent rate capacity. The sodium storage mechanisms of the CNFs were examined with various nitrogen concentrations and carbonization temperatures. Furthermore, the diffusion coefficients of the sodium ions based on the electrochemical impedance spectra measurement have been calculated in the range of 10-15-10-12 cm2 s-1, revealing excellent diffusion mobility for Na atoms in the CNFs. This study demonstrates that optimum nitrogen doping and carbonization temperature demonstrated a lower Warburg coefficient and a higher Na-ion diffusion coefficient leads to enhanced stable electrochemical performance. Thus, our study shows that the nitrogen-doped CNFs will have potential for SIBs.
Collapse
Affiliation(s)
- Sayali
B. Kale
- Department
of Technology, Savitribai Phule Pune University
(Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
| | - Ujjwala P. Chothe
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Panchavati, Off Pashan Road, Pune 411008, India
| | - Bharat B. Kale
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Panchavati, Off Pashan Road, Pune 411008, India
| | - Milind V. Kulkarni
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Panchavati, Off Pashan Road, Pune 411008, India
| | - Sampath Pavitran
- Department
of Technology, Savitribai Phule Pune University
(Formerly University of Pune), Ganeshkhind Road, Pune 411007, India
- Department
of Mechanical Engineering, Vishwakarma Institute
of Technology Pune, Pune 411 037, India
| | - Suresh W. Gosavi
- Department
of Physics, Savitribai Phule Pune University
(Formerly University of Pune), Ganeshkhind Road, Pune 411 007, India
- Photocatalysis
International Research Center, Research Institute for Science &
Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
26
|
Wang F, Zhang L, Wang T, Zhang F, Liu Q, Zhao H, Zheng B, Du J, Sun X. In Situ Derived Bi Nanoparticles Confined in Carbon Rods as an Efficient Electrocatalyst for Ambient N 2 Reduction to NH 3. Inorg Chem 2021; 60:7584-7589. [PMID: 33929201 DOI: 10.1021/acs.inorgchem.1c01130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrocatalytic N2 reduction is deemed as a prospective strategy toward low-carbon and environmentally friendly NH3 production under mild conditions, but its further application is still plagued by low NH3 yield and poor faradaic efficiency (FE). Thus, electrocatalysts endowing with high activity and satisfying selectivity are highly needed. Herein, Bi nanoparticles in situ confined in carbon rods (Bi NPs@CRs) are reported, which are fabricated via thermal annealing of a Bi-MOF precursor as a high-efficiency electrocatalyst for artificial NH3 synthesis with favorable selectivity. Such an electrocatalyst conducted in 0.1 M HCl achieves a high FE of 11.50% and a large NH3 yield of 20.80 μg h-1 mg-1cat. at -0.55 and -0.60 V versus reversible hydrogen electrode, respectively, which also possesses high electrochemical durability.
Collapse
Affiliation(s)
- Fengyi Wang
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Longcheng Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Ting Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Fang Zhang
- National Engineering Research Center for Nanotechnology, No. 28 East Jiang Chuan Road, Shanghai 200241, China
| | - Qian Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Haitao Zhao
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
27
|
Guo S, Feng Y, Wang L, Jiang Y, Yu Y, Hu X. Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005248. [PMID: 33734598 DOI: 10.1002/smll.202005248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Tremendous efforts have been dedicated to the development of high-performance electrochemical energy storage devices. The development of lithium- and sodium-ion batteries (LIBs and SIBs) with high energy densities is urgently needed to meet the growing demands for portable electronic devices, electric vehicles, and large-scale smart grids. Anode materials with high theoretical capacities that are based on alloying storage mechanisms are at the forefront of research geared towards high-energy-density LIBs or SIBs. However, they often suffer from severe pulverization and rapid capacity decay due to their huge volume change upon cycling. So far, a wide variety of advanced materials and electrode structures are developed to improve the long-term cyclability of alloying-type materials. This review provides fundamentals of anti-pulverization and cutting-edge concepts that aim to achieve high-performance alloying anodes for LIBs/SIBs from the viewpoint of architectural engineering. The recent progress on the effective strategies of nanostructuring, incorporation of carbon, intermetallics design, and binder engineering is systematically summarized. After that, the relationship between architectural design and electrochemical performance as well as the related charge-storage mechanisms is discussed. Finally, challenges and perspectives of alloying-type anode materials for further development in LIB/SIB applications are proposed.
