1
|
Jung Y, Hwang J, Cho H, Yoon JH, Lee JH, Song J, Kim D, Ahn M, Hong BH, Kweon DH. Graphene quantum dots as potential broad-spectrum antiviral agents. NANOSCALE ADVANCES 2025; 7:2032-2038. [PMID: 39974343 PMCID: PMC11833456 DOI: 10.1039/d4na00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
As pandemic viruses have become a threat to people, various treatments have been developed, including vaccines, neutralizing antibodies, and inhibitors. However, some mutations in the target envelope protein limit the efficiency of these treatments. Therefore, the development of broad-spectrum antiviral agents targeting mutation-free viral membranes is of considerable importance. Herein, we propose graphene quantum dots (GQDs) as broad-spectrum antiviral agents, wherein the amphiphilic properties of GQDs destroy the viral membranes, regardless of the type of viruses, including SARS-CoV-2 and influenza virus. We observed that GQDs suppress both viral infection and replication and demonstrated their low cytotoxicity in a cell line and a mouse model, revealing the potential of GQDs as a universal first-line treatment for various viral diseases.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jong-Hwan Lee
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Jaekwang Song
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Donghoon Kim
- Department of Pharmacology, Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine Busan 49201 Republic of Korea
| | - Minchul Ahn
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
2
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
3
|
Liang J, Xu W, Pan X, Han S, Zhang L, Wen H, Ding M, Zhang W, Peng D. Advances research in porcine enteric coronavirus therapies and antiviral drugs. Vet Q 2024; 44:1-49. [PMID: 39484691 PMCID: PMC11536681 DOI: 10.1080/01652176.2024.2421299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The porcine enteric coronaviruses (PECs) currently reported include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). In the absence of effective treatment, they can cause similar clinical characteristics including weight loss, sleepiness, vomiting, anorexia and fatal diarrhea in neonatal piglets, resulting in significant economic losses to the global pig industry. Although many studies on drugs for treating and combating PECs have been issued. There are still no specific drug targeting PECs and used in clinical production. Therefore, it is necessary to sort out and summarize the research on the treatment and anti PECs drugs, and further development of low toxicity and high efficiency drugs is needed. Here, we review the latest progress of anti PECs drugs, focus on the mechanism of anti PECs reaction of drug components, and try to clarify new strategies for effective control and elimination of PECs. These comprehensive and profound insights will help to further investigate, prevent and control the transmission of PECs infection.
Collapse
Affiliation(s)
- Jixiang Liang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Weihang Xu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Xiaoming Pan
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Shiyun Han
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Linwei Zhang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Hao Wen
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Mingyue Ding
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Wanpo Zhang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Dapeng Peng
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Farsiu N, Mousavi E, Barani M, Khanbabaei H, Ebrahimi S. Exploring potential of graphene oxide as an alternative antiviral approach for influenza A H1N1. Nanomedicine (Lond) 2024; 19:2509-2520. [PMID: 39513633 DOI: 10.1080/17435889.2024.2416381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Aim: Graphene oxide (GO), known for its distinctive physicochemical properties, shows promise as a nanomaterial capable of combating infectious agents. This study investigates the efficacy of GO nanoparticles in restricting influenza A H1N1 replication in MDCK cells.Methods: GO nanoparticles were synthesized. After evaluating the toxicity of GO nanoparticles, the antiviral activity of the highest nontoxic concentration of GO against influenza A H1N1 in MDCK cells was studied.Results: GO treatments resulted in substantial decreases in virus titers, as shown via hemagglutination assay, TCID50 assay and real-time PCR analysis.Conclusion: This study emphasizes that GO nanoparticles have a high level of effectiveness against influenza A H1N1 viruses, making them an intriguing option for various antiviral uses.
Collapse
Affiliation(s)
- Niloofar Farsiu
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Mousavi
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Hashem Khanbabaei
- Department of Radiologic Technology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Hamidzade M, Monavari SH, Kiani SJ, Aftabi-Khadar M, Bokharaei-Salim F, Tavakoli A. Enhanced synergistic antiviral effects of thermally expanded graphite and copper oxide nanosheets in the form of a novel nanocomposite against herpes simplex virus type 1. Microb Pathog 2024; 195:106846. [PMID: 39128643 DOI: 10.1016/j.micpath.2024.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is responsible for a wide range of human infections, including skin and mucosal ulcers, encephalitis, and keratitis. The gold standard for treating HSV-1 infections is acyclovir. However, the use of this drug is associated with several limitations such as toxic reactions and the development of drug-resistant strains. So, there is an urgent need to discover and develop novel and effective agents against this virus. For the first time, this study aimed to investigate the antiviral effects of the Thermally Expanded Graphite (TEG)-copper oxide (CuO) nanocomposite against HSV-1 and compare results with its constituent components. After microwave (MW)-assisted synthesis of TEG and CuO nanosheets as well as MW-CuO/TEG nanocomposite and characterization of all these nanomaterials, an MTT assay was used to determine their cytotoxicity. The quantitative real-time PCR was then used to investigate the effects of these nanomaterials on viral load. Three-hour incubation of HSV-1 with TEG nanosheets (500 μg/mL), MW-CuO nanosheets (15 μg/mL), and MW-CuO/TEG nanocomposite (35 μg/mL) resulted in a decrease in viral load with an inhibition rate of 31.4 %, 49.2 %, and 74.4 %, respectively. The results from the post-treatment assay also showed that TEG nanosheets (600 μg/mL), MW-CuO nanosheets (15 μg/mL), and MW-CuO/TEG nanocomposite (10 μg/mL) led to a remarkable decrease in viral load with an inhibition rate of 56.9 %, 63 %, and 99.9 %, respectively. The combination of TEG and MW-CuO nanosheets together and the formation of a nanocomposite structure display strong synergy in their ability to inhibit HSV-1 infection. MW-CuO/TEG nanocomposites can be considered a suitable candidate for the treatment of HSV-1 infection.
