1
|
Sindeeva OA, Kozyreva ZV, Abdurashitov AS, Sukhorukov GB. Engineering colloidal systems for cell manipulation, delivery, and tracking. Adv Colloid Interface Sci 2025; 340:103462. [PMID: 40037017 DOI: 10.1016/j.cis.2025.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Men-made colloidal systems are widely presented across various aspects of biomedical science. There is a strong demand for engineering colloids to tailor their functions and properties to meet the requirements of biological and medical tasks. These requirements are not only related to size, shape, capacity to carry bioactive compounds as drug delivery systems, and the ability to navigate via chemical and physical targeting. Today, the more challenging aspects of colloid design are how the colloidal particles interact with biological cells, undergo internalization by cells, how they reside in the cell interior, and whether we can explore cells with colloids, intervene with biochemical processes, and alter cell functionality. Cell tracking, exploitation of cells as natural transporters of internalized colloidal carriers loaded with drugs, and exploring physical methods as external triggers of cell functions are ongoing topics in the research agenda. In this review, we summarize recent advances in these areas, focusing on how colloidal particles interact and are taken up by mesenchymal stem cells, dendritic cells, neurons, macrophages, neutrophils and lymphocytes, red blood cells, and platelets. The engineering of colloidal vesicles with cell membrane fragments and exosomes facilitates their application. The perspectives of different approaches in colloid design, their limitations, and obstacles on the biological side are discussed.
Collapse
Affiliation(s)
- Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| | - Zhanna V Kozyreva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia; Life Improvement by Future Technologies (LIFT) Center, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| |
Collapse
|
2
|
An Y, Ji C, Zhang H, Jiang Q, Maitz MF, Pan J, Luo R, Wang Y. Engineered Cell Membrane Coating Technologies for Biomedical Applications: From Nanoscale to Macroscale. ACS NANO 2025; 19:11517-11546. [PMID: 40126356 DOI: 10.1021/acsnano.4c16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cell membrane coating has emerged as a promising strategy for the surface modification of biomaterials with biological membranes, serving as a cloak that can carry more functions. The cloaked biomaterials inherit diverse intrinsic biofunctions derived from different cell sources, including enhanced biocompatibility, immunity evasion, specific targeting capacity, and immune regulation of the regenerative microenvironment. The intrinsic characteristics of biomimicry and biointerfacing have demonstrated the versatility of cell membrane coating technology on a variety of biomaterials, thus, furthering the research into a wide range of biomedical applications and clinical translation. Here, the preparation of cell membrane coatings is emphasized, and different sizes of coated biomaterials from nanoscale to macroscale as well as the engineering strategies to introduce additional biofunctions are summarized. Subsequently, the utilization of biomimetic membrane-cloaked biomaterials in biomedical applications is discussed, including drug delivery, imaging and phototherapy, cancer immunotherapy, anti-infection and detoxification, and implant modification. In conclusion, the latest advancements in clinical and preclinical studies, along with the multiple benefits of cell membrane-coated nanoparticles (NPs) in biomimetic systems, are elucidated.
Collapse
Affiliation(s)
- Yongqi An
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Junqiang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu, 610065, China
| |
Collapse
|
3
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Prasad R, Jyothi VGS, Kommineni N, Bulusu RT, Mendes B, Lovell JF, Conde J. Biomimetic Ghost Nanomedicine-Based Optotheranostics for Cancer. NANO LETTERS 2024; 24:8217-8231. [PMID: 38848540 PMCID: PMC11247544 DOI: 10.1021/acs.nanolett.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.
