1
|
An Y, Xu D, He P, Wang Z, Li Y, Ming J, Liu R, Li J, Lu Z, Liu G. A Lanthanide Nanoparticle-Aggregation-Induced Emission Photosensitizer Complex System Drives Coupled Triplet Energy Transfer for Enhanced Radio-Photodynamic Therapy. J Am Chem Soc 2025; 147:11964-11974. [PMID: 40165679 DOI: 10.1021/jacs.4c18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cerenkov light (CL), utilized as an internal excitation source for photodynamic therapy (PDT), addresses the limitations of laser penetration and has substantial potential for seamlessly integrating clinical radiotheranostics with phototheranostics. Nevertheless, the effectiveness of CL-mediated PDT is significantly hindered by challenges, such as the low intensity of CL and inadequate energy transfer between the CL donor and photosensitizers (PSs). In this study, a novel approach is introduced for enhanced radionuclide-activated radio-photodynamic therapy utilizing a hybrid nanoparticle system composed of lanthanide nanoparticles and an aggregation-induced emission photosensitizer (AIE PS), designated LnNP-TQ NPs. This system enables lanthanide nanoparticles to optimize the decay energy of radionuclides, effectively sensitizing the AIE PS through triplet energy transfer (TET)-mediated processes with an efficiency approaching 100%. When activated by the clinical radionuclide 18F for positron emission tomography imaging, the LnNP-TQ NPs substantially inhibited tumor growth via effective singlet oxygen (1O2) generation. This strategy, which optimally harnesses radionuclide energy and achieves efficient energy transfer, offers a promising pathway for enhancing radiotherapy-phototherapy efficacy in tumor treatment.
Collapse
Affiliation(s)
- Yibo An
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Dazhuang Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Pan He
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Ziying Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yun Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
| | - Renyuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jingchao Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China
| | - Zhixiang Lu
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
2
|
Jiang R, Fang Q, Liu W, Chen L, Yang H. Recent Progress in Radiosensitive Nanomaterials for Radiotherapy-Triggered Drug Release. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14801-14821. [PMID: 40014050 DOI: 10.1021/acsami.4c23023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Benefiting from the unique properties of ionizing radiation, such as high tissue penetration, spatiotemporal resolution, and clinical relevance compared with other external stimuli, radiotherapy-induced drug release strategies are showing great promise in developing effective and personalized cancer treatments. However, the requirement of high doses of X-ray irradiation to break chemical bonds for drug release limits the application of radiotherapy-induced prodrug activation in clinics. Recent advances in nanomaterials offer a promising approach for radiotherapy sensitization as well as integrating multiple modalities for improved therapy outcomes. In particular, the catalytic radiosensitization that utilizes electrons and energy generated by nanomaterials upon X-ray irradiation has demonstrated excellent potential for enhanced radiotherapy. In this Review, we summarize the design principles of X-ray-responsive chemical bonds for controlled drug release, strategies for catalytic radiosensitization, and recent progress of X-ray-responsive nanoradiosensitizers for enhanced radiotherapy by integration with chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, gas therapy, and immunotherapy. Finally, we discuss the challenges of X-ray-responsive nanoradiosensitizers heading toward possible clinical translation. We expect that emerging strategies based on radiotherapy-triggered drug release will facilitate a frontier in accurate and effective cancer therapy in the near future.
Collapse
Affiliation(s)
- Renfeng Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiong Fang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenjun Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lanlan Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Liu Z, Koseki Y, Suzuki R, Dao ATN, Kasai H. Sustained Drug Release from Dual-Responsive Hydrogels for Local Cancer Chemo-Photothermal Therapy. Macromol Biosci 2025; 25:e2400413. [PMID: 39565793 PMCID: PMC11904390 DOI: 10.1002/mabi.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Indexed: 11/22/2024]
Abstract
As an exceptional carrier for localized drug delivery to tumors, hydrogels can achieve prolonged drug release through careful design and adjustments, effectively targeting cancer cells and minimizing side effects. This study investigates a novel dual-responsive hydrogel system designed for the delivery of nanomedicines, focusing on drug release and the local antitumor efficacy of SN-38-cholesterol nanoparticles (SN-38-chol NPs) and polydopamine NPs (PDA NPs)/poly(n-isopropylacrylamide) (pNIPAM) hydrogels. By combining the thermosensitive properties of pNIPAM with the near-infrared (NIR) responsiveness of PDA NPs, the hydrogel aims to enhance on-demand drug release. SN-38-chol NPs, known for their stability and small size, are incorporated into the hydrogel to improve drug release dynamics. The investigation reveals a drug release cycle of over three weeks, maintaining sensitivity to both temperature and NIR light for controlled drug release. In vivo studies demonstrate the high tumor growth inhibition performance of the system after photothermal treatment induced by 808 nm NIR light. These results suggest that the drug-carrying hydrogel system holds promise for diverse applications in chemical and physical therapies, including the treatment of malignant wounds, post-surgery wound healing, and direct tumor treatment. This study establishes the potential of SN-38-chol NPs and PDA NPs/pNIPAM hydrogels as effective platforms for chemo-phototherapy.
Collapse
Affiliation(s)
- Zhixiang Liu
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, AobaSendaiMiyagi980–8577Japan
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, AobaSendaiMiyagi980–8577Japan
| | - Ryuju Suzuki
- National Institute of TechnologySendai College4‐16‐1 Ayashi, AobaSendaiMiyagi989–3128Japan
| | - Anh Thi Ngoc Dao
- Graduate School of Integrated Science and TechnologyNagasaki University1–14 BunkyoNagasakiNagasaki852–8521Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, AobaSendaiMiyagi980–8577Japan
| |
Collapse
|
4
|
He M, Chen S, Yu H, Fan X, Wu H, Wang Y, Wang H, Yin X. Advances in nanoparticle-based radiotherapy for cancer treatment. iScience 2025; 28:111602. [PMID: 39834854 PMCID: PMC11743923 DOI: 10.1016/j.isci.2024.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Radiotherapy has long been recognized as an effective conventional approach in both clinical and scientific research, primarily through mechanisms involving DNA destruction or the generation of reactive oxygen species to target tumors. However, significant challenges persist, including the unavoidable damage to normal tissues and the development of radiation resistance. As a result, nanotechnology-based radiotherapy has garnered considerable attention for its potential to enhance precision in irradiation, improve radiosensitization, and achieve therapeutic advancements. Importantly, radiotherapy alone frequently falls short of fully eradicating tumors. Consequently, to augment the efficacy of radiotherapy, it is often integrated with other therapeutic strategies. This review elucidates the mechanisms of radiotherapy sensitization based on diverse nanoparticles. Typically, radiotherapy is sensitized through augmenting reactive oxygen species production, targeted radiotherapy, hypoxia relief, enhancement of antitumor immune microenvironment, and G2/M cell cycle arrest. Moreover, the incorporation of nanoparticle-based anti-tumor strategies with radiotherapy markedly enhances the current state of radiotherapy. Additionally, a compilation of clinical trials utilizing nano-radioenhancers is presented. Finally, future prospects for clinical translation in this field are thoroughly examined.
Collapse
Affiliation(s)
- Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shixiong Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yihui Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
- Jiading Branch of Shanghai General Hospital, Shanghai 201803, China
| | - Xiaorui Yin
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
5
|
Hrubý M. Are stimuli-responsive hybrid copolymer nanoparticles the next innovation in tumor drug delivery? Expert Opin Drug Deliv 2025; 22:11-14. [PMID: 39727296 DOI: 10.1080/17425247.2024.2436081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
7
|
Huang H, Chen Z, Zheng H, Ou Y, Zhang J, Xiao K, Huang J, Liu ZQ, Chen Y. Water-Vapor-Triggered Dual-Mode Optical Responses in Rare-Earth-Doped Hollow Nanospheres. NANO LETTERS 2024; 24:15001-15007. [PMID: 39547712 DOI: 10.1021/acs.nanolett.4c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Multimode responsive optical materials are garnering ever-increasing attention due to their diverse applications. This work showcases a film assembled with rare-earth-doped CaF2 hollow nanospheres that exhibit water-vapor-triggered dual-mode optical responses. Upon exposure to flowing water vapor, the film rapidly (less than 1.5 s for a 7.7 μm thickness) transitions to a transparent state and simultaneously undergoes a sharp decrease in the photoluminescence intensity. Both of these changes fully reverse upon water evaporation, demonstrating an impressive reversibility over at least 200 cycles. The water-vapor-induced dual-mode responses are attributed to the altered incident light propagation path stemming from the similar refractive indices between CaF2 and water, coupled with the water-induced energy loss of the rare-earth ions. The fabrication of encryption patterns displaying separate signals in multiple channels, as well as the demonstration of noncontact sensing for water vapor distribution, underscore the promising application potential of this dual-mode responsive system.