Collapse
Affiliation(s)
- Malihe Hamidzade
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Aftabi-Khadar
- Department of Materials Science and Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wang D, Yin C, Bai Y, Zhou M, Wang N, Tong C, Yang Y, Liu B. Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein. Biomolecules 2024; 14:1152. [PMID: 39334918 PMCID: PMC11430280 DOI: 10.3390/biom14091152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has filled a gap in our knowledge regarding the prevention of CoVs. Swine coronavirus (CoV) is a significant pathogen that causes huge economic losses to the global swine industry. Until now, anti-CoV prevention and control have been challenging due to the rapidly generated variants. Silver nanoparticles (AgNPs) with excellent antimicrobial activity have attracted great interest for biosafety prevention and control applications. In this study, we synthesized chitosan-modified AgNPs (Chi-AgNPs) with good biocompatibility to investigate their antiviral effects on swine CoVs. In vitro assays showed that Chi-AgNPs could significantly impaired viral entry. The direct interaction between Chi-AgNPs and CoVs can destroy the viral surface spike (S) protein secondary structure associated with viral membrane fusion, which is caused by the cleavage of disulfide bonds in the S protein. Moreover, the mechanism showed that Chi-AgNPs reduced the virus-induced apoptosis of Vero cells via the ROS/p53 signaling activation pathway. Our data suggest that Chi-AgNPs can serve as a preventive strategy for CoVs infection and provide a molecular basis for the viricidal effect of Chi-AgNPs on CoVs.
Collapse
Affiliation(s)
- Dongliang Wang
- College of Biology, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Caiyun Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Yihan Bai
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingxia Zhou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Cymerys J, Bartak M, Słońska A, Lange A, Jaworski S, Chodkowski M, Ostrowska A, Wierzbicki M, Sawosz E, Bańbura MW. Antiviral Activity of Graphene Oxide-Silver Nanocomposites Against Murine Betacoronavirus. Int J Nanomedicine 2024; 19:9009-9033. [PMID: 39246425 PMCID: PMC11380865 DOI: 10.2147/ijn.s473448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background The high infectivity of coronaviruses has led to increased interest in developing new strategies to prevent virus spread. Silver nanoparticles (AgNPs) and graphene oxide (GO) have attracted much attention in the antiviral field. We investigated the potential antiviral activity of GO and AgNPs combined in the nanocomposite GO-Ag against murine betacoronavirus MHV using an in vitro model. Methods GO, AgNPs, and GO-Ag characterization (size distribution, zeta potential, TEM visualization, FT-IR, and EDX analysis) and XTT assay were performed. The antiviral activity of GO-Ag nanocomposites was evaluated by RT-qPCR and TCID50 assays. The results were compared with free AgNPs and pure GO. Cell growth and morphology of MHV-infected hepatocytes treated with GO-Ag composites were analyzed by JuLI™Br. Immunofluorescence was used to visualize the cell receptor used by MHV. Ultrastructural SEM analysis was performed to examine cell morphology after MHV infection and GO-Ag composite treatment. Results A significant reduction in virus titer was observed for all nanocomposites tested, ranging from 3.2 to 7.3 log10 TCID50. The highest titer reduction was obtained for GO 5 µg/mL - Ag 25 µg/mL in the post-treatment method. These results were confirmed by RT-qPCR analysis. The results indicate that GO-Ag nanocomposites exhibited better antiviral activity compared to AgNPs and GO. Moreover, the attachment of AgNPs to the GO flake platform reduced their cytotoxicity. In addition, the GO-Ag composite modulates the distribution of the Ceacam1 cell receptor and can modulate cell morphology. Conclusion Graphene oxide sheets act as a stabilizing agent, inhibiting the accumulation of AgNPs and reducing their cellular toxicity. The GO-Ag composite can physically bind and inhibit murine betacoronavirus from entering cells. Furthermore, the constant presence of GO-Ag can inhibit MHV replication and significantly limit its extracellular release. In conclusion, GO-Ag shows promise as an antiviral coating on solid surfaces to minimize virus transmission and spread.
Collapse
Affiliation(s)
- Joanna Cymerys
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michalina Bartak
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Słońska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin W Bańbura
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
9
|
Li Z, Wang J, Wang S, Zhao W, Hou X, Wang J, Dong H, Zhou S, Gao Y, Yao W, Li H, Liu X. A dicoumarol-graphene oxide quantum dot polymer inhibits porcine reproductive and respiratory syndrome virus through the JAK-STAT signaling pathway. Front Microbiol 2024; 15:1417404. [PMID: 38962129 PMCID: PMC11221364 DOI: 10.3389/fmicb.2024.1417404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) causes substantial economic losses in the global swine industry. The current vaccine options offer limited protection against PRRSV transmission, and there are no effective commercial antivirals available. Therefore, there is an urgent need to develop new antiviral strategies that slow global PRRSV transmission. Methods In this study, we synthesized a dicoumarol-graphene oxide quantum dot (DIC-GQD) polymer with excellent biocompatibility. This polymer was synthesized via an electrostatic adsorption method using the natural drug DIC and GQDs as raw materials. Results Our findings demonstrated that DIC exhibits high anti-PRRSV activity by inhibiting the PRRSV replication stage. The transcriptome sequencing analysis revealed that DIC treatment stimulates genes associated with the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway. In porcine alveolar macrophages (PAMs), DIC-GQDs induce TYK2, JAK1, STAT1, and STAT2 phosphorylation, leading to the upregulation of JAK1, STAT1, STAT2, interferon-β (IFN-β) and interferon-stimulated genes (ISGs). Animal challenge experiments further confirmed that DIC-GQDs effectively alleviated clinical symptoms and pathological reactions in the lungs, spleen, and lymph nodes of PRRSV-infected pigs. Discussion These findings suggest that DIC-GQDs significantly inhibits PRRSV proliferation by activating the JAK/STAT signalling pathway. Therefore, DIC-GQDs hold promise as an alternative treatment for PRRSV infection.