Collapse
Affiliation(s)
- Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vaskuri G. S. Jyothi
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center (UTHSC), Memphis, Tennessee 38163, United States
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ravi Teja Bulusu
- Department
of Pharmaceutical Sciences, Florida A&M
University, Tallahassee, Florida 32307, United States
| | - Bárbara
B. Mendes
- NOVA
Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
- ToxOmics,
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon, 1169-056, Portugal
| | - Jonathan F. Lovell
- Department
of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - João Conde
- NOVA
Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
- ToxOmics,
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon, 1169-056, Portugal
| |
Collapse
|
5
|
Sun L, Wang D, Feng K, Zhang JA, Gao W, Zhang L. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria. Adv Drug Deliv Rev 2024; 209:115320. [PMID: 38643841 DOI: 10.1016/j.addr.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The etiology of cancers is multifactorial, with certain bacteria established as contributors to carcinogenesis. As the understanding of carcinogenic bacteria deepens, interest in cancer treatment through bacterial eradication is growing. Among emerging antibacterial platforms, cell membrane-coated nanoparticles (CNPs), constructed by enveloping synthetic substrates with natural cell membranes, exhibit significant promise in overcoming challenges encountered by traditional antibiotics. This article reviews recent advancements in developing CNPs for targeting carcinogenic bacteria. It first summarizes the mechanisms of carcinogenic bacteria and the status of cancer treatment through bacterial eradication. Then, it reviews engineering strategies for developing highly functional and multitasking CNPs and examines the emerging applications of CNPs in combating carcinogenic bacteria. These applications include neutralizing virulence factors to enhance bacterial eradication, exploiting bacterium-host binding for precise antibiotic delivery, and modulating antibacterial immunity to inhibit bacterial growth. Overall, this article aims to inspire technological innovations in developing CNPs for effective cancer treatment through oncogenic bacterial targeting.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailin Feng
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiayuan Alex Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Jiang Z, Ni J, Zhou S, Yang L, Huang X, Bao J, Liu J. NiWo4- RGO composite exerts cytotoxic effects on pancreatic carcinoma cells via a cross-talk between reactive oxygen species-independent canonical autophagy of the mitochondria and epithelial-mesenchymal transition. J Drug Deliv Sci Technol 2024; 95:105584. [DOI: 10.1016/j.jddst.2024.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
7
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
8
|
Yu J, Dan N, Eslami SM, Lu X. State of the Art of Silica Nanoparticles: An Overview on Biodistribution and Preclinical Toxicity Studies. AAPS J 2024; 26:35. [PMID: 38514482 DOI: 10.1208/s12248-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Over the past few years, nanoparticles have drawn particular attention in designing and developing drug delivery systems due to their distinctive advantages like improved pharmacokinetics, reduced toxicity, and specificity. Along with other successful nanosystems, silica nanoparticles (SNPs) have shown promising effects for therapeutic and diagnostic purposes. These nanoparticles are of great significance owing to their modifiable surface with various ligands, tunable particle size, and large surface area. The rate and extent of degradation and clearance of SNPs depend on factors such as size, shape, porosity, and surface modification, which directly lead to varying toxic mechanisms. Despite SNPs' enormous potential for clinical and pharmaceutical applications, safety concerns have hindered their translation into the clinic. This review discusses the biodistribution, toxicity, and clearance of SNPs and the formulation-related factors that ultimately influence clinical efficacy and safety for treatment. A holistic view of SNP safety will be beneficial for developing an enabling SNP-based drug product.
Collapse
Affiliation(s)
- Joshua Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Seyyed Majid Eslami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
9
|
Zaltariov MF, Ciubotaru BI, Ghilan A, Peptanariu D, Ignat M, Iacob M, Vornicu N, Cazacu M. Mucoadhesive Mesoporous Silica Particles as Versatile Carriers for Doxorubicin Delivery in Cancer Therapy. Int J Mol Sci 2023; 24:14687. [PMID: 37834134 PMCID: PMC10572865 DOI: 10.3390/ijms241914687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their structural, morphological, and behavioral characteristics (e.g., large volume and adjustable pore size, wide functionalization possibilities, excellent biocompatibility, stability, and controlled biodegradation, the ability to protect cargoes against premature release and unwanted degradation), mesoporous silica particles (MSPs) are emerging as a promising diagnostic and delivery platform with a key role in the development of next-generation theranostics, nanovaccines, and formulations. In this study, MSPs with customized characteristics in-lab prepared were fully characterized and used as carriers for doxorubicin (DOX). The drug loading capacity and the release profile were evaluated in media with different pH values, mimicking the body conditions. The release data were fitted to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin kinetic models to evaluate the release constant and the mechanism. The in vitro behavior of functionalized silica particles showed an enhanced cytotoxicity on human breast cancer (MCF-7) cells. Bio- and mucoadhesion on different substrates (synthetic cellulose membrane and porcine tissue mucosa)) and antimicrobial activity were successfully assessed, proving the ability of the OH- or the organically modified MSPs to act as antimicrobial and mucoadhesive platforms for drug delivery systems with synergistic effects.