Collapse
Affiliation(s)
- Songtao Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Libin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingjun Jiang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
Zhu Y, Qian Z, Song J, Du W, Pan J, Wang D, Yang J. Voltage-Modulated Structure Stress for Enhanced Electrochemcial Performances: The Case of μ-Sn in Sodium-Ion Batteries. NANO LETTERS 2021; 21:3588-3595. [PMID: 33834788 DOI: 10.1021/acs.nanolett.1c00489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alloy-type anodes in alkaline ion batteries have to face the challenges of huge volume change and giant structure strain/stress upon cycling. Here, reducing the structure stress for advanced performances by voltage regulation is demonstrated by using microsized Sn (μ-Sn) for sodium ion batteries as a model. Density functional theory and finite element analysis indicate that Sn/NaSn3 is the crucial phase transition highly responsible for inducing surface cracks, particle aggregations, and cell failures. Eliminating this phase transition by the control of cutoff voltages successfully extends the cycle life of μ-Sn to 2500 cycles at 2 A g-1, much longer than ∼40 cycles in a regular voltage window. The specific capacity is still retained at ∼455 mAh g-1, leading to a capacity decay of only ∼0.0088% per cycle. The results provide a simple way to achieve the outstanding performances without complicated preparation, expensive reagents, and laborious processing.
Collapse
Affiliation(s)
- Yansong Zhu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhao Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Juan Song
- School of Civil Engineering, Shandong University, Jinan 250061, China
| | - Wenzheng Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jun Pan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzheng Research Institute of Shandong University, Virtual University Park, Shenzhen 518057, China
| |
Collapse
|
29
|
Hou T, Liu B, Sun X, Fan A, Xu Z, Cai S, Zheng C, Yu G, Tricoli A. Covalent Coupling-Stabilized Transition-Metal Sulfide/Carbon Nanotube Composites for Lithium/Sodium-Ion Batteries. ACS NANO 2021; 15:6735-6746. [PMID: 33739086 DOI: 10.1021/acsnano.0c10121] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal sulfides (TMSs) powered by conversion and/or alloying reactions are considered to be promising anode materials for advanced lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, the limited electronic conductivity and large volume expansion severely hinder their practical application. Herein, we report a covalent coupling strategy for TMS-based anode materials using amide linkages to bind TMSs and carbon nanotubes (CNTs). In the synthesis, the thiourea acts as not only the capping agent for morphology control but also the linking agent for the covalent coupling. As a proof of concept, the covalently coupled ZnS/CNT composite (CC-ZnS/CNT) has been prepared, with ZnS nanoparticles (∼10 nm) tightly anchored on CNT bundles. The compact ZnS-CNT heterojunctions are greatly beneficial to facilitating the electron/ion transfer and ensuring structural stability. Due to the strong coupling interaction between ZnS and CNTs, the composite presents prominent pseudocapacitive behavior and highly reversible electrochemical processes, thus leading to superior long-term stability and excellent rate capability, delivering reversible capacities of 333 mAh g-1 at 2 A g-1 over 4000 cycles for LIBs and 314 mAh g-1 at 5 A g-1 after 500 cycles for SIBs. Consequently, CC-ZnS/CNT exhibits great competence for applications in LIBs and SIBs, and the covalent coupling strategy is proposed as a promising approach for designing high-performance anode materials.