Collapse
Affiliation(s)
- Zhuowei Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Junjun Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Siyu Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Wei Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jianfang Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Shuanghai Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuan Gao
- Liaoning Agricultural Development Service Center Province, Shenyang, China
| | - Wei Yao
- Liaoning Agricultural Development Service Center Province, Shenyang, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xuewei Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Najer A. Pathogen-binding nanoparticles to inhibit host cell infection by heparan sulfate and sialic acid dependent viruses and protozoan parasites. SMART MEDICINE 2024; 3:e20230046. [PMID: 39188697 PMCID: PMC11235646 DOI: 10.1002/smmd.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
Collapse
Affiliation(s)
- Adrian Najer
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
11
|
Iannazzo D, Giofrè SV, Espro C, Celesti C. Graphene-based materials as nanoplatforms for antiviral therapy and prophylaxis. Expert Opin Drug Deliv 2024; 21:751-766. [PMID: 38841752 DOI: 10.1080/17425247.2024.2364652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION The dramatic effects caused by viral diseases have prompted the search for effective therapeutic and preventive agents. In this context, 2D graphene-based nanomaterials (GBNs) have shown great potential for antiviral therapy, enabling the functionalization and/or decoration with biomolecules, metals and polymers, able to improve their interaction with viral nanoparticles. AREAS COVERED This review summarizes the most recent advances of the antiviral research related to 2D GBNs, based on their antiviral mechanism of action. Their ability to inactivate viruses by inhibiting the entry inside cells, or through drug/gene delivery, or by stimulating the host immune response are here discussed. As reported, biological studies performed in vitro and/or in vivo allowed to demonstrate the antiviral activity of the developed GBNs, at different stages of the virus life cycle and the evaluation of their long-term toxicity. Other mechanisms closely related to the physicochemical properties of GBNs are also reported, demonstrating the potential of these materials for antiviral prophylaxis. EXPERT OPINION GBNs represent valuable tools to fight emerging or reemerging viral infections. However, their translation into the clinic requires standardized scale-up procedures leading to the reliable and reproducible synthesis of these nanomaterials with suitable physicochemical properties, as well as more in-depth pharmacological and toxicological investigations. We believe that multidisciplinary approaches will give valuable solutions to overcome the encountered limitations in the application of GBNs in biomedical and clinical field.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Messina, Italy
| | - Salvatore V Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Zhu K, Liu J, Zhao M, Fu L, Du Z, Meng F, Gu L, Liu P, Liu Y, Zhang C, Zhang X, Li J. An intrusion and environmental effects of man-made silver nanoparticles in cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168890. [PMID: 38016565 DOI: 10.1016/j.scitotenv.2023.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.
Collapse
Affiliation(s)
- Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lulu Fu
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zengfeng Du
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Ren C, Ke Q, Fan X, Ning K, Wu Y, Liang J. The shape-dependent inhibitory effect of rhein/silver nanocomposites on porcine reproductive and respiratory syndrome virus. DISCOVER NANO 2023; 18:126. [PMID: 37817016 PMCID: PMC10564707 DOI: 10.1186/s11671-023-03900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Traditional Chinese medicines (TCMs)/nanopreparations as viral antagonists exhibited a structure-function correlation, i.e., the differences in surface area/volume ratio caused by the variations in shape and size could result in different biochemical properties and biological activities, suggesting an important impact of morphology and structure on the antiviral activity of TCM-based nanoparticles. However, few studies paid attention to this aspect. Here, the effect of TCM-based nanoparticles with different morphologies on their antiviral activity was explored by synthesizing rhein/silver nanocomposites (Rhe@AgNPs) with spherical (S-Rhe/Ag) and linear (L-Rhe/Ag) morphologies, using rhein (an active TCM ingredient) as a reducing agent and taking its self-assembly advantage. Using porcine reproductive and respiratory syndrome virus (PRRSV) as a model virus, the inhibitory effects of S-Rhe/Ag and L-Rhe/Ag on PRRSV were compared. Results showed that the product morphology could be regulated by varying pH values, and both S- and L-Rhe/Ag exhibited good dispersion and stability, but with a smaller size for L-Rhe/Ag. Antiviral experiments revealed that Rhe@AgNPs could effectively inhibit PRRSV infection, but the antiviral effect was morphology-dependent. Compared with L-Rhe/Ag, S-Rhe/Ag could more effectively inactivate PRRSV in vitro and antagonize its adsorption, invasion, replication, and release stages. Mechanistic studies indicated that Rhe@AgNPs could reduce the production of reactive oxygen species (ROS) induced by PRRSV infection, and S-Rhe/Ag also had stronger ROS inhibitory effect. This work confirmed the inhibitory effect of Rhe@AgNPs with different morphologies on PRRSV and provided useful information for treating PRRSV infection with metal nanoparticles synthesized from TCM ingredients.
Collapse
Affiliation(s)
- Caifeng Ren
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Xiaoxia Fan
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keke Ning
- College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuan Wu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
14
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
15
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Canlas KKV, Hong J, Chae J, Seo HW, Kang SH, Choi J, Park H. Trends in nano-platforms for the treatment of viral infectious diseases. KOREAN J CHEM ENG 2023; 40:706-713. [PMID: 37025620 PMCID: PMC10026216 DOI: 10.1007/s11814-023-1388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 03/22/2023]
Abstract
Viral diseases have always been a major health issue, from the currently eradicated poliovirus to the still unresolved human immunodeficiency virus, and have since become a recent global threat brought about by the COVID-19 pandemic. Pathogenic viruses easily spread through various means such as contaminated food and water intake, exchange of bodily fluids, or even inhalation of airborne particles mainly due to their miniscule size. Furthermore, viral coats contain virulent proteins which trigger assimilation into target cells on contact through either direct penetration or induction of endocytosis. In some viruses their outer envelope contains masking ligands that create a means of escape from detection of immune cells. To deal with the nanometer size range and biomolecular-based invasion mechanism, nanoparticles are highly suitable for the treatment. The review highlights the progress in nanoparticle technology, particularly viral therapeutics, including therapeutic strategies and existing clinical applications.