Collapse
Affiliation(s)
- Mirela-Fernanda Zaltariov
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| | - Bianca-Iulia Ciubotaru
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| | - Alina Ghilan
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania;
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania;
| | - Maria Ignat
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
- Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania
| | - Mihail Iacob
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| | - Nicoleta Vornicu
- Metropolitan Center of Research T.A.B.O.R, The Metropolitanate of Moldavia and Bukovina, 700497 Iasi, Romania;
| | - Maria Cazacu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi, Romania; (B.-I.C.); (M.I.); (M.I.)
| |
Collapse
|
10
|
Fan K, Yuan S, Zhou M, Yu Y, Guo J, Fang L, Zhou C, Cui P, Zhang S, Li R, Wang Z, Zhong L, Zeng L. Enhanced Biohomogeneous Composite Membrane-Encapsulated Nanoplatform with Podocyte Targeting for Precise and Safe Treatment of Diabetic Nephropathy. ACS NANO 2023; 17:18037-18054. [PMID: 37713364 DOI: 10.1021/acsnano.3c04671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Diabetic nephropathy (DN), associated with high mobility and disability, is the leading cause of end-stage kidney disease worldwide. Dysfunction of the mammalian target of the rapamycin (mTOR) pathway and reactive oxygen species (ROS) activation in the glomeruli is the main hypnosis for DN progression. However, the use of mTOR inhibitors for DN treatment remains controversial. In this study, we built a multifunctional selective mechanistic target of rapamycin complex 1 (mTORC1) inhibiting nanoplatform (naming as ESC-HCM-B) that targets the release of mTOR and ROS inhibitors near podocytes, aiming to confirm whether combination therapy is an alternative method for DN treatment. The results showed that ESC-HCM-B achieved high drug loading because of the core mesoporous silica nanoparticles (MSNPs), and the enhanced biohomogeneous composite membrane endowed ESC-HCM-B with the characteristics of avoiding immune phagocytosis, automatic valve-type slow-release drug, and high stability. In vitro, the nanoplatform showed high efficiency in podocyte targeting but no significant cytotoxicity or apoptotic promotion. In particular, the quantum dots carried by ESC-HCM-B further amplified the effect of "nanoenzyme"; this mechanism reduced the ROS level in podocytes induced by high glucose, protected mitochondrial damage, and restored mitochondrial energy metabolism. In vivo, the nanoplatform specifically targeted the glomerular and podocyte regions of the kidney. After treatment, the nanoplatform significantly reduced urinary protein levels and delayed glomerulosclerosis in DN rats. This nanoplatform provides a safe and effective strategy for DN treatment.
Collapse
Affiliation(s)
- Kui Fan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shiyi Yuan
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Nephrology, Chongqing Yongchuan District People's Hospital, Chongqing, 402160, China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yuan Yu
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jing Guo
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| | - Liang Fang
- Department of Nephrology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Chanjuan Zhou
- Department of Nephrology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Peijin Cui
- Chongqing Key Laboratory of Cerebral Vascular Disease Research, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Siliang Zhang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rong Li
- Department of Nephrology, Guangyuan Central Hospital, Guanyuan, 628000, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ling Zhong
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Zeng
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
11
|
Zong S, Cao C, Chen K, Cui Y, Li J, Wang Z. Red Blood Cell Membrane Camouflaged Mesoporous Silica Nanorods as Nanocarriers for Synergistic Chemo-Photothermal Therapy. IEEE Trans Nanobioscience 2023; 22:655-663. [PMID: 37015652 DOI: 10.1109/tnb.2022.3233378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, nanoparticles camouflaged by red blood cell membrane (RBCM) have become a potential nano-drug delivery platform due to their good biocompatibility and immune evasion capability. Here, a multifunctional drug nanocarrier based on RBCM camouflaged mesoporous silica nanorods (MSNR) is presented, which can be used in pH and near-infrared (NIR) light triggered synergistic chemo-photothermal killing of cancer cells. To fabricate such a nanocarrier, MSNR and RBCM were prepared by the sol-gel method and modified hypotonic lysis method, respectively. Drugs were loaded into the pores of MSNR. Finally, RBCM was coated on the surface of MSNR by extrusion through a polycarbonate membrane. The advantages of the nanocarrier include: 1) MSNR can induce more cellular uptake than sphere shaped mesoporous silica nanoparticles. 2) The RBCM can reduce drug leakage and prevent clearance of the nanocarriers by macrophages. 3) By simultaneous loading doxorubicin (DOX) and indocyanine green (ICG), pH and NIR triggered synergistic chemo-photothermal therapy can be realized. In the experiment, we studied the drug releasing and cellular uptake of the nanocarriers in a breast cancer cell line (SKBR3 cells), in which a sufficient killing effect was observed. Such a multifunctional drug nanocarrier holds a broad application prospect in cancer treatment.