Collapse
Affiliation(s)
- Hongji Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Zixian Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Hanqi Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yingyi Ou
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jianing Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Zhen W, Xu Z, Mao Y, McCleary C, Jiang X, Weichselbaum RR, Lin W. Nanoscale Mixed-Ligand Metal-Organic Framework for X-ray Stimulated Cancer Therapy. J Am Chem Soc 2024. [PMID: 39565960 DOI: 10.1021/jacs.4c12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Concurrent localized radiotherapy and systemic chemotherapy are standards of care for many cancers, but these treatment regimens cause severe adverse effects in many patients. Herein, we report the design of a mixed-ligand nanoscale metal-organic framework (nMOF) with the ability to simultaneously enhance radiotherapeutic effects and trigger the release of a potent chemotherapeutic under X-ray irradiation. We synthesized a new functional quaterphenyl dicarboxylate ligand conjugated with SN38 (H2QP-SN) via a hydroxyl radical-responsive covalent linkage. Because of the similar length of QP-SN and bis(p-benzoato)porphyrin (DBP) ligands, QP-SN was incorporated into Hf-DBP nMOF to afford a novel multifunctional mixed-ligand Hf-DBP-QP-SN nMOF with good biocompatibility. Hf-DBP-QP-SN not only enhances radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process but also increases ·OH generation from radiolysis with electron-dense Hf12 secondary building units (SBUs) to release SN38 from Hf-DBP-QP-SN for chemotherapy. Elevated levels of hydrogen peroxide in the tumor microenvironment further stimulate the release of SN38 by enhancing ·OH generation under X-ray irradiation. With low doses of X-ray irradiation, Hf-DBP-QP-SN suppressed the growth of CT26 colon and 4T1 breast tumors by 93.5% and 95.2%, respectively, without any sign of general toxicity. Our study highlights the potential of using ionizing radiation-mediated chemistry for on-demand activation of nanotherapeutics for synergistic radiotherapy and chemotherapy without causing severe adverse effects.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yibin Mao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Caroline McCleary
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Huang Y, Huang B, Shen Y, Ding Z, Yao H, Zhou X, Zhou C, Han L, Tang BZ. Nature-Inspired Artificial Aggregation-Induced Emission Antenna for Assembling with Algae to Promote Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561288 DOI: 10.1021/acsami.4c14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Inspired by the structure of chlorophyll assembled on the thylakoid membrane through its long hydrophobic chain, we designed cationic aggregation-induced emission (AIE) amphiphiles with two long hydrophobic chains to assemble with the electronegative cytomembrane of algae for efficiently converting natural ultraviolet light into usable blue light to promote photosynthesis. The photosynthesis efficiency of algae depended on the carbon chain length of the AIE amphiphile due to the difference in assembly capacity with the algal membrane. The AIE amphiphile with two hydrophobic chains of 12 carbon atoms effectively intercalated into the cytomembrane of algae, serving as an artificial membrane-embedded antenna to significantly improve light utilization by algae. This resulted in increased electron generation and a 98.6% increase in the electron transfer rate. Consequently, oxygen and ATP production in light-dependent reactions were boosted by about 100% and 64.5%, respectively, and the lipid yield increased by 45.7% in dark reactions. In addition, the AIE amphiphile also demonstrated a low biotoxicity. These results highlight the potential of AIE amphiphiles as membrane-embedded artificial antennas for optimizing natural photosynthesis.
Collapse
Affiliation(s)
- Yujin Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Yihui Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Zeyu Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Xin Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| |
Collapse
|
10
|
Chuang AEY, Tao YK, Dong SW, Nguyen HT, Liu CH. Polypyrrole/iron-glycol chitosan nanozymes mediate M1 macrophages to enhance the X-ray-triggered photodynamic therapy for bladder cancer by promoting antitumor immunity. Int J Biol Macromol 2024; 280:135608. [PMID: 39276877 DOI: 10.1016/j.ijbiomac.2024.135608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive iron-glycol chitosan-polypyrrole nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with potentially high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Yu-Kuang Tao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Shao-Wei Dong
- Taipei Medical University Shuang Ho Hospital, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| |
Collapse
|
11
|
Liu M, Li T, Zhao M, Qian C, Wang R, Liu L, Xiao Y, Xiao H, Tang X, Liu H. Nanoradiosensitizers in glioblastoma treatment: recent advances and future perspectives. Nanomedicine (Lond) 2024; 19:2229-2249. [PMID: 39311492 PMCID: PMC11487349 DOI: 10.1080/17435889.2024.2395238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 10/16/2024] Open
Abstract
Glioblastoma (GBM), a highly invasive type of brain tumor located within the central nervous system, manifests a median survival time of merely 14.6 months. Radiotherapy kills tumor cells through focused high-energy radiation and has become a crucial treatment strategy for GBM, especially in cases where surgical resection is not viable. However, the presence of radioresistant tumor cells limits its clinical effectiveness. Radioresistance is a key factor of treatment failure, prompting the development of various therapeutic strategies to overcome this challenge. With the rapid development of nanomedicine, nanoradiosensitizers provide a novel approach to enhancing the effectiveness of radiotherapy. In this review, we discuss the reasons behind GBM radio-resistance and the mechanisms of radiotherapy sensitization. Then we summarize the primary types of nanoradiosensitizers and recent progress in their application for the radiosensitization of GBM. Finally, we elucidate the factors influencing their practical implementation, along with the challenges and promising prospects associated with multifunctional nanoradiosensitizers.
Collapse
Affiliation(s)
- Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Taiping Li
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Xiao
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
He L, Wang L, Yu X, Tang Y, Jiang Z, Yang G, Liu Z, Li W. Full-course NIR-II imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers. Nat Commun 2024; 15:8240. [PMID: 39300124 DOI: 10.1038/s41467-024-52607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
The poor 5-year survival rate for bladder cancers is associated with the lack of efficient diagnostic and treatment techniques. Despite cystoscopy-assisted photomedicine and external radiation being promising modalities to supplement or replace surgery, they remain invasive or fail to provide real-time navigation. Here, we report non-invasive fractionated photodynamic therapy of bladder cancer with full-course real-time near-infrared-II imaging based on engineered X-ray-activated nanotransducers that contain lanthanide-doped nanoscintillators with concurrent emissions in visible and the second near-infrared regions and conjugated photosensitizers. Following intravesical instillation in mice with carcinogen-induced autochthonous bladder tumours, tumour-homing peptide-labelled nanotransducers realize enhanced tumour regression, robust recurrence inhibition, improved survival rates, and restored immune homeostasis under X-ray irradiation with accompanied near-infrared-II imaging. On-demand fractionated photodynamic therapy with customized doses is further achieved based on quantifiable near-infrared-II imaging signal-to-background ratios. Our study presents a promising non-invasive strategy to confront the current bladder cancer dilemma from diagnosis to treatment and prognosis.
Collapse
Affiliation(s)
- Liangrui He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liyang Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Yizhang Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhao Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guoliang Yang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, PR China.