Collapse
|
17
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
18
|
do Carmo PHF, Garcia MT, Figueiredo-Godoi LMA, Lage ACP, da Silva NS, Junqueira JC. Metal Nanoparticles to Combat Candida albicans Infections: An Update. Microorganisms 2023; 11:microorganisms11010138. [PMID: 36677430 PMCID: PMC9861183 DOI: 10.3390/microorganisms11010138] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Candidiasis is an opportunistic mycosis with high annual incidence worldwide. In these infections, Candida albicans is the chief pathogen owing to its multiple virulence factors. C. albicans infections are usually treated with azoles, polyenes and echinocandins. However, these antifungals may have limitations regarding toxicity, relapse of infections, high cost, and emergence of antifungal resistance. Thus, the development of nanocarrier systems, such as metal nanoparticles, has been widely investigated. Metal nanoparticles are particulate dispersions or solid particles 10-100 nm in size, with unique physical and chemical properties that make them useful in biomedical applications. In this review, we focus on the activity of silver, gold, and iron nanoparticles against C. albicans. We discuss the use of metal nanoparticles as delivery vehicles for antifungal drugs or natural compounds to increase their biocompatibility and effectiveness. Promisingly, most of these nanoparticles exhibit potential antifungal activity through multi-target mechanisms in C. albicans cells and biofilms, which can minimize the emergence of antifungal resistance. The cytotoxicity of metal nanoparticles is a concern, and adjustments in synthesis approaches or coating techniques have been addressed to overcome these limitations, with great emphasis on green synthesis.
Collapse
Affiliation(s)
- Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
- Correspondence: ; Tel.: +55-12-3497-9033
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | - Lívia Mara Alves Figueiredo-Godoi
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | | | - Newton Soares da Silva
- Department of Environmental Engineering, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
19
|
Gungordu Er S, Edirisinghe M, Tabish TA. Graphene-Based Nanocomposites as Antibacterial, Antiviral and Antifungal Agents. Adv Healthc Mater 2023; 12:e2201523. [PMID: 36511355 PMCID: PMC11468666 DOI: 10.1002/adhm.202201523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Over the past decade, there have been many interesting studies in the scientific literature about the interaction of graphene-based polymeric nanocomposites with microorganisms to tackle antimicrobial resistance. These studies have reported variable intensities of biocompatibility and selectivity for the nanocomposites toward a specific strain, but it is widely believed that graphene nanocomposites have antibacterial, antiviral, and antifungal activities. Such antibacterial activity is due to several mechanisms by which graphene nanocomposites can act on cells including stimulating oxidative stress; disrupting membranes due to sharp edges; greatly changing core structure mechanical strength and coarseness. However, the underlying mechanisms of graphene nanocomposites as antiviral and antifungal agents remain relatively scarce. In this review, recent advances in the synthesis, functional tailoring, and antibacterial, antiviral, and antifungal applications of graphene nanocomposites are summarized. The synthesis of graphene materials and graphene-based polymeric nanocomposites with techniques such as pressurized gyration, electrospinning, chemical vapor deposition, and layer-by-layer self-assembly is first introduced. Then, the antimicrobial mechanisms of graphene membranes are presented and demonstrated typical in vitro and in vivo studies on the use of graphene nanocomposites for antibacterial, antiviral, and antifungal applications. Finally, the review describes the biosafety, current limitations, and potential of antimicrobial graphene-based nanocomposites.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Tanveer A. Tabish
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Radcliffe Department of MedicineUniversity of OxfordOld RoadOxfordOX3 7BNUK
- Department of Engineering ScienceUniversity of OxfordBegbroke Science ParkOxfordOX5 1PFUK
| |
Collapse
|
20
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
21
|
Aanish Ali M, Rehman N, Park TJ, Basit MA. Antiviral role of nanomaterials: a material scientist's perspective. RSC Adv 2022; 13:47-79. [PMID: 36605642 PMCID: PMC9769549 DOI: 10.1039/d2ra06410c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The present world continues to face unprecedented challenges caused by the COVID-19 pandemic. Collaboration between researchers of multiple disciplines is the need of the hour. There is a need to develop antiviral agents capable of inhibiting viruses and tailoring existing antiviral drugs for efficient delivery to prevent a surge in deaths caused by viruses globally. Biocompatible systems have been designed using nanotechnological principles which showed appreciable results against a wide range of viruses. Many nanoparticles can act as antiviral therapeutic agents if synthesized by the correct approach. Moreover, nanoparticles can act as carriers of antiviral drugs while overcoming their inherent drawbacks such as low solubility, poor bioavailability, uncontrolled release, and side effects. This review highlights the potential of nanomaterials in antiviral applications by discussing various studies and their results regarding antiviral potential of nanoparticles while also suggesting future directions to researchers.
Collapse
Affiliation(s)
- Muhammad Aanish Ali
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| | - Nagina Rehman
- Department of Zoology, Government College University Allama Iqbal Road Faisalabad 38000 Pakistan
| | - Tae Joo Park
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Republic of Korea
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| |
Collapse
|
22
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
23
|
Alavi SE, Raza A, Gholami M, Giles M, Al-Sammak R, Ibrahim A, Ebrahimi Shahmabadi H, Sharma LA. Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics 2022; 14:2293. [PMID: 36365112 PMCID: PMC9692332 DOI: 10.3390/pharmaceutics14112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is frequently used for drug delivery in the treatment of diseases and is associated with the problems, such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems (DDS) have received considerable attention. In this literature review, the related articles are identified, and their findings, in terms of current therapeutic challenges and the applications of DDSs, especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antiviral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle, strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these diseases, are highlighted.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael Giles
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Rayan Al-Sammak
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Ali Ibrahim
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Lavanya A. Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
24
|
Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Facing the deadly pandemic caused by the SARS-CoV-2 virus all over the globe, it is crucial to devote efforts to fighting and preventing this infectious virus. Nanomaterials have gained much attention after the approval of lipid nanoparticle-based COVID-19 vaccines by the United States Food and Drug Administration (USFDA). In light of increasing demands for utilizing nanomaterials in the management of COVID-19, this comprehensive review focuses on the role of nanomaterials in the prevention, diagnostics, therapeutics, and vaccine development of COVID-19. First, we highlight the variety of nanomaterials usage in the prevention of COVID-19. We discuss the advantages of nanomaterials as well as their uses in the production of diagnostic tools and treatment methods. Finally, we review the role of nanomaterials in COVID-19 vaccine development. This review offers direction for creating products based on nanomaterials to combat COVID-19.