Collapse
|
12
|
Hu P, Mo H, Song S, Wu J, Li J, Shen J. An iron(III) complex-based supramolecular organic framework (SOF) as a theranostic platform via magnetic resonance imaging-guided chemotherapy. J Mater Chem B 2023; 11:4799-4807. [PMID: 37194355 DOI: 10.1039/d2tb02551e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
It is crucially important to explore the additional metal-endowed functions of supramolecular organic frameworks (SOFs) for expanding their applications. In this work we have reported the performance of a SOF (designated as Fe(III)-SOF) as a theranostic platform via magnetic resonance imaging (MRI)-guided chemotherapy. The Fe(III)-SOF may be used as an MRI contrast agent for cancer diagnosis because the building unit (iron complex) contains high spin iron(III) ions. Additionally, the Fe(III)-SOF may also be used as a drug carrier because it possesses stable internal voids. We loaded doxorubicin (DOX) into the Fe(III)-SOF to obtain a DOX@Fe(III)-SOF. The Fe(III)-SOF showed good loading content (16.3%) and high loading efficiency (65.2%) for DOX. Additionally, the DOX@Fe(III)-SOF had a relatively modest relaxivity value (r2 = 19.745 mM-1 s-1) and exhibited the strongest negative contrast (darkest) at 12 h of post-injection. Furthermore, the DOX@Fe(III)-SOF effectively inhibited tumor growth and showed high anticancer efficiency. In addition, the Fe(III)-SOF was biocompatible and biosafe. Therefore, the Fe(III)-SOF was an excellent theranostic platform and may have potential applications in tumor diagnosis and treatment in the future. We believe that this work will initiate extensive research endeavors not only on the development of SOFs, but also on the construction of theranostic platforms based on SOFs.
Collapse
Affiliation(s)
- Pengpeng Hu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hong Mo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jing Wu
- Nanjing Customs District Industrial Products Inspection Center, Nanjing 210019, China
| | - Jihui Li
- Shenyang Institute of Industrial Technology, Shenyang 110000, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Abdelsalam SI, Bhatti MM. Unraveling the nature of nano-diamonds and silica in a catheterized tapered artery: highlights into hydrophilic traits. Sci Rep 2023; 13:5684. [PMID: 37029192 PMCID: PMC10080179 DOI: 10.1038/s41598-023-32604-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
In this work, we observe the behavior of a hybrid nanofluidic model containing nanodiamonds and silica nanoparticles. The nanofluid propagates through a catheterized tapered artery with three distinct configurations: converging tapered, non-tapered and diverging tapered arteries. In order to assess the rheological properties of the blood, the third-grade non-Newtonian fluid is employed in the flow model such that the Newtonian versus non-Newtonian effects are revealed. The system of equations governing the flow is modeled under magnetic field and with heat transfer, then solved in a closed form using the perturbation approach for the pertinent parameters. The interpretations of the physical variables of interest, such as the velocity, temperature and wall shear stress, are explained. The integration of diamonds and silica nanoparticles give rise to diverse of biological applications since they are used in the drug delivery and biological imaging in genetic materials due to their hydrophilic surfaces. The present mathematical analysis lays a solid foundation on possible therapeutic applications in biomedicine.
Collapse
Affiliation(s)
- Sara I Abdelsalam
- Basic Science, Faculty of Engineering, The British University in Egypt, Al-Shorouk City, Cairo, 11837, Egypt.