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
13
|
Lin J, He Y, Li Y, Chen J, Liu X. Oxygen-Evolving Radiotherapy-Radiodynamic Therapy Synergized with NO Gas Therapy by Cerium-Based Rare-Earth Metal-Porphyrin Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310957. [PMID: 38698608 DOI: 10.1002/smll.202310957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Indexed: 05/05/2024]
Abstract
The efficacy of traditional radiotherapy (RT) has been severely limited by its significant side effects, as well as tumor hypoxia. Here, the nanoscale cerium (Ce)-based metaloxo clusters (Ce(IV)6)-porphyrin (meso-tetra (4-carboxyphenyl) porphyrin, TCPP) framework loaded with L-arginine (LA) (denoted as LA@Ce(IV)6-TCPP) is developed to serve as a multifarious radio enhancer to heighten X-ray absorption and energy transfer accompanied by O2/NO generation for hypoxia-improved RT-radiodynamic therapy (RDT) and gas therapy. Within tumor cells, LA@Ce(IV)6-TCPP will first react with endogenous H2O2 and inducible NO synthase (iNOS) to produce O2 and NO to respectively increase the oxygen supply and reduce oxygen consumption, thus alleviating tumor hypoxia. Then upon X-ray irradiation, LA@Ce(IV)6-TCPP can significantly enhance hydroxyl radical (•OH) generation from Ce(IV)6 metaloxo clusters for RT and synchronously facilitate singlet oxygen (1O2) generation from adjacently-coordinated TCPP for RDT. Moreover, both the •OH and 1O2 can further react with NO to generate more toxic peroxynitrite anions (ONOO-) to inhibit tumor growth for gas therapy. Benefitting from the alleviation of tumor hypoxia and intensified RT-RDT synergized with gas therapy, LA@Ce(IV)6-TCPP elicited superior anticancer outcomes. This work provides an effective RT strategy by using low doses of X-rays to intensify tumor suppression yet reduce systemic toxicity.
Collapse
Affiliation(s)
- Jinyan Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- State Key Laboratory of Structural Chemistry & CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Yueyang He
- State Key Laboratory of Structural Chemistry & CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, P. R. China
| | - Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- State Key Laboratory of Structural Chemistry & CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Jianwu Chen
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350004, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- State Key Laboratory of Structural Chemistry & CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| |
Collapse
|
14
|
Zhu S, Lin S, Han R. Treating Deep-Seated Tumors with Radiodynamic Therapy: Progress and Perspectives. Pharmaceutics 2024; 16:1135. [PMID: 39339173 PMCID: PMC11435246 DOI: 10.3390/pharmaceutics16091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Radiodynamic therapy (RDT), as an emerging cancer treatment method, has attracted attention due to its remarkable therapeutic efficacy using low-dose, high-energy radiation (such as X-rays) and has shown significant potential in cancer treatment. The RDT system typically consists of scintillators and photosensitizers (PSs). Scintillators absorb X-rays and convert them to visible light, activating nearby PSs to generate cytotoxic reactive oxygen species (ROS). Challenges faced by the two-component strategy, including low loading capacity and inefficient energy transfer, hinder its final effectiveness. In addition, the tumor microenvironment (TME) with hypoxia and immunosuppression limits the efficacy of RDTs. Recent advances introduce one-component RDT systems based on nanomaterials with high-Z metal elements, which effectively inhibit deep-seated tumors. These novel RDT systems exhibit immune enhancement and immune memory, potentially eliminating both primary and metastatic tumors. This review comprehensively analyzes recent advances in the rational construction of RDTs, exploring their mechanisms and application in the treatment of deep-seated tumors. Aimed at providing a practical resource for oncology researchers and practitioners, the review offers new perspectives for potential future directions in RDT research.
Collapse
Affiliation(s)
- Shengcang Zhu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Research and Development Department, Allife Medicine Inc., Beijing 100176, China
| | - Siyue Lin
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | - Rongcheng Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
16
|
Zhang R, Liu X, Wu FG. Russell Mechanism-Mediated Cancer Therapy: A Minireview. ChemMedChem 2024; 19:e202400186. [PMID: 38627921 DOI: 10.1002/cmdc.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/16/2024] [Indexed: 06/04/2024]
Abstract
The Russell mechanism, proposed by Russell, is a cyclic mechanism for the formation of linear tetroxide intermediates, which can spontaneously produce cytotoxic singlet oxygen (1O2) independent of oxygen, suggesting its anticancer potential. Compared with other mainstream anticancer strategies, the Russell mechanism employed for killing cancer cells does not require external energy input, harsh pH condition, and sufficient oxygen. However, up till now, the applications of Russell mechanism in antitumor therapy have been relatively rare, and there is almost no summary of the Russell mechanism in the cancer therapy field. This minireview introduces the different metal elements-based Russell mechanisms and the relevant research progress in Russell mechanism-based cancer therapy in recent years. At the same time, we briefly discussed the current challenges and future development regarding the applications of Russell mechanism. It is hoped that this review can further expand the research of Russell Mechanism in the biomedical field, and inspire researchers to extend its application fields to antibacterial, antiinflammatory, and wound healing uses.
Collapse
Affiliation(s)
- Rufeng Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
17
|
Yang S, Hu T, Williams GR, Yang Y, Zhang S, Shen J, Chen M, Liang R, Lyu L. Boosting the sonodynamic performance of CoBiMn-layered double hydroxide nanoparticles via tumor microenvironment regulation for ultrasound imaging-guided sonodynamic therapy. J Nanobiotechnology 2024; 22:317. [PMID: 38849886 PMCID: PMC11161954 DOI: 10.1186/s12951-024-02591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Sonodynamic therapy (SDT), a promising strategy for cancer treatment with the ability for deep tissue penetration, has received widespread attention in recent years. Sonosensitizers with intrinsic characteristics for tumor-specific curative effects, tumor microenvironment (TME) regulation and tumor diagnosis are in high demand. Herein, amorphous CoBiMn-layered double hydroxide (a-CoBiMn-LDH) nanoparticles are presented as multifunctional sonosensitizers to trigger reactive oxygen species (ROS) generation for ultrasound (US) imaging-guided SDT. Hydrothermal-synthesized CoBiMn-LDH nanoparticles are etched via a simple acid treatment to obtain a-CoBiMn-LDH nanoparticles with abundant defects. The a-CoBiMn-LDH nanoparticles give greater ROS generation upon US irradiation, reaching levels ~ 3.3 times and ~ 8.2 times those of the crystalline CoBiMn-LDH nanoparticles and commercial TiO2 sonosensitizer, respectively. This excellent US-triggered ROS generation performance can be attributed to the defect-induced narrow band gap and promoted electrons and holes (e-/h+) separation. More importantly, the presence of Mn4+ enables the a-CoBiMn-LDH nanoparticles to regulate the TME by decomposing H2O2 into O2 for hypoxia relief and US imaging, and consuming glutathione (GSH) for protection against ROS clearance. Biological mechanism analysis shows that a-CoBiMn-LDH nanoparticles modified with polyethylene glycol can serve as a multifunctional sonosensitizer to effectively kill cancer cells in vitro and eliminate tumors in vivo under US irradiation by activating p53, apoptosis, and oxidative phosphorylation-related signaling pathways.
Collapse
Affiliation(s)
- Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Susu Zhang
- Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, P. R. China
| | - Jiayi Shen
- Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, P. R. China
| | - Minjiang Chen
- Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, P. R. China.
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China.
| | - Lingchun Lyu
- Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, P. R. China.
| |
Collapse
|
18
|
Chen M, Zhu Q, Zhang Z, Chen Q, Yang H. Recent Advances in Photosensitizer Materials for Light-Mediated Tumor Therapy. Chem Asian J 2024; 19:e202400268. [PMID: 38578217 DOI: 10.1002/asia.202400268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Photodynamic therapy (PDT) as an emerging therapeutic method has drawn much attention in the treatment field for cancer. Photosensitizer, which can convert photon energy into cytotoxic species under light irradiation, is the core component in PDT. The design of photosensitizers still faces problems of light absorption, targeting, penetration and oxygen dependence. With the rapid progress of material science, various photosensitizers have been developed to produce cytotoxic species for treatment of tumor with high selectivity, safety, and noninvasiveness. Besides, the applications of photosensitizers have been expanded to diverse cancer treatments such as drug release, optogenetics and immune checkpoint blockade. In this review, we summarize the recent advances of photosensitizers in various therapeutic methods for cancer. Prevailing challenges and further prospects associated with photosensitizers are also discussed.