Collapse
|
25
|
Tong T, Tang W, Xiao S, Liang J. Antiviral Effects of Heparan Sulfate Analogue‐Modified Two‐Dimensional MXene Nanocomposites on PRRSV and SARS‐CoV‐2. ADVANCED NANOBIOMED RESEARCH 2022; 2:2200067. [PMID: 36249178 PMCID: PMC9538433 DOI: 10.1002/anbr.202200067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/03/2022] [Indexed: 01/09/2023] Open
Abstract
Due to the worldwide impact of viruses such as SARS‐CoV‐2, researchers have paid extensive attention to antiviral reagents against viruses. Despite extensive research on two‐dimensional (2D) transition metal carbides (MXenes) in the field of biomaterials, their antiviral effects have received little attention. In this work, heparan sulfate analogue (sodium 3‐mercapto‐1‐propanesulfonate, MPS) modified 2D MXene nanocomposites (Ti3C2‐Au‐MPS) for prevention of viral infection are prepared and investigated using severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pseudovirus and porcine reproductive and respiratory syndrome virus (PRRSV) as two model viruses. Ti3C2‐Au‐MPS nanocomposites are shown to possess antiviral properties in the different stages of PRRSV proliferation, such as direct interaction with PRRS virions and inhibiting their adsorption and penetration in the host cell. Additionally, Ti3C2‐Au‐MPS nanocomposites can strongly inhibit the infection of SARS‐CoV‐2 pseudovirus as shown by the contents of its reporter gene GFP and luciferase. These results demonstrate the potential broad‐spectrum antiviral property of Ti3C2‐Au‐MPS nanocomposites against viruses with the receptor of heparin sulfate. This work sheds light on the specific antiviral effects of MXene‐based nanocomposites against viruses and may facilitate further exploration of their antiviral applications.
Collapse
Affiliation(s)
- Ting Tong
- College of Science College of Resource and Environment State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Wantao Tang
- College of Science College of Resource and Environment State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Shaobo Xiao
- College of Veterinary Medicine State Key Laboratory of Agricultural Microbiology Key Laboratory of Preventive Veterinary Medicine in Hubei Province Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Jiangong Liang
- College of Science College of Resource and Environment State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan 430070 P. R. China
| |
Collapse
|
26
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Alavi M, Kamarasu P, McClements DJ, Moore MD. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv Colloid Interface Sci 2022; 306:102726. [PMID: 35785596 DOI: 10.1016/j.cis.2022.102726] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Certain types of metal-based nanoparticles are effective antiviral agents when used in their original form ("bare") or after their surfaces have been functionalized ("modified"), including those comprised of metals (e.g., silver) and metal oxides (e.g., zinc oxide, titanium dioxide, or iron dioxide). These nanoparticles can be prepared with different sizes, morphologies, surface chemistries, and charges, which leads to different antiviral activities. They can be used as aqueous dispersions or incorporated into composite materials, such as coatings or packaging materials. In this review, we provide an overview of the design, preparation, and characterization of metal-based nanoparticles. We then discuss their potential mechanisms of action against various kinds of viruses. Finally, the applications of some of the most common metal and metal oxide nanoparticles are discussed, including those fabricated from silver, zinc oxide, iron oxide, and titanium dioxide. In general, the major antiviral mechanisms of metal and metal oxide nanoparticles have been observed to be 1) attachment of nanoparticles to surface moieties of viral particles like spike glycoproteins, that disrupt viral attachment and uncoating in host cells; 2) generation of reactive oxygen species (ROS) that denature viral macromolecules such as nucleic acids, capsid proteins, and/or lipid envelopes; and 3) inactivation of viral glycoproteins by the disruption of the disulfide bonds of viral proteins. Several physicochemical properties of metal and metal oxide nanoparticles including size, shape, zeta potential, stability in physiological conditions, surface modification, and porosity can all impact the antiviral efficacy of the nanoparticles.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran; Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Pragathi Kamarasu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
28
|
Kolanthai E, Neal CJ, Kumar U, Fu Y, Seal S. Antiviral nanopharmaceuticals: Engineered surface interactions and virus-selective activity. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1823. [PMID: 35697665 DOI: 10.1002/wnan.1823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has inspired large research investments from the global scientific community in the study of viral properties and antiviral technologies (e.g., self-cleaning surfaces, virucides, antiviral drugs, and vaccines). Emerging viruses are a constant threat due to the substantial variation in viral structures, limiting the potential for expanded broad-spectrum antiviral agent development, and the complexity of targeting multiple and diverse viral species with unique characteristics involving their virulence. Multiple, more infectious variants of SARS-CoV2 (e.g., Delta, Omicron) have already appeared, necessitating research into versatile, robust control strategies in response to the looming threat of future viruses. Nanotechnology and nanomaterials have played a vital role in addressing current viral threats, from mRNA-based vaccines to nanoparticle-based drugs and nanotechnology enhanced disinfection methods. Rapid progress in the field has prompted a review of the current literature primarily focused on nanotechnology-based virucides and antivirals. In this review, a brief description of antiviral drugs is provided first as background with most of the discussion focused on key design considerations for high-efficacy antiviral nanomaterials (e.g., nanopharmaceuticals) as determined from published studies as well as related modes of biological activity. Insights into potential future research directions are also provided with a section devoted specifically to the SARS-CoV2 virus. This article is categorized under: Toxicology and Regulatory Issues in Nanomediciney > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Elayaraja Kolanthai
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Udit Kumar
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA.,College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
29
|
Bahrami A, Arabestani MR, Taheri M, Farmany A, Norozzadeh F, Hosseini SM, Nozari H, Nouri F. Exploring the Role of Heavy Metals and Their Derivatives on the Pathophysiology of COVID-19. Biol Trace Elem Res 2022; 200:2639-2650. [PMID: 34448983 PMCID: PMC8391869 DOI: 10.1007/s12011-021-02893-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Many aspects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease, COVID-19, have been studied to determine its properties, transmission mechanisms, and pathology. These efforts are aimed at identifying potential approaches to control or treat the disease. Early treatment of novel SARS-CoV-2 infection to minimize symptom progression has minimal evidence; however, many researchers and firms are working on vaccines, and only a few vaccines exist. COVID-19 is affected by several heavy metals and their nanoparticles. We investigated the effects of heavy metals and heavy metal nanoparticles on SARS-CoV-2 and their roles in COVID-19 pathogenesis. AgNPs, AuNPs, gold-silver hybrid NPs, copper nanoparticles, zinc oxide, vanadium, gallium, bismuth, titanium, palladium, silver grafted graphene oxide, and some quantum dots were tested to see if they could minimize the severity or duration of symptoms in patients with SARS-CoV-2 infection when compared to standard therapy.