| | - M M Bhatti
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| |
Collapse
|
14
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
15
|
Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor Microenvironment Regulation and Cancer Targeting Therapy Based on Nanoparticles. J Funct Biomater 2023; 14:136. [PMID: 36976060 PMCID: PMC10053410 DOI: 10.3390/jfb14030136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Although we have made remarkable achievements in cancer awareness and medical technology, there are still tremendous increases in cancer incidence and mortality. However, most anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More and more evidence suggest that this low efficacy may be closely related to the immunosuppression of the tumor microenvironment (TME). The TME plays a significant role in tumorigenesis, development, and metastasis. Therefore, it is necessary to regulate the TME during antitumor therapy. Several strategies are developing to regulate the TME as inhibiting tumor angiogenesis, reversing tumor associated macrophage (TAM) phenotype, removing T cell immunosuppression, and so on. Among them, nanotechnology shows great potential for delivering regulators into TME, which further enhance the antitumor therapy efficacy. Properly designed nanomaterials can carry regulators and/or therapeutic agents to eligible locations or cells to trigger specific immune response and further kill tumor cells. Specifically, the designed nanoparticles could not only directly reverse the primary TME immunosuppression, but also induce effective systemic immune response, which would prevent niche formation before metastasis and inhibit tumor recurrence. In this review, we summarized the development of nanoparticles (NPs) for anti-cancer therapy, TME regulation, and tumor metastasis inhibition. We also discussed the prospect and potential of nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Yadav DN, Ali MS, Thanekar AM, Pogu SV, Rengan AK. Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy. Mol Pharm 2022; 19:4506-4526. [PMID: 36409653 DOI: 10.1021/acs.molpharmaceut.2c00811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
Collapse
Affiliation(s)
- Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Sunil Venkanna Pogu
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
17
|
Shah S, Famta P, Bagasariya D, Charankumar K, Sikder A, Kashikar R, Kotha AK, Chougule MB, Khatri DK, Asthana A, Raghuvanshi RS, Singh SB, Srivastava S. Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Mol Pharm 2022; 19:4428-4452. [PMID: 36109099 DOI: 10.1021/acs.molpharmaceut.2c00374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global menace of cancer has led to an increased death toll in recent years. The constant evolution of cancer therapeutics with novel delivery systems has paved the way for translation of innovative therapeutics from bench to bedside. This review explains the significance of mesoporous silica nanoparticles (MSNs) as delivery vehicles with particular emphasis on cancer therapy, including novel opportunities for biomimetic therapeutics and vaccine delivery. Parameters governing MSN synthesis, therapeutic agent loading characteristics, along with tuning of MSN toward cancer cell specificity have been explained. The advent of MSN in nanotheranostics and its potential in forming nanocomposites for imaging purposes have been illustrated. Additionally, various hurdles encountered during the bench to bedside translation have been explained along with potential avenues to circumvent them. This also opens up new horizons in drug delivery, which could be useful to researchers in the years to come.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Raj Nagar, Ghaziabad 201002, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
18
|
Mesoporous silicas in materials engineering: Nanodevices for bionanotechnologies. Mater Today Bio 2022; 17:100472. [PMCID: PMC9627595 DOI: 10.1016/j.mtbio.2022.100472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
19
|
Li M, Wu J, Lin D, Yang J, Jiao N, Wang Y, Liu L. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy. Acta Biomater 2022; 154:443-453. [PMID: 36243369 DOI: 10.1016/j.actbio.2022.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Targeted delivery is a promising mean for various biomedical applications, and various micro/nano robots have been created for drug delivery. Mesoporous silica has been shown to be successful as a drug delivery carrier in numerous studies. However, mesoporous silica preparation usually requires expensive and toxic chemicals, which limits its biomedical applications. Diatoms, as the naturally porous silica structure, are promising substitutes for the artificial mesoporous silica preparation. However, the current studies utilizing intact diatom frustules as drug delivery packets lack flexible and controllable locomotion. Herein, we propose a biohybrid magnetic microrobot based on Thalassiosira weissflogii frustules (TWFs) as a cargo packet for targeted drug delivery using a simple preparation method. Biohybrid microrobots are fabricated in large quantities by attaching magnetic nanoparticles (Fe3O4) to the surface of diatoms via electrostatic adsorption. Biohybrid microrobots are agile and controllable under the influence of external magnetic fields. They could be precisely controlled to follow specific trajectories or to move as swarms. The cooperation of the two motion modes of the biohybrid microrobots increased microrobots' environmental adaptability. Microrobots have a high drug-loading capacity and pH-sensitive drug release. In vitro cancer cell experiments further demonstrated the controllability of diatom microrobots for targeted drug delivery. The biohybrid microrobots reported in this paper convert natural diatoms into cargo packets for biomedical applications, which possess active and controllable properties and show huge potential for targeted anticancer therapy. STATEMENT OF SIGNIFICANCE: In this study, diatoms with good biocompatibility were used to prepare biohybrid magnetic microrobots. Compared with the current diatom-based systems for drug delivery, the microrobots prepared in this study for targeted drug delivery have more flexible motion characteristics and exhibit certain swarming behaviors. Under the same magnetic field strength, by changing the magnetic field frequency, the movement state of the diatoms can be changed to pass through the narrow channel, so that it has better environmental adaptability.