Collapse
Affiliation(s)
- Minle Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Qianru Zhu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Cheng Y, Zhao Z, Jiang S, Zhang Y, Li J, Huang S, Wang W, Xue Y, Li A, Tao Z, Wu Z, Zhang X. Enhanced Chemoradiotherapy for MRSA-Infected Osteomyelitis Using Immunomodulatory Polymer-Reinforced Nanotherapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304991. [PMID: 38408365 DOI: 10.1002/adma.202304991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/27/2023] [Indexed: 02/28/2024]
Abstract
The eradication of osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge due to its development of biofilm-induced antibiotic resistance and impaired innate immunity, which often leads to frequent surgical failure. Here, the design, synthesis, and performance of X-ray-activated polymer-reinforced nanotherapeutics that modulate the immunological properties of infectious microenvironments to enhance chemoradiotherapy against multidrug-resistant bacterial deep-tissue infections are reported. Upon X-ray radiation, the proposed polymer-reinforced nanotherapeutic generates reactive oxygen species and reactive nitrogen species. To robustly eradicate MRSA biofilms at deep infection sites, these species can specifically bind to MRSA and penetrate biofilms for enhanced chemoradiotherapy treatment. X-ray-activated nanotherapeutics modulate the innate immunity of macrophages to prevent the recurrence of osteomyelitis. The remarkable anti-infection effects of these nanotherapeutics are validated using a rat osteomyelitis model. This study demonstrates the significant potential of a synergistic chemoradiotherapy and immunotherapy method for treating MRSA biofilm-infected osteomyelitis.
Collapse
Affiliation(s)
- Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhe Zhao
- Department of Surgery of Traditional Chinese Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yun Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Anran Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, Liao Y. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol 2024; 265:130960. [PMID: 38518941 DOI: 10.1016/j.ijbiomac.2024.130960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Tumors remain one of the major threats to public health and there is an urgent need to design new pharmaceutical agents for their diagnosis and treatment. In recent years, due to the rapid development of nanotechnology, biotechnology, catalytic science, and theoretical computing, subtlety has gradually made great progress in research related to tumor diagnosis and treatment. Compared to conventional drugs, enzymes can improve drug distribution and enhance drug enrichment at the tumor site, thereby reducing drug side effects and enhancing drug efficacy. Nanozymes can also be used as tumor tracking imaging agents to reshape the tumor microenvironment, providing a versatile platform for the diagnosis and treatment of malignancies. In this paper, we review the current status of research on enzymes in oncology and analyze novel oncology therapeutic approaches and related mechanisms. To date, a large number of nanomaterials, such as noble metal nanomaterials, nonmetallic nanomaterials, and carbon-based nanomaterials, have been shown to be able to function like natural enzymes, particularly with significant advantages in tumor therapy. In light of this, the authors in this review have systematically summarized and evaluated the construction, enzymatic activity, and their characteristics of nanozymes with respect to current modalities of tumor treatment. In addition, the application and research progress of different types of nicknames and their features in recent years are summarized in detail. We conclude with a summary and outlook on the study of nanozymes in tumor diagnosis and treatment. It is hoped that this review will inspire researchers in the fields of nanotechnology, chemistry, biology, materials science and theoretical computing, and contribute to the development of nano-enzymology.
Collapse
Affiliation(s)
- Gaihua He
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Chao Mei
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Chenbo Chen
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiao Liu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Jiaxuan Wu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Yue Deng
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Ye Liao
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
21
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
22
|
Xu M, Yun Y, Li C, Ruan Y, Muraoka O, Xie W, Sun X. Radiation responsive PROTAC nanoparticles for tumor-specific proteolysis enhanced radiotherapy. J Mater Chem B 2024; 12:3240-3248. [PMID: 38437473 DOI: 10.1039/d3tb03046f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) is a promising strategy for cancer therapy. However, the always-on bioactivity of PROTACs may lead to non-target toxicity, which restricts their antitumor performance. Here, we developed an X-ray radiation responsive PROTAC nanomicelle (RCNprotac) by covalently conjugating a reported small molecule PROTAC (MZ1) to hydrophilic PEG via a diselenide bond-containing carbon chain, which then self-assembled into a 141.80 ± 5.66 nm nanomicelle. The RCNprotac displayed no bioactivity during circulation due to the occupation of the hydroxyl group on the E3 ubiquitin ligand component and could effectively accumulate at the tumor site owing to the enhanced permeability and retention effect. Upon exposure to X-ray radiation, the radiation-sensitive diselenide bonds were broken to specifically release MZ1 for tumor BRD4 protein degradation. Furthermore, the reduction in the BRD4 protein level could increase the tumor's sensitivity to radiation. RCNprotac showed a synergistic enhancement of antitumor effects both in vitro and in vivo. We believe that this X-ray-responsive PROTAC nanomicelle could provide a new strategy for the X-ray-activated spatiotemporally controlled protein degradation and for the BRD4 proteolysis enhanced tumor radiosensitivity.
Collapse
Affiliation(s)
- Mengxia Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyang Yun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Changjun Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Osamu Muraoka
- Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
23
|
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
24
|
Tang F, Ding A, Xu Y, Ye Y, Li L, Xie R, Huang W. Gene and Photothermal Combination Therapy: Principle, Materials, and Amplified Anticancer Intervention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307078. [PMID: 37775950 DOI: 10.1002/smll.202307078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Gene therapy (GT) and photothermal therapy (PTT) have emerged as promising alternatives to chemotherapy and radiotherapy for cancer treatment, offering noninvasiveness and reduced side effects. However, their efficacy as standalone treatments is limited. GT exhibits slow response rates, while PTT is confined to local tumor ablation. The convergence of GT and PTT, known as GT-PTT, facilitated by photothermal gene nanocarriers, has attracted considerable attention across various disciplines. In this integrated approach, GT reciprocates PTT by sensitizing cellular response to heat, while PTT benefits GT by improving gene translocation, unpacking, and expression. Consequently, this integration presents a unique opportunity for cancer therapy with rapid response and improved effectiveness. Extensive efforts over the past few years have been dedicated to the development of GT-PTT, resulting in notable achievements and rapid progress from the laboratory to potential clinical applications. This comprehensive review outlines recent advances in GT-PTT, including synergistic mechanisms, material systems, imaging-guided therapy, and anticancer applications. It also explores the challenges and future prospects in this nascent field. By presenting innovative ideas and insights into the implementation of GT-PTT for enhanced cancer therapy, this review aims to inspire further progress in this promising area of research.