Collapse
Affiliation(s)
- Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Norozzadeh
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hesam Nozari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
30
|
Patial S, Kumar A, Raizada P, Le QV, Nguyen VH, Selvasembian R, Singh P, Thakur S, Hussain CM. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107527. [PMID: 35280853 PMCID: PMC8902865 DOI: 10.1016/j.jece.2022.107527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 05/13/2023]
Abstract
Coronavirus disease-2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been one of the most challenging worldwide epidemics of recent times. Semiconducting materials (photocatalysts) could prove effectual solar-light-driven technology on account of variant reactive oxidative species (ROS), including superoxide (•O2 - ) and hydroxyl (•OH) radicals either by degradation of proteins, DNA, RNA, or preventing cell development by terminating cellular membrane. Graphene-based materials have been exquisitely explored for antiviral applications due to their extraordinary physicochemical features including large specific surface area, robust mechanical strength, tunable structural features, and high electrical conductivity. Considering that, the present study highlights a perspective on the potentials of graphene based materials for photocatalytic antiviral activity. The interaction of virus with the surface of graphene based nanomaterials and the consequent physical, as well as ROS induced inactivation process, has been highlighted and discussed. It is highly anticipated that the present review article emphasizing mechanistic antiviral insights could accelerate further research in this field.
Collapse
Affiliation(s)
- Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
31
|
Kumar A, Hasija V, Sudhaik A, Raizada P, Nguyen VH, Le QV, Singh P, Nguyen DC, Thakur S, Hussain CM. The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review. ENVIRONMENTAL RESEARCH 2022; 209:112814. [PMID: 35090874 PMCID: PMC8789448 DOI: 10.1016/j.envres.2022.112814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
The prevalence of global health implications from the COVID-19 pandemic necessitates the innovation and large-scale application of disinfection technologies for contaminated surfaces, air, and wastewater as the significant transmission media of disease. To date, primarily recommended disinfection practices are energy exhausting, chemical driven, and cause severe impact on the environment. The research on advanced oxidation processes has been recognized as promising strategies for disinfection purposes. In particular, semiconductor-based photocatalysis is an effective renewable solar-driven technology that relies on the reactive oxidative species, mainly hydroxyl (•OH) and superoxide (•O2-) radicals, for rupturing the capsid shell of the virus and loss of pathogenicity. However, the limited understanding of critical aspects such as viral photo-inactivation mechanism, rapid virus mutagenicity, and virus viability for a prolonged time restricts the large-scale application of photocatalytic disinfection technology. In this work, fundamentals of photocatalysis disinfection phenomena are addressed with a reviewed remark on the reported literature of semiconductor photocatalysts efficacies against SARS-CoV-2. Furthermore, to validate the photocatalysis process on an industrial scale, we provide updated data on available commercial modalities for an effective virus photo-inactivation process. An elaborative discussion on the long-term challenges and sustainable solutions is suggested to fill in the existing knowledge gaps. We anticipate this review will ignite interest among researchers to pave the way to the photocatalysis process for disinfecting virus-contaminated environments and surfaces for current and future pandemics.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - D C Nguyen
- Department of Chemistry, The University of Danang, University of Science and Education, Danang, 550000, Viet Nam
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA.
| |
Collapse
|
32
|
Sayed MA, El-Rahman TMAA, Abdelsalam HK, Ali AM, Hamdy MM, Badr YA, Rahman NHAE, El-Latif SMA, Mostafa SH, Mohamed SS, Ali ZM, El-Bassuony AAH. Attractive study of the antimicrobial, antiviral, and cytotoxic activity of novel synthesized silver chromite nanocomposites. BMC Chem 2022; 16:39. [PMID: 35624524 PMCID: PMC9145106 DOI: 10.1186/s13065-022-00832-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Antibiotic resistance is a global problem. This is the reason why scientists search for alternative treatments. In this regard, seven novel silver chromite nanocomposites were synthesized and assayed to evaluate their antimicrobial, antiviral, and cytotoxic activity. Five bacterial species were used in this study: three Gram-positive (Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Salmonella enterica). Three fungal species were also tested: Candida albicans, Aspergillus niger, and A. flavus. The MIC of the tested compounds was determined using the bifold serial dilution method. The tested compounds showed good antibacterial activity. Maximum antibacterial activity was attained in the case of 15 N [Cobalt Ferrite (0.3 CoFe2O4) + Silver chromite (0.7 Ag0.5Cr2.5O4)] against M. luteus. Concerning antifungal activity, C. albicans was the most susceptible fungal species. The maximum inhibition was recorded also in case of 15 N [Cobalt Ferrite (0.3 CoFe2O4) + Silver chromite (0.7 Ag0.5Cr2.5O4)]. The most promising antimicrobial compound 15 N [Cobalt Ferrite (0.3 CoFe2O4) + Silver chromite (0.7 Ag0.5Cr2.5O4)] was assayed for its antiviral and cytotoxic activity. The tested compound showed weak antiviral activity. The cytotoxic activity against Mammalian cells from African Green Monkey Kidney (Vero) cells was detected. The inhibitory effect against Hepatocellular carcinoma cells was detected using a MTT assay. The antimicrobial effect of the tested compounds depends on the tested microbial species. The tested compounds could be attractive and alternative antibacterial compounds that open a new path in chemotherapy.