Collapse
Affiliation(s)
- Mengyue Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
20
|
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy. Colloids Surf B Biointerfaces 2022; 220:112895. [PMID: 36242941 DOI: 10.1016/j.colsurfb.2022.112895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Non-invasive phototherapy includes photodynamic therapy (PDT) and photothermal therapy (PTT), and has garnered special interest in anti-tumor therapy. However, traditional photosensitizers or photothermal agents are faced with major challenges, including easy recognition by immune system, rapid clearance from blood circulation, and low accumulation in target sites. Combining the characteristics of natural cell membrane with the characteristics of photosensitizer or photothermal agent is an important technology to achieve the ideal therapeutic effect of cancer. Red cell membrane (RBMs) coated can disguise phototherapy agents as endogenous substances, thus constructing a new nano bionic therapeutic platform, resisting blood clearance and prolonging circulation time. At present, a variety of phototherapy agents based on Nano-RBMs have been isolated or designed. In this review, firstly, the basic principles of Nano-RBMs and phototherapy are expounded respectively. Then, the latest progress of Nano-RBMs for PDT, PTT and PDT/PTT applications in recent five years has been introduced respectively. Finally, the problems and challenges of Nano-RBMs in the field of phototherapy are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
21
|
Wang C, Wu S. Research update on cell membrane camouflaged nanoparticles for cancer therapy. Front Bioeng Biotechnol 2022; 10:944518. [PMID: 35992357 PMCID: PMC9388754 DOI: 10.3389/fbioe.2022.944518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cell membrane-camouflaged biomimetic functionalization of nanoparticles has emerged as a promising strategy for cancer theranostics. These cell membranes used for camouflaging are generally isolated from natural or engineered erythrocytes, neutrophils, macrophages, T lymphatic cells, stem cells, and cancer cells. The camouflaging strategy of coating nanoparticles with cell membranes allows for tumor homotypic targeting through self-recognition as source cells, immune evasion, and a prolonged blood circulation time, thereby improving the effective payload delivery and tumor therapy. More so, some engineered cell membranes with functionalized peptides, proteins and moieties on membrane surface can be transferred for therapy in the same time. In this review, we summarize the latest research on various types of cell membrane-camouflaged nanoparticles aimed at anti-cancer therapy, focusing on the biological advantages of different cell membranes, constitutions of nanoparticles, fabrication processes, key findings, potential therapies, and discuss the major challenges and future opportunities.
Collapse
Affiliation(s)
| | - Size Wu
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
22
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
23
|
Gogoi H, Banerjee S, Datta A. Photoluminescent silica nanostructures and nanohybrids. Chemphyschem 2022; 23:e202200280. [PMID: 35686692 DOI: 10.1002/cphc.202200280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Indexed: 11/06/2022]
Abstract
The complicated photophysics of wide variety of defects existing in silica (SiO2) layer of nanometer thickness determines wide spread photoluminescence bands of Si/SiO2 based system as well as SiO2 nanoparticles (NPs) for their applications in photovoltaic and optoelectronic devices. This review attempts to summarize different photophysical processes in pure SiO2 NPs. Moreover, these NPs also act as scaffolds for various guest molecules to perform their specific functions. Guest fluorophore molecules when trapped inside pores of SiO2 NPs exhibit a different photodynamics than free state, which opens up several important applications of hybrid SiO2 NPs in artificial photosynthesis, sensing, biology and optical fiber.
Collapse
Affiliation(s)
- Hemen Gogoi
- Indian Institute of Technology Bombay, Chemistry, Department of Chemistry, IIT Bombay, Powai, 400076, Mumbai, INDIA
| | - Subhasree Banerjee
- Panchmura Mahavidyalaya, Chemistry, Department of Chemistry Panchmura Mahavidyalaya Bankura, West Bengal 722156, Ind, 722156, Bankura, INDIA
| | - Anindya Datta
- Indian Institute of Technology Bombay, Department of Chemistry, Powai, 400076, Mumbai, INDIA
| |
Collapse
|
24
|