Collapse
Affiliation(s)
- Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yao Xu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yingsong Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rongjun Xie
- Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
25
|
Zhang Q, Yin R, Guan G, Liu H, Song G. Renal clearable magnetic nanoparticles for magnetic resonance imaging and guided therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1929. [PMID: 37752407 DOI: 10.1002/wnan.1929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive, radiation-free imaging technique widely used for disease detection and therapeutic evaluation due to its infinite penetration depth. Magnetic nanoparticles (MNPs) have unique magnetic and physicochemical properties, making them ideal as contrast agents for MRI. However, the in vivo toxicity of MNPs, resulting from metal ion leakage and long-term accumulation in the reticuloendothelial system (RES), limits their clinical application. To overcome these challenges, there is considerable interest in the development of renal-clearable MNPs that can be completely cleared through the kidney, reducing retention time and potential toxic risks. In this review, we provide an overview of recent advancements in the development of renal-clearable MNPs for disease imaging and treatment. We discuss the factors influencing renal clearance, summarize the types of renal-clearable MNPs, their synthesis methods, and biomedical applications. This review aims to offer comprehensive information for the design and clinical translation of renal-clearable MNPs. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Qinpeng Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Rui Yin
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, China
| | - Guoqiang Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Huiyi Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Guosheng Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
26
|
Li J, Lv Z, Guo Y, Fang J, Wang A, Feng Y, Zhang Y, Zhu J, Zhao Z, Cheng X, Shi H. Hafnium (Hf)-Chelating Porphyrin-Decorated Gold Nanosensitizers for Enhanced Radio-Radiodynamic Therapy of Colon Carcinoma. ACS NANO 2023; 17:25147-25156. [PMID: 38063344 DOI: 10.1021/acsnano.3c08068] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
X-ray-induced radiodynamic therapy (RDT) that can significantly reduce radiation dose with an improved anticancer effect has emerged as an attractive and promising therapeutic modality for tumors. However, it is highly significant to develop safe and efficient radiosensitizing agents for tumor radiation therapy. Herein, we present a smart nanotheranostic system FA-Au-CH that consists of gold nanoradiosensitizers, photosensitizer chlorin e6 (Ce6), and folic acid (FA) as a folate-receptor-targeting ligand for improved tumor specificity. FA-Au-CH nanoparticles have been demonstrated to be able to simultaneously serve as radiosensitizers and RDT agents for enhanced computed tomography (CT) imaging-guided radiotherapy (RT) of colon carcinoma, owing to the strong X-ray attenuation capability of high-Z elements Au and Hf, as well as the characteristics of Hf that can transfer radiation energy to Ce6 to generate ROS from Ce6 under X-ray irradiation. The integration of RT and RDT in this study demonstrates great efficacy and offers a promising therapeutic modality for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Yirui Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jinfeng Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Zhongsheng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
27
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
28
|
Li X, He S, Luo B, Li P, Chen X, Wu M, Song C, Liu C, Yang T, Zhang X, Yang X, Hu J. Engineered Extracellular Vesicles to Enhance Antigen Presentation for Boosting Light-Driven Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303541. [PMID: 37608451 DOI: 10.1002/smll.202303541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/26/2023] [Indexed: 08/24/2023]
Abstract
Extracellular vesicles (EVs) have emerged as potential tools for tumor-target therapy accompanied with activating anticancer immune responses by serving as an integrated platform, but usually suffered from the limited cross presentation of tumor-associated antigen by dendritic cells (DCs). Here, a straightforward engineering strategy to construct heat shock proteins 70 (HSP70) highly expressed EVs incapsulated with Te nanoparticles (Te@EVsHSP70 ) for tumor photothermal therapy triggering improved immunotherapy is proposed. Tumor cells are firstly used as bioreactors for intracellular synthesis of Te nanoparticles, and NIR irradiation is subsequently introduced to upregulate the expression of HSP70 to give engineered Te@EVsHSP70 through exocytosis. Te@EVsHSP70 exhibits excellent photothermal performance and enhanced tumor antigen capture capability, which induces significant immunogenic death of tumor cells and improves DCs maturation both in vitro and in vivo. Thus, the engineered EVs demonstrate superior antitumor efficacy through photothermal effect and following provoked antitumor immune responses. This work provides a facile method to fabricate multifunctional EVs-based drug delivery system for improving photothermal-triggered tumor immunotherapy.
Collapse
Affiliation(s)
- Xuyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuaicheng He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Ophthalmology, Wenchang People's Hospital, Haikou, 571321, China
| | - Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xue Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Meichan Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cheng Song
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
29
|
Huang L, Su Y, Zhang D, Zeng Z, Hu X, Hong S, Lin X. Recent theranostic applications of hydrogen peroxide-responsive nanomaterials for multiple diseases. RSC Adv 2023; 13:27333-27358. [PMID: 37705984 PMCID: PMC10496458 DOI: 10.1039/d3ra05020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
It is well established that hydrogen peroxide (H2O2) is associated with the initiation and progression of many diseases. With the rapid development of nanotechnology, the diagnosis and treatment of those diseases could be realized through a variety of H2O2-responsive nanomaterials. In order to broaden the application prospects of H2O2-responsive nanomaterials and promote their development, understanding and summarizing the design and application fields of such materials has attracted much attention. This review provides a comprehensive summary of the types of H2O2-responsive nanomaterials including organic, inorganic and organic-inorganic hybrids in recent years, and focused on their specific design and applications. Based on the type of disease, such as tumors, bacteria, dental diseases, inflammation, cardiovascular diseases, bone injury and so on, key examples for above disease imaging diagnosis and therapy strategies are introduced. In addition, current challenges and the outlook of H2O2-responsive nanomaterials are also discussed. This review aims to stimulate the potential of H2O2-responsive nanomaterials and provide new application ideas for various functional nanomaterials related to H2O2.
Collapse
Affiliation(s)
- Linjie Huang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Yina Su
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xueqi Hu
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| |
Collapse
|
30
|
Azad AK, Lilge L, Usmani NH, Lewis JD, Cole HD, Cameron CG, McFarland SA, Dinakaran D, Moore RB. High quantum efficiency ruthenium coordination complex photosensitizer for improved radiation-activated Photodynamic Therapy. Front Oncol 2023; 13:1244709. [PMID: 37700826 PMCID: PMC10494715 DOI: 10.3389/fonc.2023.1244709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Traditional external light-based Photodynamic Therapy (PDT)'s application is limited to the surface and minimal thickness tumors because of the inefficiency of light in penetrating deep-seated tumors. To address this, the emerging field of radiation-activated PDT (radioPDT) uses X-rays to trigger photosensitizer-containing nanoparticles (NPs). A key consideration in radioPDT is the energy transfer efficiency from X-rays to the photosensitizer for ultimately generating the phototoxic reactive oxygen species (ROS). In this study, we developed a new variant of pegylated poly-lactic-co-glycolic (PEG-PLGA) encapsulated nanoscintillators (NSCs) along with a new, highly efficient ruthenium-based photosensitizer (Ru/radioPDT). Characterization of this NP via transmission electron microscopy, dynamic light scattering, UV-Vis spectroscopy, and inductively coupled plasma mass-spectroscopy showed an NP size of 120 nm, polydispersity index (PDI) of less than 0.25, high NSCs loading efficiency over 90% and in vitro accumulation within the cytosolic structure of endoplasmic reticulum and lysosome. The therapeutic efficacy of Ru/radioPDT was determined using PC3 cell viability and clonogenic assays. Ru/radioPDT exhibited minimal cell toxicity until activated by radiation to induce significant cancer cell kill over radiation alone. Compared to protoporphyrin IX-mediated radioPDT (PPIX/radioPDT), Ru/radioPDT showed higher capacity for singlet oxygen generation, maintaining a comparable cytotoxic effect on PC3 cells.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nawaid H. Usmani
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Deepak Dinakaran
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Radiation Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Ronald B. Moore
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Zou YM, Li RT, Yu L, Huang T, Peng J, Meng W, Sun B, Zhang WH, Jiang ZH, Chen J, Chen JX. Reprogramming of the tumor microenvironment using a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic PDT, NO, and radiosensitization therapy of breast cancer and improving anti-tumor immunity. NANOSCALE 2023. [PMID: 37318099 DOI: 10.1039/d3nr01050c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low X-ray attenuation coefficient of tumor soft tissue and the hypoxic tumor microenvironment (TME) during radiation therapy (RT) of breast cancer result in RT resistance and thus reduced therapeutic efficacy. In addition, immunosuppression induced by the TME severely limits the antitumor immunity of radiation therapy. In this paper, we propose a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic radiosensitization, photodynamic, and NO therapy of breast cancer that also boosts antitumor immunity (PCN = porous coordination network, IrNCs = iridium nanocrystals, D-Arg = D-arginine). The local tumors can be selectively ablated via reprogramming the tumor microenvironment (TME), photodynamic therapy (PDT) and NO therapy, and the presence of the high-Z element Ir that sensitizes radiotherapy. The synergistic execution of these treatment modalities also resulted in adapted antitumor immune response. The intrinsic immunomodulatory effects of the nanoplatform also repolarize macrophages toward the M1 phenotype and induce dendritic cell maturation, activating antitumor T cells to induce immunogenic cell death as demonstrated in vitro and in vivo. The nanocomposite design reported herein represents a new regimen for the treatment of breast cancer through TME reprogramming to exert a synergistic effect for effective cancer therapy and antitumor immunity.