Collapse
Affiliation(s)
- Mohsen A Sayed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - H K Abdelsalam
- Basic Science Department, Higher Institute of Applied Arts 5th Settlement, New Cairo, Egypt
| | - Ahmed M Ali
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mayar M Hamdy
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yara A Badr
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Sara H Mostafa
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sondos S Mohamed
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ziad M Ali
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
33
|
Stanisic D, Cruz GCF, Elias LA, Tsukamoto J, Arns CW, Soares da Silva D, Mochkalev S, Savu R, Tasic L. High-Resolution Magic-Angle Spinning NMR Spectroscopy for Evaluation of Cell Shielding by Virucidal Composites Based on Biogenic Silver Nanoparticles, Flexible Cellulose Nanofibers and Graphene Oxide. Front Bioeng Biotechnol 2022; 10:858156. [PMID: 35646854 PMCID: PMC9133937 DOI: 10.3389/fbioe.2022.858156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Antiviral and non-toxic effects of silver nanoparticles onto in vitro cells infected with coronavirus were evaluated in this study using High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) spectroscopy. Silver nanoparticles were designed and synthesized using an orange flavonoid—hesperetin (HST)—for reduction of silver(I) and stabilization of as obtained nanoparticles. The bio-inspired process is a simple, clean, and sustainable way to synthesize biogenic silver nanoparticles (AgNP@HST) with diameters of ∼20 nm and low zeta potential (−40 mV), with great colloidal stability monitored for 2 years. The nanoparticles were used for the fabrication of two types of antiviral materials: colloids (AgNP@HST spray) and 3D flexible nanostructured composites. The composites, decorated with AgNP@HST (0.05 mmol L−1), were made using cellulose nanofibers (CNF) obtained from orange peel and graphene oxide (GO), being denominated CNF@GO@AgNP@HST. Both materials showed high virucidal activity against coronaviruses in cell infection in vitro models and successfully inhibited the viral activity in cells. HR-MAS 1H-NMR technique was used for determining nanomaterials’ effects on living cells and their influences on metabolic pathways, as well as to study viral effects on cells. It was proven that none of the manufactured materials showed toxicity towards the intact cells used. Furthermore, viral infection was reverted when cells, infected with the coronavirus, were treated using the as-fabricated nanomaterials. These significant results open possibilities for antiviral application of 3D flexible nanostructured composite such as packaging papers and filters for facial masks, while the colloidal AgNP@HST spray can be used for disinfecting surfaces, as well as a nasal, mouth, and eye spray.
Collapse
Affiliation(s)
- Danijela Stanisic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Guilherme C. F. Cruz
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), São Paulo, Brazil
- Centre for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (UNICAMP), São Paulo, Brazil
- Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Leonardo Abdala Elias
- Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Junko Tsukamoto
- Laboratory of Animal Virology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Clarice W. Arns
- Laboratory of Animal Virology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | - Stanislav Mochkalev
- Centre for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Raluca Savu
- Centre for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), São Paulo, Brazil
- *Correspondence: Ljubica Tasic,
| |
Collapse
|
34
|
Shahabi M, Raissi H. A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Adv 2022; 12:14167-14174. [PMID: 35558858 PMCID: PMC9092566 DOI: 10.1039/d2ra01420c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Currently, a preventive and curative treatment for COVID-19 is an urgent global issue. According to the fact that nanomaterial-based drug delivery systems as risk-free approaches for successful therapeutic strategies may led to immunization against COVID-19 pandemic, the delivery of Carmofur as a potential drug for the SARS-CoV-2 treatment via graphene oxide quantum dots (GOQDs) was investigated in silico using molecular dynamics (MD) simulation. MD simulation showed that π-π stacking together with hydrogen bonding played vital roles in the stability of the Carmofur-GOQD complex. Spontaneous attraction of GOQDs loaded with Carmofur toward the binding pocket of the main protease (Mpro) resulted in the penetration of Carmofur into the active catalytic region. It was found that the presence of GOQD as an effective carrier in the loading and delivery of Carmofur inhibitor affected the structural conformation of Mpro. Higher RMSF values of the key residues of the active site indicated their greater displacement to adopt Carmofur. These results suggested that the binding pocket of Mpro is not stable during the interaction with the Carmofur-GOQD complex. This study provided insights into the potential application of graphene oxide quantum dots as an effective Carmofur drug delivery system for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand Birjand Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran
| |
Collapse
|
35
|
Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298:101957. [PMID: 35452675 PMCID: PMC9123278 DOI: 10.1016/j.jbc.2022.101957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.
Collapse
|
36
|
Hashmi A, Nayak V, Singh KR, Jain B, Baid M, Alexis F, Singh AK. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. MATERIALS TODAY. ADVANCES 2022; 13:100208. [PMID: 35039802 PMCID: PMC8755454 DOI: 10.1016/j.mtadv.2022.100208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 05/06/2023]
Abstract
Graphene is a two-dimensional material with sp2 hybridization that has found its broad-spectrum potentialities in various domains like electronics, robotics, aeronautics, etc.; it has recently gained its utilities in the biomedical domain. The unique properties of graphene and its derivatives of graphene have helped them find their utilities in the biomedical domain. Additionally, the sudden outbreak of SARS-CoV-2 has immensely expanded the research field, which has also benefitted graphene and its derivatives. Currently, the world is facing a global pandemic due to the sudden outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as COVID-19, from its major onset in Wuhan city, China, in December 2019. Presently, many new variants and mutants appear, which is more harmful than previous strains. However, researchers and scientists are focused on understanding the target structure of coronavirus, mechanism, causes and transmission mode, treatment, and alternatives to cure these diseases in this critical pandemic situation; many findings are achieved, but much more is unknown and pending to be explored. This review paper is dedicated to exploring the utilities of graphene and its derivatives in combating the SARS-CoV-2 by highlighting their mechanism and applications in the fabrication of biosensors, personal protection equipment (PPE) kits, 3-D printing, and antiviral coatings. Further, the paper also covers the cytotoxicity caused by graphene and its derivatives and highlights the graphene-based derivatives market aspects in biomedical domains. Thus, graphene and graphene-derived materials are our new hope in this pandemic time, and this review helps acquire broad knowledge about them.