Collapse
Affiliation(s)
- Tianyi Hou
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Research School of Electrical, Energy, and Materials Engineering, Nanotechnology Research Laboratory, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Borui Liu
- Research School of Electrical, Energy, and Materials Engineering, Nanotechnology Research Laboratory, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Xiaohong Sun
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Anran Fan
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Zhongkai Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Shu Cai
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Chunming Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Antonio Tricoli
- Research School of Electrical, Energy, and Materials Engineering, Nanotechnology Research Laboratory, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
30
|
Recent Progress on Modification Strategies of Alloy-based Anode Materials for Alkali-ion Batteries. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0001-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Li Z, Cai L, Chu K, Xu S, Yao G, Wei L, Zheng F. Heteroatom-doped carbon materials with interconnected channels as ultrastable anodes for lithium/sodium ion batteries. Dalton Trans 2021; 50:4335-4344. [PMID: 33688894 DOI: 10.1039/d1dt00243k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon materials have been extensively investigated as promising negative electrode materials for lithium/sodium ion batteries. However, most common carbon materials always suffer from limitations in regards to high reversible capacity and long-term cycling stability because of their low theoretical specific capacities and sluggish kinetics. Herein, we report a facile MOF-derived strategy for the synthesis of nitrogen/oxygen co-doped porous carbon polyhedra (NOPCP) with abundant channel-connected cavities with their inner surface decorated with a large number of N and O atoms, which can provide a large number of active sites (defects and edge doping sites) for the sorption of Li+/Na+. These cavities can also be considered as "ponds" where the electrolyte is stored, which shortens the diffusion distance of ions during the discharge/charge process. When evaluated as an anode material for LIBs, NOPCP-600 delivers a high reversible capacity of 1663 mA h g-1 at 0.1 A g-1 after 120 cycles and superior cycling stability with a capacity of 667 mA h g-1 after 1000 cycles at 2 A g-1. For SIBs, NOPCP-600 delivers a high reversible capacity of 313 mA h g-1 at 0.1 A g-1 after 100 cycles and an excellent long-term cycling stability of 228 mA h g-1 at 1 A g-1 after 2000 cycles.
Collapse
Affiliation(s)
- Zhiqiang Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1903194. [PMID: 31544320 DOI: 10.1002/smll.201903194] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Indexed: 05/11/2023]
Abstract
High-energy batteries with low cost are urgently needed in the field of large-scale energy storage, such as grid systems and renewable energy sources. Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) with alloy-based anodes provide huge potential due to their earth abundance, high capacity, and suitable working potential, and are recognized as attractive alternatives for next-generation batteries system. Although some important breakthroughs have been reported, more significant improvements are still required for long lifetime and high energy density. Herein, the latest progress for alloy-based anodes for SIBs and PIBs is summarized, mainly including Sn, Sb, Ge, Bi, Si, P, and their oxides, sulfides, selenides, and phosphides. Specifically, the material designs for the desired Na+ /K+ storage performance, phase transform, ionic/electronic transport kinetics, and specific chemical interactions are discussed. Typical structural features and research strategies of alloy-based anodes, which are used to facilitate processes in battery development for SIBs and PIBs, are also summarized. The perspective of future research of SIBs and PIBs is outlined.
Collapse
Affiliation(s)
- Keming Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chuntai Liu
- Key Laboratory about Materials Forming and Mold Technology of Education Ministry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liwei Mi
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Weihua Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory about Materials Forming and Mold Technology of Education Ministry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Changyu Shen
- Key Laboratory about Materials Forming and Mold Technology of Education Ministry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
33
|
Sun Z, Liu Y, Ye W, Zhang J, Wang Y, Lin Y, Hou L, Wang MS, Yuan C. Unveiling Intrinsic Potassium Storage Behaviors of Hierarchical Nano Bi@N-Doped Carbon Nanocages Framework via In Situ Characterizations. Angew Chem Int Ed Engl 2021; 60:7180-7187. [PMID: 33372329 DOI: 10.1002/anie.202016082] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/06/2022]
Abstract
Metallic bismuth has drawn attention as a promising alloying anode for advanced potassium ion batteries (PIBs). However, serious volume expansion/electrode pulverization and sluggish kinetics always lead to its inferior cycling and rate properties for practical applications. Therefore, advanced Bi-based anodes via structural/compositional optimization and sur-/interface design are needed. Herein, we develop a bottom-up avenue to fabricate nanoscale Bi encapsulated in a 3D N-doped carbon nanocages (Bi@N-CNCs) framework with a void space by using a novel Bi-based metal-organic framework as the precursor. With elaborate regulation in annealing temperatures, the optimized Bi@N-CNCs electrode exhibits large reversible capacities and long-duration cyclic stability at high rates when evaluated as competitive anodes for PIBs. Insights into the intrinsic K+ -storage processes of the Bi@N-CNCs anode are put forward from comprehensive in situ characterizations.