Collapse
Affiliation(s)
- Yi-Ming Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Rong-Tian Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Lei Yu
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Avenue, Guangzhou 510091, People's Republic of China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jian Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Bin Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhi-Hong Jiang
- Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
32
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
33
|
Jiang X, Gao X, Li L, Zhou P, Wang S, Liu T, Zhou J, Zhang H, Huang K, Li Y, Wang M, Jin Z, Xie E, Liu W, Han G. Enhancement of Light and X-ray Charging in Persistent Luminescence Nanoparticle Scintillators Zn 2SiO 4:Mn 2+, Yb 3+, Li . ACS APPLIED MATERIALS & INTERFACES 2023; 15:21228-21238. [PMID: 37078901 DOI: 10.1021/acsami.3c00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Persistent luminescence nanoparticle scintillators (PLNS) have been attempted for X-ray-induced photodynamic therapy (X-PDT) because persistent luminescence after ceasing radiation can make PLNS use less cumulative irradiation time and dose to generate the same amount of reactive oxygen species (ROS) compared with conventional scintillators to combat cancer cells. However, excessive surface defects in PLNS reduce the luminescence efficiency and quench the persistent luminescence, which is fatal to the efficacy of X-PDT. Herein, the PLNS of SiO2@Zn2SiO4:Mn2+, Yb3+, Li+ was designed by the energy trap engineering and synthesized by a simple template method, which has excellent X-ray and UV-excited persistent luminescence and continuously tunable emission spectra from 520 to 550 nm. Its luminescence intensity and afterglow time are more than 7 times that of the reported Zn2SiO4:Mn2+ used for X-PDT. By loading a Rose Bengal (RB) photosensitizer, an effective persistent energy transfer from the PLNS to photosensitizer is observed even after the removal of X-ray irradiation. The X-ray dose of nanoplatform SiO2@Zn2SiO4:Mn2+, Yb3+, Li+@RB in X-PDT of HeLa cancer cells was reduced to 0.18 Gy compared to the X-ray dose of 1.0 Gy for Zn2SiO4:Mn for X-PDT. This indicates that the Zn2SiO4:Mn2+, Yb3+, Li+ PLNS have great potential for X-PDT applications.
Collapse
Affiliation(s)
- Xiaohui Jiang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xiuping Gao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Lingyi Li
- The High School Attached to Northwest Normal University, Lanzhou, Gansu 730000, P. R. China
| | - Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Shasha Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Tao Liu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Haodong Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Yang Li
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Min Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Zhiwen Jin
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
34
|
Zhang G, Guo M, Ma H, Wang J, Zhang XD. Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomater Sci 2023; 11:1153-1181. [PMID: 36602259 DOI: 10.1039/d2bm01698b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment because of its high selectivity, low toxicity, and non-invasiveness. However, the limited penetration depth of the light still hampers from reaching deep-seated tumors. Considering the penetrating ability of high-energy radiotherapy, X-ray-induced photodynamic therapy (X-PDT) has evolved as an alternative to overcome tissue blocks. As the basic principle of X-PDT, X-rays stimulate the nanoparticles to emit scintillating or persistent luminescence and further activate the photosensitizers to generate reactive oxygen species (ROS), which would cause a series of molecular and cellular damages, immune response, and eventually break down the tumor tissue. In recent years, catalytic nanosystems with unique structures and functions have emerged that can enhance X-PDT therapeutic effects via an immune response. The anti-cancer effect of X-PDT is closely related to the following factors: energy conversion efficiency of the material, the radiation dose of X-rays, quantum yield of the material, tumor resistance, and biocompatibility. Based on the latest research in this field and the classical theories of nanoscience, this paper systematically elucidates the current development of the X-PDT and related immunotherapy, and highlights its broad prospects in medical applications, discussing the connection between fundamental science and clinical translation.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | - Junying Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China. .,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
35
|
Zhou J, Xu D, Tian G, He Q, Zhang X, Liao J, Mei L, Chen L, Gao L, Zhao L, Yang G, Yin W, Nie G, Zhao Y. Coordination-Driven Self-Assembly Strategy-Activated Cu Single-Atom Nanozymes for Catalytic Tumor-Specific Therapy. J Am Chem Soc 2023; 145:4279-4293. [PMID: 36744911 DOI: 10.1021/jacs.2c13597] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How to optimize the enzyme-like catalytic activity of nanozymes to improve their applicability has become a great challenge. Herein, we present an l-cysteine (l-Cys) coordination-driven self-assembly strategy to activate polyvinylpyrrolidone (PVP)-modified Cu single-atom nanozymes MoOx-Cu-Cys (denoted as MCCP SAzymes) aiming at catalytic tumor-specific therapy. The Cu single atom content of MCCP can be rationally modulated to 10.10 wt %, which activates the catalase (CAT)-like activity of MoOx nanoparticles to catalyze the decomposition of H2O2 in acidic microenvironments to increase O2 production. Excitingly, the maximized CAT-like catalytic efficiency of MCCP is 138-fold higher than that of typical MnO2 nanozymes and exhibits 14.3-fold higher affinity than natural catalase, as demonstrated by steady-state kinetics. We verify that the well-defined l-Cys-Cu···O active sites optimize CAT-like activity to match the active sites of natural catalase through an l-Cys bridge-accelerated electron transfer from Cys-Cu to MoOx disclosed by density functional theory calculations. Simultaneously, the high loading Cu single atoms in MCCP also enable generation of •OH via a Fenton-like reaction. Moreover, under X-ray irradiation, MCCP converts O2 to 1O2 for cascading radiodynamic therapy, thereby facilitating the multiple reactive oxygen species (ROS) for radiosensitization to achieve substantial antitumor.
Collapse
Affiliation(s)
- Jie Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Deting Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Qian He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Jing Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Lizeng Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Affiliation(s)
- Qinxia Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qianyu Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
37
|
Yang T, Guo L, Wang H, Xu X, Wu P, Zhang N, Liu X, Liu S, Zhao Q. Enhanced radioluminescence of NaLuF 4:Eu 3+ nanoscintillators by terbium sensitization for X-ray imaging. Inorg Chem Front 2023; 10:3974-3982. [DOI: 10.1039/d3qi00777d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
NaLuF4:Eu3+ nanoscintillator with enhanced radioluminescence was boosted by the sensitization effect of Tb3+ on Eu3+ with an excellent X-ray scintillation performance, and further applied in X-ray imaging with high contrast for different samples.
Collapse
Affiliation(s)
- Tianshe Yang
- School of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Luo Guo
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Hao Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Xueli Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Peilin Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ning Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Xiangmei Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
38
|
Shi Y, Zhang C, Liu C, Ma X, Liu Z. Image-Guided Precision Treatments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:59-86. [PMID: 37460727 DOI: 10.1007/978-981-32-9902-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chemotherapy, radiotherapy, and surgery are traditional cancer treatments, which usually produce unpredictable side effects and potential risks to normal healthy organs/tissues. Thus, safe and reliable treatment strategies are urgently required for maximized therapeutic efficiency to lesions and minimized risks to healthy regions. To this end, molecular imaging is responsible to undertake a specific targeting therapy. Besides that, the image guidance as a precision visualized approach for real-time in situ evaluations as well as an intraoperational navigation approach has earned attractive attention in the past decade. Along with the rapid development of multifunctional micro-/nanobiomaterials, versatile cutting-edge and advanced therapy strategies (e.g., thermal therapy, dynamic therapy, gas therapy, etc.) have been achieved and greatly contributed to the image-guided precision treatments in every aspect. Therefore, this chapter aims to discuss about both traditional and advanced cancer treatments and especially to elucidate the important roles that visualized medicine has been playing in the image-guided precision treatments.