Valdés-Sánchez L, Borrego-González S, Montero-Sánchez A, Massalini S, de la Cerda B, Díaz-Cuenca A, Díaz-Corrales FJ. Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11082170. [PMID: 35456263 PMCID: PMC9026300 DOI: 10.3390/jcm11082170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Gene therapy is a therapeutic possibility for retinitis pigmentosa (RP), in which therapeutic transgenes are currently delivered to the retina by adeno-associated viral vectors (AAVs). Although their safety and efficacy have been demonstrated in both clinical and preclinical settings, AAVs present some technical handicaps, such as limited cargo capacity and possible immunogenicity in repetitive doses. The development of alternative, non-viral delivery platforms like nanoparticles is of great interest to extend the application of gene therapy for RP. METHODS Amino-functionalized mesoporous silica-based nanoparticles (N-MSiNPs) were synthesized, physico-chemically characterized, and evaluated as gene delivery systems for human cells in vitro and for retinal cells in vivo. Transgene expression was evaluated by WB and immunofluorescence. The safety evaluation of mice subjected to subretinal injection was assessed by ophthalmological tests (electroretinogram, funduscopy, tomography, and optokinetic test). RESULTS N-MSiNPs delivered transgenes to human cells in vitro and to retinal cells in vivo. No adverse effects were detected for the integrity of the retinal tissue or the visual function of treated eyes. N-MSiNPs were able to deliver a therapeutic transgene candidate for RP, PRPF31, both in vitro and in vivo. CONCLUSIONS N-MSiNPs are safe for retinal delivery and thus a potential alternative to viral vectors.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Sara Borrego-González
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adoración Montero-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Simone Massalini
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Berta de la Cerda
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| |
Collapse
|
25
|
Lin CY, Yang CM, Lindén M. Dissolution and morphology evolution of mesoporous silica nanoparticles under biologically relevant conditions. J Colloid Interface Sci 2022; 608:995-1004. [PMID: 34785474 DOI: 10.1016/j.jcis.2021.09.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022]
Abstract
Mesoporous silica nanoparticles (MSN) are promising drug vectors due to their high drug loading capacities, degradability under biologically relevant conditions. The dissolution of MSN has been the focus of several recent studies, most of which have, however, been carried out in the absence of proteins, and do therefore not reflect the conditions prevailing during in vitro or in vivo administration of the particles. Furthermore, typically the dissolution studies are limited with respect to the range of MSN concentrations applied. Here, we report results related to the dissolution kinetics and structural particle evolution for MCM-48 MSN carried out in the presence of proteins, and where the particle concentration has been used as a parameter to cover typical concentrations used in in vitro and in vivo studies involving MSNs. Proteins adsorbing to the MSN surface form a diffusion limiting layer that leads to the intermediate formation of core-shell structured particles upon dissolution. Here, the protein concentration controls the kinetics of this process, as the amount of protein adsorbing to the MSN increase with increasing protein concentration. The results thus also imply that the MSN dissolution kinetics is faster under normally applied in vitro conditions as compared to what can be expected under full serum conditions.
Collapse
Affiliation(s)
- Chih-Yu Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Mika Lindén
- University of Ulm, Institute of Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| |
Collapse
|
26
|
Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, Xiang Y, Gao Q, Wen C, Ma W, Liu W, Zhang M, Yang Z, Wang W, Zhang R, Chen B, Xie T, Sui X, Tao W. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B 2021; 11:4045-4054. [PMID: 35024325 PMCID: PMC8727776 DOI: 10.1016/j.apsb.2021.03.036] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is a non-apoptotic regulated cell death caused by iron accumulation and subsequent lipid peroxidation. Currently, the therapeutic role of ferroptosis on cancer is gaining increasing interest. Baicalin an active component in Scutellaria baicalensis Georgi with anticancer potential various cancer types; however, the effects of baicalein on bladder cancer and the underlying molecular mechanisms remain largely unknown. In the study, we investigated the effect of baicalin on bladder cancer cells 5637 and KU-19-19. As a result, we show baicalin exerted its anticancer activity by inducing apoptosis and cell death in bladder cancer cells. Subsequently, we for the first time demonstrate baicalin-induced ferroptotic cell death in vitro and in vivo, accompanied by reactive oxygen species (ROS) accumulation and intracellular chelate iron enrichment. The ferroptosis inhibitor deferoxamine but not necrostatin-1, chloroquine (CQ), N-acetyl-l-cysteine, l-glutathione reduced, or carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) rescued baicalin-induced cell death, indicating ferroptosis contributed to baicalin-induced cell death. Mechanistically, we show that ferritin heavy chain 1 (FTH1) was a key determinant for baicalin-induced ferroptosis. Overexpression of FTH1 abrogated the anticancer effects of baicalin in both 5637 and KU19-19 cells. Taken together, our data for the first time suggest that the natural product baicalin exerts its anticancer activity by inducing FTH1-dependent ferroptosis, which will hopefully provide a prospective compound for bladder cancer treatment.