Collapse
Affiliation(s)
- Zehang Sun
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Weibin Ye
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jinyang Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yuyan Wang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Ming-Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
34
|
Sun Z, Liu Y, Ye W, Zhang J, Wang Y, Lin Y, Hou L, Wang M, Yuan C. Unveiling Intrinsic Potassium Storage Behaviors of Hierarchical Nano Bi@N‐Doped Carbon Nanocages Framework via In Situ Characterizations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zehang Sun
- School of Materials Science & Engineering University of Jinan Jinan 250022 P. R. China
| | - Yang Liu
- School of Materials Science & Engineering University of Jinan Jinan 250022 P. R. China
| | - Weibin Ye
- State Key Lab of Physical Chemistry of Solid Surfaces College of Materials Xiamen University Xiamen 361005 China
| | - Jinyang Zhang
- School of Materials Science & Engineering University of Jinan Jinan 250022 P. R. China
| | - Yuyan Wang
- School of Materials Science & Engineering University of Jinan Jinan 250022 P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering University of Jinan Jinan 250022 P. R. China
| | - Ming‐Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces College of Materials Xiamen University Xiamen 361005 China
| | - Changzhou Yuan
- School of Materials Science & Engineering University of Jinan Jinan 250022 P. R. China
| |
Collapse
|
35
|
Mei J, Wang J, Gu H, Du Y, Wang H, Yamauchi Y, Liao T, Sun Z, Yin Z. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004920. [PMID: 33382163 DOI: 10.1002/adma.202004920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Nano polymorphism (NPM), as an emerging research area in the field of energy storage, and rechargeable batteries, have attracted much attention recently. In this review, the recent progress on the composition and formation of polymorphs, and the evolution processes of different redox electrodes in rechargeable metal-ion, metal-air, and metal-sulfur batteries are highlighted. First, NPM and its significance for rechargeable batteries are discussed. Subsequently, the current NPM modulation strategies of different types of representative electrodes for their corresponding rechargeable battery applications are summarized. The goal is to demonstrate how NPM could tune the intrinsic material properties, and hence, improve their electrochemical activities for each battery type. It is expected that the analysis of polymorphism and electrochemical properties of materials could help identify some "processing-structure-properties" relationships for material design and performance enhancement. Lastly, the current research challenges and potential research directions are discussed to offer guidance and perspectives for future research on NPM engineering.
Collapse
Affiliation(s)
- Jun Mei
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jinkai Wang
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huimin Gu
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Hongkang Wang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- JST-ERATO Yamauchi's Materials Space-Tectonics Project, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
36
|
Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Wang X, Wu Y, Huang P, Chen P, Wang Z, Xu X, Xie J, Yan J, Li S, Tu J, Ding YL. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage. NANOSCALE 2020; 12:23682-23693. [PMID: 33225337 DOI: 10.1039/d0nr07230c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bismuth (Bi) is a promising anode candidate for sodium ion batteries (SIBs) with a high volumetric capacity (3765 mA h cm-3) and moderate working potential but suffers from large volume change (ca. 250%) during the sodiation/desodiation process, resulting in pulverization of the electrode, electrical contact loss, excessive accumulation of solid electrolyte interfaces, etc., devastating the cycling stability of the electrode seriously. Addressing this issue significantly relies on rational micro- and nano-structuring. Herein, we prepared a 3D multi-layered composite assembly of Bi/carbon heterojunctions with 0D bismuth nanospheres distributed and anchored on 2D nitrogen-doped carbon nanosheets (NCSs), using a preorganization strategy by taking full advantage of the strong complexation ability of Bi3+. The multi-layered composite assembly is periodic and close-packed, with Bi nanospheres <25 nm, carbon nanosheets ∼30 nm, and an average interlayer space of ∼75 nm. Such a specific architecture provides abundant electrochemically active surfaces and ion migration channels as the Bi nanospheres are attached to the 2D nitrogen-doped carbon nanosheets via a point-to-surface pattern. Moreover, the mono-layer Bi nanospheres oriented along the 2D-surface of NCSs are kinetically favorable for the recognition of Na+ by the active sites of Bi nanospheres as well as for avoiding the long distance migration of Na+ (external diffusion of Na+). Furthermore, thermodynamically, the small size and high surface energy of ultrasmall Bi nanospheres could contribute to high ion mobility (internal diffusion of Na+) and promote electrochemical reactions as well. The multi-layered composite assembly of Bi@NCSs (ML-Bi@NCSs) not only provides a robust 3D framework guaranteeing the whole structural stability but also ensures direct and full contact of each active nano-building block with electrolyte, thereby forming a high-throughput electron/ion transport system. When evaluated as the anode for SIBs, ML-Bi@NCSs deliver superior high-rate capability up to 30 A g-1 (specific capacity: 288 mA h g-1) and long-term cycling stability (capacity retention: 95.8% after 5000 cycles at 10 A g-1 and 90.6% after 10 000 cycles at 20 A g-1, respectively).