Collapse
Affiliation(s)
- Yu Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chenxi Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xinyong Ma
- Division of Academic & Cultural Activities, Academic Divisions of the Chinese Academy of Sciences, Beijing, China
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
39
|
Liu S, Fang L, Ding H, Zhang Y, Li W, Liu B, Dong S, Tian B, Feng L, Yang P. Alternative Strategy to Optimize Cerium Oxide for Enhanced X-ray-Induced Photodynamic Therapy. ACS NANO 2022; 16:20805-20819. [PMID: 36378717 DOI: 10.1021/acsnano.2c08047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emergence of X-ray-induced photodynamic therapy (X-PDT) holds tremendous promise for clinical deep-penetrating cancer therapy. However, the clinical application of X-PDT in cancer treatment is still limited due to the hypoxic property of cancerous tissue, the inherent antioxidant system of tumor cells, and the difficulty in matching the absorption spectra of photosensitizers. Herein, a versatile core-shell radiosensitizer (SCNPs@DMSN@CeOx-PEG, denoted as SSCP) was elaborately designed and constructed to enhance X-PDT by coating tunable mesoporous silica on nanoscintillators, followed by embedding the cerium oxide nanoparticles in situ. The obtained SSCP radiosensitizer demonstrated a distinct blue-shift in the ultraviolet light region, so that it could perfectly absorb the ultraviolet light converted by the SCNPs core, resulting in the formation of photoinduced electron-hole (e--h+) pairs separation to generate reactive oxygen species (ROS). In addition, the cerium oxide exhibits high glutathione consumption to heighten ROS accumulation, and catalase-like activity to alleviate the hypoxia, which further enhances the efficiency of radiotherapy. Benefiting from the abundant Lu and Ce elements, the computed tomography imaging performance of SSCP is about 3.79-fold that of the clinical contrast agent (iohexol), which has great potential in both preclinical imaging and clinical translation.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Linyang Fang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Yangyang Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
40
|
He L, Yu X, Li W. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS NANO 2022; 16:19691-19721. [PMID: 36378555 DOI: 10.1021/acsnano.2c07286] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The prominence of photodynamic therapy (PDT) in treating superficial skin cancer inspires innovative solutions for its congenitally deficient shadow penetration of the visible-light excitation. X-ray-induced photodynamic therapy (X-PDT) has been proven to be a successful technique in reforming the conventional PDT for deep-seated tumors by creatively utilizing penetrating X-rays as external excitation sources and has witnessed rapid developments over the past several years. Beyond the proof-of-concept demonstration, recent advances in X-PDT have exhibited a trend of minimizing X-ray radiation doses to quite low values. As such, scintillating materials used to bridge X-rays and photosensitizers play a significant role, as do diverse well-designed irradiation modes and smart strategies for improving the tumor microenvironment. Here in this review, we provide a comprehensive summary of recent achievements in X-PDT and highlight trending efforts using low doses of X-ray radiation. We first describe the concept of X-PDT and its relationships with radiodynamic therapy and radiotherapy and then dissect the mechanism of X-ray absorption and conversion by scintillating materials, reactive oxygen species evaluation for X-PDT, and radiation side effects and clinical concerns on X-ray radiation. Finally, we discuss a detailed overview of recent progress regarding low-dose X-PDT and present perspectives on possible clinical translation. It is expected that the pursuit of low-dose X-PDT will facilitate significant breakthroughs, both fundamentally and clinically, for effective deep-seated cancer treatment in the near future.
Collapse
|
41
|
Hurley N, Srinivas S, Fang J, Sun M, Hong S, Chien CT, Guo A, Khan TA, Li M, Cotlet M, Moretti F, Bourret E, Radin D, Tsirka SE, Shelly M, Wong SS. Investigation of the photoluminescent properties, scintillation behaviour and toxicological profile of various magnesium tungstate nanoscale motifs. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220994. [PMID: 36483754 PMCID: PMC9727672 DOI: 10.1098/rsos.220994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
We have synthesized several morphologies and crystal structures of MgWO4 using a one-pot hydrothermal method, producing not only monoclinic stars and large nanoparticles but also triclinic wool balls and sub-10 nm nanoparticles. Herein we describe the importance of reaction parameters in demonstrating morphology control of as-prepared MgWO4. Moreover, we correlate structure and composition with the resulting photoluminescence and radioluminescence properties. Specifically, triclinic-phase samples yielded a photoluminescence emission of 421 nm, whereas monoclinic-phase materials gave rise to an emission maximum of 515 nm. The corresponding radioluminescence data were characterized by a broad emission peak, located at 500 nm for all samples. Annealing the wool balls and sub-10 nm particles to transform the crystal structure from a triclinic to a monoclinic phase yielded a radioluminescence (RL) emission signal that was two orders of magnitude greater than that of their unannealed counterparts. Finally, to confirm the practical utility of these materials for biomedical applications, a series of sub-10 nm particles, including as-prepared and annealed samples, were functionalized with biocompatible PEG molecules, and subsequently were found to be readily taken up by various cell lines as well as primary cultured hippocampal neurons with low levels of toxicity, thereby highlighting for the first time the potential of this particular class of metal oxides as viable and readily generated platforms for a range of biomedical applications.
Collapse
Affiliation(s)
- Nathaniel Hurley
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Sailesh Srinivas
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Justin Fang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | - Manli Sun
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Simon Hong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Chia Te Chien
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | - Alan Guo
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | - Tamor A. Khan
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Building 735, Upton, NY 11973, USA
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Building 735, Upton, NY 11973, USA
| | - Federico Moretti
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edith Bourret
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel Radin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | - Maya Shelly
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | - Stanislaus S. Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
42
|
Liu B, Liu C, Zhang X, Yao S, Wang Z, Liu Z, Song K, Li J. X-ray triggered pea-shaped LuAG:Mn/Ca nano-scintillators and their applications for photodynamic therapy. J Mater Chem B 2022; 10:6380-6391. [PMID: 35968697 DOI: 10.1039/d2tb01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is a new minimally invasive technology for disease diagnosis and treatment. However, the biological tissue attenuation of visible light renders the depth of its penetration in tissues quite modest, which significantly restricts its therapeutic applicability. Therefore, it is an essential but yet a difficult task to enhance the X-ray sensitization impact while concurrently limiting the tissue scattering by the rational design of novel biological vectors. Herein, a novel Lu3Al5O12:Mn/Ca-Ce6@SiO2 nanoparticle system (LAMCCS) based on a pea-shaped LuAG:Mn/Ca nano-scintillator (LAMC) activating photosensitizer agent (Ce6) was designed. Due to the high radiosensitization of LAMC nano-scintillators and efficient energy conversion efficiency between LAMC and Ce6, more singlet oxygen (1O2) could be generated to efficiently damage DNA fragments and reveal a good effect of inhibiting the long-term proliferation of tumor cells in vitro. Significantly, synergistic therapy with PDT/radiotherapy (RT) and from LAMCCS nanocomposites may still maintain a high tumor growth inhibition rate of 72% than single RT of 10% in vivo. Owing to their excellent ability for X-ray sensitization and energy conversion, LAMCCS nanocomposites may have significant tumor growth suppression rates under lower X-ray dose irradiation due to their outstanding X-ray sensitization and energy conversion capabilities, which may open up a new avenue for the advancement of cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaolei Zhang
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Ziying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Zongming Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
- Infovision Optoelectronics(Kunshan)Co, Ltd, Kunshan, China
| |
Collapse
|
43
|
Liu C, Wang Y, Li L, He D, Chi J, Li Q, Wu Y, Zhao Y, Zhang S, Wang L, Fan Z, Liao Y. Engineered extracellular vesicles and their mimetics for cancer immunotherapy. J Control Release 2022; 349:679-698. [PMID: 35878728 DOI: 10.1016/j.jconrel.2022.05.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous vesicles secreted by living cells that are involved in many physiological and pathological processes as intermediaries for intercellular communication and molecular transfer. Recent studies have shown that EVs can regulate the occurrence and development of tumors by transferring proteins, lipids and nucleic acids to immune cells as signaling molecules. As a new diagnostic biomarker and drug delivery system, EVs have broad application prospects in immunotherapy. In addition, the breakthrough of nanotechnology has promoted the development and exploration of engineered EVs for immune-targeted therapy. Herein, we review the uniqueness of EVs in immune regulation and the engineering strategies used for immunotherapy and highlight the logic of their design through typical examples. The present situation and challenges of clinical transformation are discussed, and the development prospects of EVs in immunotherapy are proposed. The goal of this review is to provide new insights into the design of immune-regulatory EVs and expand their application in cancer immunotherapy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiaxin Chi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yixiao Wu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yunxuan Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shihui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China.
| | - Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| |
Collapse
|
44
|
Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Copper-based nanomaterials (Cu-based NMs) with favorable biocompatibility and unique properties have attracted the attention of many biomedical researchers. Cu-based NMs are one of the most widely studied materials in cancer treatment. In recent years, great progress has been made in the field of biomedicine, especially in the treatment and diagnosis of tumors. This review begins with the classification of Cu-based NMs and the recent synthetic strategies of Cu-based NMs. Then, according to the abundant and special properties of Cu-based NMs, their application in biomedicine is summarized in detail. For biomedical imaging, such as photoacoustic imaging, positron emission tomography imaging, and multimodal imaging based on Cu-based NMs are summarized, as well as strategies to improve the diagnostic effectiveness. Moreover, a series of unique structures and functions as well as the underlying property activity relationship of Cu-based NMs were shown to highlight their promising therapeutic performance. Cu-based NMs have been widely used in monotherapies, such as photothermal therapy (PTT) and chemodynamic therapy (CDT). Moreover, the sophisticated design in composition, structure, and surface fabrication of Cu-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. To further improve the efficiency of cancer treatment, combined therapy based on Cu-based NMs was introduced in detail. Finally, the challenges, critical factors, and future prospects for the clinical translation of Cu-based NMs as multifunctional theranostic agents were also considered and discussed. The aim of this review is to provide a better understanding and key consideration for the rational design of this increasingly important new paradigm of Cu-based NMs as theranostic agents. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiaoyan Zhong
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Wang Y, Zhang H, Liu Y, Younis MH, Cai W, Bu W. Catalytic radiosensitization: Insights from materials physicochemistry. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2022; 57:262-278. [PMID: 36425004 PMCID: PMC9681018 DOI: 10.1016/j.mattod.2022.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Radiotherapy is indispensable in clinical cancer treatment, but because both tumor and normal tissues have similar sensitivity to X-rays, their clinical curative effect is intrinsically limited. Advanced nanomaterials and nanotechnologies have been developed for radiotherapy sensitization, typically employing high atomic number (high-Z) materials to enhance the energy deposition of X-rays in tumor tissues, but the efficiency is largely limited by the toxicity of heavy metals. A new and promising approach for radiosensitization is catalytic radiosensitization, which takes advantage of the catalytic activity of nanomaterials triggered by radiation. The efficiency of catalytic radiosensitization can be greatly enhanced by electron modulation and energy conversion of nanocatalysts upon X-ray irradiation, further enhancing the clinical curative effect. In this review, we highlight the challenges and opportunities in cancer radiosensitization, discuss novel approaches to catalytic radiosensitization, and finally describe the development of catalytic radiosensitization based on an in-depth understanding of radio-nano interactions and catalysis-biological interactions.
Collapse
Affiliation(s)
- Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Huilin Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| |
Collapse
|
46
|
Guo W, Chen Z, Tan L, Gu D, Ren X, Fu C, Wu Q, Meng X. Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. VIEW 2022. [DOI: 10.1002/viw.20200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan P.R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| |
Collapse
|
47
|
Hao X, Wu J, Xiang D, Yang Y. Recent Advance of Nanomaterial-Mediated Tumor Therapies in the Past Five Years. Front Pharmacol 2022; 13:846715. [PMID: 35250598 PMCID: PMC8896221 DOI: 10.3389/fphar.2022.846715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer has posed a major threat to human life and health with a rapidly increasing number of patients. The complexity and refractory of tumors have brought great challenges to tumor treatment. In recent years, nanomaterials and nanotechnology have attracted more attention and greatly improved the efficiency of tumor therapies and significantly prolonged the survival period, whether for traditional tumor treatment methods such as radiotherapy, or emerging methods, such as phototherapy and immunotherapy, sonodynamic therapy, chemodynamic therapy and RNA interference therapeutics. Various monotherapies have obtained positive results, while combination therapies are further proposed to prevent incomplete eradication and recurrence of tumors, strengthen tumor killing efficacy with minimal side effects. In view of the complementary promotion effects between different therapies, it is vital to utilize nanomaterials as the link between monotherapies to achieve synergistic performance. Further development of nanomaterials with efficient tumor-killing effect and better biosafety is more in line with the needs of clinical treatment. In a word, the development of nanomaterials provides a promising way for tumor treatment, and here we will review the emerging nanomaterials towards radiotherapy, phototherapy and immunotherapy, and summarized the developed nanocarriers applied for the tumor combination therapies in the past 5 years, besides, the advances of some other novel therapies such as sonodynamic therapy, chemodynamic therapy, and RNA interference therapeutics have also been mentioned.
Collapse
Affiliation(s)
- Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - DaXiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongyu Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
48
|
Yang N, Gong F, Cheng L. Recent advances in upconversion nanoparticle-based nanocomposites for gas therapy. Chem Sci 2022; 13:1883-1898. [PMID: 35308837 PMCID: PMC8848774 DOI: 10.1039/d1sc04413c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Gas therapy has attracted wide attention for the treatment of various diseases. However, a controlled gas release is highly important for biomedical applications. Upconversion nanoparticles (UCNPs) can precisely convert the long wavelength of light to ultraviolet/visible (UV/Vis) light in gas therapy for the controlled gas release owing to their unique upconversion luminescence (UCL) ability. In this review, we mainly summarized the recent progress of UCNP-based nanocomposites in gas therapy. The gases NO, O2, H2, H2S, SO2, and CO play an essential role in the physiological and pathological processes. The UCNP-based gas therapy holds great promise in cancer therapy, bacterial therapy, anti-inflammation, neuromodulation, and so on. Furthermore, the limitations and prospects of UCNP-based nanocomposites for gas therapy are also discussed.
Collapse
Affiliation(s)
- Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| |
Collapse
|
49
|
Yao Y, Li J, Li P, Wang D, Bao W, Xiao Y, Chen X, He S, Hu J, Yang X. Bacterially Synthesized Tellurium Nanorods for Elimination of Advanced Malignant Tumor by Photothermal Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105716. [PMID: 34889048 DOI: 10.1002/smll.202105716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Probiotic Escherichia coli Nissle 1917 (EcN) are employed as a bioreactor for intracellularly synthesizing tellurium nanorods (TeNRs) providing a biohybrid therapeutic platform (Te@EcN) for the elimination of advanced malignant tumor by photothermal immunotherapy. Te@EcN is found to possess superior photothermal property upon near-infrared irradiation, and can efficiently accumulate and retain in tumors, although EcN loses proliferation ability after the synthesis of TeNRs, thus inducing considerable immunogenic tumor cell death. Under co-stimulation by EcN acting as immunoadjuvants, maturation of dendritic cells and priming of cytotoxic T cells are largely promoted. In addition, Te@EcN can reprogram tumor-associated macrophages to ameliorate the immunosuppressive tumor microenvironment. Thus, tumor metastasis and recurrence can be efficiently suppressed. Most importantly, owing to the non-pathogenicity of probiotic EcN and their non-proliferative characteristics after TeNRs synthesis, Te@EcN is found to be rapidly metabolized and cleared from the normal tissues, showing very slight acute side effects in healthy mice even at a relatively high administration dose. Therefore, the proposed combined therapeutic strategy based on bacteria-synthesized TeNRs may find great potential in improving bacteria-mediated tumor therapy with increased antitumor efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Bao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xue Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuaicheng He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
50
|
Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022; 282:121425. [DOI: 10.1016/j.biomaterials.2022.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|