Collapse
Affiliation(s)
- Na Kong
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaying Chen
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiao Feng
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Duan
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuiping Liu
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueni Sun
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng Chen
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Pan
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Lili Yan
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Jin
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Xiang
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Quan Gao
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Chengyong Wen
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Weirui Ma
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wencheng Liu
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingming Zhang
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zuyi Yang
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wengang Wang
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruonan Zhang
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Bi Chen
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinbing Sui
- College of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Zhu C, Ma J, Ji Z, Shen J, Wang Q. Recent Advances of Cell Membrane Coated Nanoparticles in Treating Cardiovascular Disorders. Molecules 2021; 26:3428. [PMID: 34198794 PMCID: PMC8201295 DOI: 10.3390/molecules26113428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, causing approximately 17.9 million deaths annually, an estimated 31% of all deaths, according to the WHO. CVDs are essentially rooted in atherosclerosis and are clinically classified into coronary heart disease, stroke and peripheral vascular disorders. Current clinical interventions include early diagnosis, the insertion of stents, and long-term preventive therapy. However, clinical diagnostic and therapeutic tools are subject to a number of limitations including, but not limited to, potential toxicity induced by contrast agents and unexpected bleeding caused by anti-platelet drugs. Nanomedicine has achieved great advancements in biomedical area. Among them, cell membrane coated nanoparticles, denoted as CMCNPs, have acquired enormous expectations due to their biomimetic properties. Such membrane coating technology not only helps avoid immune clearance, but also endows nanoparticles with diverse cellular and functional mimicry. In this review, we will describe the superiorities of CMCNPs in treating cardiovascular diseases and their potentials in optimizing current clinical managements.
Collapse
Affiliation(s)
- Chaojie Zhu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China; (J.M.); (Z.J.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junkai Ma
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China; (J.M.); (Z.J.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiheng Ji
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China; (J.M.); (Z.J.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| |
Collapse
|
28
|
Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021; 164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Cancer remains a global health problem largely due to a lack of effective therapies. Major cancer management strategies include chemotherapy, surgical resection, and radiation. Unfortunately, these strategies have a number of limitations, such as non-specific side effects, uneven delivery of the drugs, and lack of proper monitoring technology. Inorganic nanoparticles (NPs) are considered promising agents in treating and tracing cancer due to their unique physicochemical properties such as the controlled release of drugs, bioavailability, biocompatibility, stability, and large surface area. Also, they enhance the solubility of hydrophobic drugs, prolong their circulation time, prevent undesired off-targeting and subsequent side effects, making them efficient particles in cancer theranostics. Promising inorganic-NPs include gold, selenium, silica, and oxide NPs. Further, several techniques are used to modify the surface of inorganic-NPs, making them more efficient for the effective transport of therapeutic cargos to overcome cellular barriers. Thus, inorganic-NPs function effectively, surmounting the intrinsic drawbacks of traditional organic NPs. This mini-review summarizes the significant inorganic-NPs, their properties, surface modifications, cellular uptake, and bio-distributions, along with their potential use in cancer theranostics. We also discuss the promises and challenges faced during the inorganic-NPs mediated therapeutic approach for cancer and these particles' status in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
29
|
Shreyash N, Sonker M, Bajpai S, Tiwary SK. Review of the Mechanism of Nanocarriers and Technological Developments in the Field of Nanoparticles for Applications in Cancer Theragnostics. ACS APPLIED BIO MATERIALS 2021; 4:2307-2334. [PMID: 35014353 DOI: 10.1021/acsabm.1c00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cannot be controlled by the usage of drugs alone, and thus, nanotechnology is an important technique that can provide the drug with an impetus to act more effectively. There is adequate availability of anticancer drugs that are classified as alkylating agents, hormones, or antimetabolites. Nanoparticle (NP) carriers increase the residence time of the drug, thereby enhancing the survival rate of the drug, which otherwise gets washed off owing to the small size of the drug particles by the excretory system. For example, for enhancing the circulation, a coating of nonfouling polymers like PEG and dextran is done. Famous drugs such as doxorubicin (DOX) are commonly encapsulated inside the nanocomposite. The various classes of nanoparticles are used to enhance drug delivery by aiding it to fight against the tumor. Targeted therapy aims to attack the cells with features common to the cancer cells while minimizing damage to the normal cell, and these therapies work in one in four ways. Some block the cancer cells from reproducing newer cells, others release toxic substances to kill the cancer cells, some stimulate the immune system to destroy the cancer cells, and some block the growth of more blood vessels around cancer cells, which starve the cells of the nutrients, which is needed for their growth. This review aims to testify the advancements nanotechnology has brought in cancer therapy, and its statements are supported with recent research findings and clinical trial results.
Collapse
|