Collapse
Affiliation(s)
- Xinxin Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yuan Y, Yao W, Yurkiv V, Liu T, Song B, Mashayek F, Shahbazian-Yassar R, Lu J. Beyond Volume Variation: Anisotropic and Protrusive Lithiation in Bismuth Nanowire. ACS NANO 2020; 14:15669-15677. [PMID: 33147406 DOI: 10.1021/acsnano.0c06597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Materials storing energy via an alloying reaction are promising anode candidates in rechargeable lithium-ion batteries (LIBs) due to their much higher energy density than the current graphite anode. Until now, the volumetric expansion of such electrode particles during lithiation has been considered as solely responsible for cycling-induced structural failure. In this work, we report different structural failure mechanisms using single-crystalline bismuth nanowires as the alloying-based anode. The Li-Bi alloying process exhibits a two-step transition, that is, Bi-Li1Bi and Li1Bi-Li3Bi. Interestingly, the Bi-Li1Bi phase transition occurs not only in the bulk Bi nanowire but also on the particle surface showing its characteristic behavior. The bulk alloying kinetics favors a Bi-(012)-facilitated anisotropic lithiation, whose mechanism and energetics are further studied using the density functional theory calculations. More importantly, the protrusion of Li1Bi nanograins as a result of anisotropic Li-Bi alloying is found to dominate the surface morphology of Bi particles. The growth kinetics of Li1Bi protrusions is understood atomically with the identification of two different controlling mechanisms, that is, the dislocation-assisted strain relaxation at the Bi/Li1Bi interface and the short-range migration of Bi supporting the off-Bi growth of Li1Bi. As loosely rooted to the bulk substrate and easily peeled off and detached into the electrolyte, these nanoscale protrusions developed during battery cycling are believed to be an important factor responsible for the capacity decay of such alloying-based anodes at the electrode level.
Collapse
Affiliation(s)
- Yifei Yuan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wentao Yao
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vitaliy Yurkiv
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Boao Song
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Farzad Mashayek
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
39
|
Xu X, Wang Z, Zhang D, Zuo S, Liu J, Zhu M. Scalable One-Pot Synthesis of Hierarchical Bi@C Bulk with Superior Lithium-Ion Storage Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51478-51487. [PMID: 33161718 DOI: 10.1021/acsami.0c14757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lithium-ion batteries (LIBs), the most successful commercial energy storage devices, are now widespread in our daily life. However, the lack of appropriate electrode materials with long lifespan and superior rate capability is the urgent bottleneck for the development of high-performance LIBs. Herein, a hierarchical Bi@C bulk is developed via a scalable pyrolysis method. Due to the ultrafine size of Bi nanoparticles and in situ generated porous carbon framework, this Bi@C anode evidently facilitates the diffusion of Li+/electron, availably inhibits the agglomeration of active nano-Bi, and effectively mitigates the volume fluctuation. This hierarchical Bi@C bulk exhibits stable cycling performance for both LIBs (256 mAh g-1 at 1.0 A g-1 over 1400 cycles) and potassium-ion batteries (271 mAh g-1 at 0.1 A g-1 for 200 cycles). More importantly, when coupled with a commercial LiCoO2 cathode, the assembled LiCoO2//Bi@C cells provide an output voltage of 2.9 V and retain a capacity of 202 mAh g-1 at 0.15 A g-1. Moreover, kinetic analysis and in situ X-ray diffraction characterization reveal that the Bi@C anode displays a dominated pseudocapacitance behavior and a typical alloying storage mechanism during the cycling process.
Collapse
Affiliation(s)
- Xijun Xu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zhuosen Wang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Dechao Zhang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Shiyong Zuo
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Min Zhu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
40
|
|
41
|
Kong M, Liu Y, Zhou B, Yang K, Tang J, Zhang P, Zhang WH. Rational Design of Sb@C@TiO 2 Triple-Shell Nanoboxes for High-Performance Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001976. [PMID: 32985102 DOI: 10.1002/smll.202001976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Antimony is an attractive anode material for sodium-ion batteries (SIBs) owing to its high theoretical capacity and appropriate sodiation potential. However, its practical application is severely impeded by its poor cycling stability caused by dramatic volumetric variations during sodium uptake and release processes. Here, to circumvent this obstacle, Sb@C@TiO2 triple-shell nanoboxes (TSNBs) are synthesized through a template-engaged galvanic replacement approach. The TSNB structure consists of an inner Sb hollow nanobox protected by a conductive carbon middle shell and a TiO2 -nanosheet-constructed outer shell. This structure offers dual protection to the inner Sb and enough room to accommodate volume expansion, thus promoting the structural integrity of the electrode and the formation of a stable solid-electrolyte interface film. Benefiting from the rational structural design and synergistic effects of Sb, carbon, and TiO2 , the Sb@C@TiO2 electrode exhibits superior rate performance (212 mAh g-1 at 10 A g-1 ) and outstanding long-term cycling stability (193 mAh g-1 at 1 A g-1 after 4000 cycles). Moreover, a full cell assembled with a configuration of Sb@C@TiO2 //Na3 (VOPO4 )2 F displays a high output voltage of 2.8 V and a high energy density of 179 Wh kg-1 , revealing the great promise of Sb@C@TiO2 TSNBs as the electrode in SIBs.
Collapse
Affiliation(s)
- Ming Kong
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Yan Liu
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Bin Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Kaixuan Yang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Jianfeng Tang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Ping Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Wen-Hua Zhang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| |
Collapse
|
42
|
Fang Z, Li P, Yu G. Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003191. [PMID: 32830391 DOI: 10.1002/adma.202003191] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Seeking sustainable and cost-effective energy sources is one of the significant challenges for the sustainable development of modern society. To date, considerable expectations have been held for technologies, such as fuel cells and electrolyzers, where the performance strongly depends on electrochemical conversion processes that can generate and store chemical energy through the breaking or formation of chemical bonds. However, those advanced technologies are severely limited by the efficiency, selectivity, and durability of electrocatalysis. Thanks to their hierarchically porous architecture, compositional and structural tunability, and ease of functionalization, the family of gel materials opens exciting opportunities for advanced energy technologies. Unique advances in gel materials based on controllable compositions and functions enable gel electrocatalysts to potentially break the limitations of current materials, enhancing the device performance of electrochemical energy. Here, recent developments and challenges for nanostructured gel-based materials for electrocatalysis applications are summarized. Future possibilities and challenges for gel electrocatalysts in terms of synthesis and applications are also discussed.
Collapse
Affiliation(s)
- Zhiwei Fang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Panpan Li
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
43
|
Lee ME, Lee SM, Choi J, Jang D, Lee S, Jin HJ, Yun YS. Electrolyte-Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001053. [PMID: 32761802 DOI: 10.1002/smll.202001053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/30/2020] [Indexed: 06/11/2023]
Abstract
A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate- (CBE) and glyme-based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme-sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well-ordered graphitic structures. 3) The glyme-mediated sodium ion-storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo-metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion-storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high-performance HC anode with a plateau capacity of ≈300 mA h g-1 is designed based on the information, and its workability is demonstrated in a full-cell SIB device.
Collapse
Affiliation(s)
- Min Eui Lee
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92, Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, South Korea
| | - Sang Moon Lee
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), 169-148, Gwahak-ro, Yuseong-gu, Daejeon, 34133, South Korea
| | - Jaewon Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, South Korea
| | - Dawon Jang
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92, Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, South Korea
- Department of Nano Material Engineering, KIST School, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Sungho Lee
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92, Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, South Korea
- Department of Nano Material Engineering, KIST School, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Hyoung-Joon Jin
- Department of Polymer Science and Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, 22212, South Korea
| | - Young Soo Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
44
|
Zhao W, Choi W, Yoon WS. Nanostructured Electrode Materials for Rechargeable Lithium-Ion Batteries. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2020.00745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Zhou S, Hu A, Liu D, Chen X, Tang Q, Tao T, Chen H. Building three-dimensional carbon nanotubes-interwoven Ni3S2 micro-nanostructures for improved sodium storage performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Liu Y, Zhai Y, Wang N, Zhang Y, Lu Z, Xue P, Bai L, Guo M, Huang D, Bai Z. Ultrathin MoSe
2
Nanosheets Confined in N‐doped Macroporous Carbon Frame for Enhanced Potassium Ion Storage. ChemistrySelect 2020. [DOI: 10.1002/slct.202000116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanlin Liu
- College of Biomedical Engineering & New Carbon Materials Institute Taiyuan University of Technology Taiyuan 030024 PR China
| | - Yanjun Zhai
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology College of Materials Science and Engineering LiaoCheng University LiaoCheng 252000 PR China
| | - Nana Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus North Wollongong, New South Wales 2500 Australia
| | - Yaohui Zhang
- College of Biomedical Engineering & New Carbon Materials Institute Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhenxiao Lu
- College of Biomedical Engineering & New Carbon Materials Institute Taiyuan University of Technology Taiyuan 030024 PR China
| | - Pan Xue
- College of Biomedical Engineering & New Carbon Materials Institute Taiyuan University of Technology Taiyuan 030024 PR China
| | - Long Bai
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 PR China
| | - Meiqing Guo
- College of Biomedical Engineering & New Carbon Materials Institute Taiyuan University of Technology Taiyuan 030024 PR China
| | - Di Huang
- College of Biomedical Engineering & New Carbon Materials Institute Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhongchao Bai
- College of Biomedical Engineering & New Carbon Materials Institute Taiyuan University of Technology Taiyuan 030024 PR China
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus North Wollongong, New South Wales 2500 Australia
| |
Collapse
|
47
|
Zhang C, Li D, Pei P, Wang W, Chen B, Chu Z, Zha Z, Yang X, Wang J, Qian H. Rod-based urchin-like hollow microspheres of Bi 2S 3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation. Biomaterials 2020; 237:119835. [PMID: 32035321 DOI: 10.1016/j.biomaterials.2020.119835] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Hollow nanostructures have been evoked considerable attention owing to their intriguing hollow interior for important and potential applications in drug delivery, lithium battery, catalysis and etc. Herein, Bi2S3 hollow microspheres with rod-based urchin-like nanostructures (denoted as U-BSHM) were synthesized through a facile and rapid ion exchanging method using a particular hard template. The growth mechanism of the U-BSHM has been investigated and illustrated by the morphological evolution of the different samples at early stages. The obtained U-BSHM exhibited strong and wide UV-vis-NIR absorption ability and outstanding photothermal conversion efficiency. Thus, the U-BSHM can be used as spatio-temporal precisely controlled carrier by loading the mixture of 1-tetradecanol (phase change material, PCM) with melting point around 38 °C and hydrophilic chemotherapeutic doxorubicin hydrochloride (denoted as DOX) into the hollow interior to form (PCM + DOX)@Bi2S3 nanocomposites (denoted as PD@BS) for photoacoustic (PA) imaging and chemo-photothermal therapy of the tumors. When exposed to 808 nm near infrared light (NIR) laser irradiation, this nanocomposites could elevate the temperature of the surroundings by absorption and conversion of the NIR photons into heat energy, which inducing the triggered release of DOX from the hollow interior once the temperature reach up to the melting point of PCM. The killing efficiency of the chemo-photothermal therapy was systematically validated both in vitro and in vivo. In the meanwhile, the implanted tumor was completely restrained through PA imaging and combined therapies. Therefore, this kind of urchin-like hollow nanostructures would be used as important candidates for the multimodal bioimaging and therapy of tumors.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Dongdong Li
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Pei Pei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Wanni Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Benjin Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhaoyou Chu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Xianzhu Yang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Center for Oral Disease, 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
48
|
Yang H, Chen LW, He F, Zhang J, Feng Y, Zhao L, Wang B, He L, Zhang Q, Yu Y. Optimizing the Void Size of Yolk-Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. NANO LETTERS 2020; 20:758-767. [PMID: 31868367 DOI: 10.1021/acs.nanolett.9b04829] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bismuth (Bi) has been demonstrated as a promising anode for Na-ion batteries (NIBs) because it has high gravimetry (386 mA h g-1) and volumetric capacity (3800 mA h cm-3). However, Bi suffers from large volume expansion during sodiation, leading to poor electrochemical performance. The construction of a nanostructure with sufficient void space to accommodate the volume change has been proven effective for achieving prolonged cycling stability. However the excessive void space will definitely decrease the volumetric energy density of the battery. Herein, we design optimized Bi@Void@C nanospheres (Bi@Void@C-2) with yolk-shell structure that exhibit the best cycling performance and enhanced volumetric energy density. The optimized void space not only could buffer the volume change of the Bi nanosphere but also could keep the high volumetric energy density of the battery. The Bi@Void@C-2 shows an excellent rate capacity of 173 mA h g-1 at ultrahigh current density of 100 A g-1 and long-cycle life (198 mA h g-1 at 20 A g-1 over 10 000 cycles). The origin of the superior performance is achieved through in-depth fundamental studies during battery operation using in situ X-ray diffraction (XRD) and in situ transmission electron microscope (TEM), complemented by theoretical calculations and ex situ TEM observation. Our rational design provides insights for anode materials with large volume variation, especially for conversion type and alloying type mechanism materials for batteries (i.e., Li-ion batteries, Na-ion batteries).
Collapse
Affiliation(s)
- Hai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering , University of Science and Technology of China, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS) , Hefei , Anhui 230026 , China
| | - Lin-Wei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering , University of Science and Technology of China, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS) , Hefei , Anhui 230026 , China
| | - Fuxiang He
- Key Laboratory of Quantum Information , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jiaqing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering , University of Science and Technology of China, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS) , Hefei , Anhui 230026 , China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , China
| | - Lukang Zhao
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , China
| | - Bin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering , University of Science and Technology of China, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS) , Hefei , Anhui 230026 , China
| | - Lixin He
- Key Laboratory of Quantum Information , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials , Xiamen University , Xiamen , Fujian 361005 , China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering , University of Science and Technology of China, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS) , Hefei , Anhui 230026 , China
- State Key Laboratory of Fire Science , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Dalian National Laboratory for Clean Energy (DNL) , Chinese Academy of Sciences (CAS) , Dalian , Liaoning 116023 , China
| |
Collapse
|
49
|
Wang L, Yang G, Wang J, Peng S, Yan W, Ramakrishna S. Controllable Design of MoS 2 Nanosheets Grown on Nitrogen-Doped Branched TiO 2 /C Nanofibers: Toward Enhanced Sodium Storage Performance Induced by Pseudocapacitance Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904589. [PMID: 31778039 DOI: 10.1002/smll.201904589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
In this work, expanded MoS2 nanosheets grown on nitrogen-doped branched TiO2 /C nanofibers (NBT/C@MoS2 NFs) are prepared through electrospinning and hydrothermal treatment method as anode materials for sodium-ion batteries (SIBs). The continuous 1D branched TiO2 /C nanofibers provide a large surface area to grow expanded MoS2 nanosheets and enhance the electronic conductivity and cycling stability of the electrode. The large surface area and doping of nitrogen can facilitate the transfer of both Na+ ions and electrons. With the merits of these unique design and extrinsic pseudocapacitance behavior, the NBT/C@MoS2 NFs can deliver ultralong cycle stability of 448.2 mA h g-1 at 200 mA g-1 after 600 cycles. Even at a high rate of 2000 mA g-1 , a reversible capacity of 258.3 mA h g-1 can still be achieved. The kinetic analysis demonstrates that pseudocapacitive contribution is the major factor to achieve excellent rate performance. The rational design and excellent electrochemical performance endow the NBT/C@MoS2 NFs with potentials as promising anode materials for SIBs.
Collapse
Affiliation(s)
- Ling Wang
- Department of Environmental Science & Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Yang
- Department of Environmental Science & Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
- Suzhou Institute, Xi'an Jiaotong University, Suzhou, 215123, China
| | - Jianan Wang
- Department of Environmental Science & Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
- Suzhou Institute, Xi'an Jiaotong University, Suzhou, 215123, China
| | - Shengjie Peng
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Wei Yan
- Department of Environmental Science & Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117574, Singapore
| |
Collapse
|
50
|
Qiu X, Wang B, Jing P, Zhang Y, Zhang M, Wang Q, Chen X, Zhang Y, Wu H. Bismuth dots imbedded in ultralong nitrogen-doped carbon tubes for highly efficient lithium ion storage. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01158d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hollow tube-shaped Bi/carbon hybrid is constructed for lithium ion storage, which is made up of ultrafine Bi nanodots homogeneously space-confined in the inner wall of ultralong nitrogen-doped carbon tubes.
Collapse
Affiliation(s)
- Xiaoling Qiu
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Boya Wang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Peng Jing
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Yin Zhang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Mi Zhang
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Qian Wang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Xianchun Chen
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Yun Zhang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Hao Wu
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|