Collapse
Affiliation(s)
- Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Vanya Nayak
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Kshitij Rb Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Mitisha Baid
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Frank Alexis
- Department of Chemical Engineering, Universidad de San Francisco de Quito, Quito, 107910, Ecuador
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| |
Collapse
|
37
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
38
|
Karthik C, Punnaivalavan KA, Prabha SP, Caroline DG. Multifarious global flora fabricated phytosynthesis of silver nanoparticles: a green nanoweapon for antiviral approach including SARS-CoV-2. INTERNATIONAL NANO LETTERS 2022; 12:313-344. [PMID: 35194512 PMCID: PMC8853038 DOI: 10.1007/s40089-022-00367-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The progressive research into the nanoscale level upgrades the higher end modernized evolution with every field of science, engineering, and technology. Silver nanoparticles and their broader range of application from nanoelectronics to nano-drug delivery systems drive the futuristic direction of nanoengineering and technology in contemporary days. In this review, the green synthesis of silver nanoparticles is the cornerstone of interest over physical and chemical methods owing to its remarkable biocompatibility and idiosyncratic property engineering. The abundant primary and secondary plant metabolites collectively as multifarious phytochemicals which are more peculiar in the composition from root hair to aerial apex through various interspecies and intraspecies, capable of reduction, and capping with the synthesis of silver nanoparticles. Furthermore, the process by which intracellular, extracellular biological macromolecules of the microbiota reduce with the synthesis of silver nanoparticles from the precursor molecule is also discussed. Viruses are one of the predominant infectious agents that gets faster resistance to the antiviral therapies of traditional generations of medicine. We discuss the various stages of virus targeting of cells and viral target through drugs. Antiviral potential of silver nanoparticles against different classes and families of the past and their considerable candidate for up-to-the-minute need of complete addressing of the fulminant and opportunistic global pandemic of this millennium SARS-CoV2, illustrated through recent silver-based formulations under development and approval for countering the pandemic situation. Graphical abstract
Collapse
Affiliation(s)
- C. Karthik
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - K. A. Punnaivalavan
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - S. Pandi Prabha
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117 Tamil Nadu India
| | - D. G. Caroline
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| |
Collapse
|
39
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Facemask Global Challenges: The Case of Effective Synthesis, Utilization, and Environmental Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14020737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a rapidly spreading pandemic and is severely threatening public health globally. The human-to-human transmission route of SARS-CoV-2 is now well established. The reported clinical observations and symptoms of this infection in humans appear in the range between being asymptomatic and severe pneumonia. The virus can be transmitted through aerosols and droplets that are released into the air by a carrier, especially when the person coughs, sneezes, or talks forcefully in a closed environment. As the disease progresses, the use and handling of contaminated personal protective equipment and facemasks have become major issues with significant environmental risks. Therefore, providing an effective method for treating used/contaminated facemasks is crucial. In this paper, we review the environmental challenges and risks associated with the surge in facemask production. We also discuss facemasks and their materials as sources of microplastics and how disposal procedures can potentially lead to the contamination of water resources. We herein review the potential of developing nanomaterial-based antiviral and self-cleaning facemasks. This review discusses these challenges and concludes that the use of sustainable and alternative facemask materials is a promising and viable solution. In this context, it has become essential to address the emerging challenges by developing a new class of facemasks that are effective against the virus, while being biodegradable and sustainable. This paper represents the potentials of natural and/or biodegradable polymers for manufacturing facemasks, such as wood-based polymers, chitosan, and other biodegradable synthetic polymers for achieving sustainability goals during and after pandemics.
Collapse
|
41
|
Mba IE, Nweze EI. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:25-51. [DOI: 10.1007/978-981-16-9190-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
42
|
Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. Graphene-Based Technologies for Tackling COVID-19 and Future Pandemics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2107407. [PMID: 34899114 PMCID: PMC8646295 DOI: 10.1002/adfm.202107407] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases.
Collapse
Affiliation(s)
- Shaila Afroj
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| | - Liam Britnell
- Graphene Engineering and Innovation Centre (GEIC)The University of ManchesterManchesterM13 9PLUK
| | - Tahmid Hasan
- Department of Environmental Science and EngineeringBangladesh University of TextilesTejgaonDhaka 1208Bangladesh
| | - Daria V. Andreeva
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
| | - Kostya S. Novoselov
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| |
Collapse
|
43
|
Ayub M, Othman MHD, Khan IU, Yusop MZM, Kurniawan TA. Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. SURFACES AND INTERFACES 2021; 27:101460. [PMID: 34957347 PMCID: PMC8442307 DOI: 10.1016/j.surfin.2021.101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a significant and topmost global health challenge of today. SARS-CoV-2 can propagate through several direct or indirect means resulting in its exponential spread in short times. Consequently, finding new research based real-world and feasible solutions to interrupt the spread of pathogenic microorganisms is indispensable. It has been established that this virus can survive on a variety of available surfaces ranging from a few hours to a few days, which has increased the risk of COVID-19 spread to large populations. Currently, available surface disinfectant chemicals provide only a temporary solution and are not recommended to be used in the long run due to their toxicity and irritation. Apart from the urgent development of vaccine and antiviral drugs, there is also a need to design and develop surface disinfectant antiviral coatings for long-term applications even for new variants. The unique physicochemical properties of graphene-based nanomaterials (GBNs) have been widely investigated for antimicrobial applications. However, the research work for their use in antimicrobial surface coatings is minimal. This perspective enlightens the scope of using GBNs as antimicrobial/antiviral surface coatings to reduce the spread of transmittable microorganisms, precisely, SARS-CoV-2. This study attempts to demonstrate the synergistic effect of GBNs and metallic nanoparticles (MNPs), for their potential antiviral applications in the development of surface disinfectant coatings. Some proposed mechanisms for the antiviral activity of the graphene family against SARS-CoV-2 has also been explained. It is anticipated that this study will potentially lead to new insights and future trends to develop a framework for further investigation on this research area of pivotal importance to minimize the transmission of current and any future viral outbreaks.
Collapse
Affiliation(s)
- Muhammad Ayub
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology (PAF:IAST), Khanpur Road, Mang, Haripur 22650, Pakistan
| | - Mohd Zamri Mohd Yusop
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Coastal and Wetland Ecosystems, College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
44
|
Fukuda M, Islam MS, Shimizu R, Nassar H, Rabin NN, Takahashi Y, Sekine Y, Lindoy LF, Fukuda T, Ikeda T, Hayami S. Lethal Interactions of SARS-CoV-2 with Graphene Oxide: Implications for COVID-19 Treatment. ACS APPLIED NANO MATERIALS 2021; 4:11881-11887. [PMID: 37556290 PMCID: PMC8525341 DOI: 10.1021/acsanm.1c02446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 05/03/2023]
Abstract
The rapid transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven infection signifies an ultimate challenge to global health, and the development of effective strategies for preventing and/or mitigating its effects are of the utmost importance. In the current study, an in-depth investigation for the understanding of the SARS-CoV-2 inactivation route using graphene oxide (GO) is presented. We focus on the antiviral effect of GO nanosheets on three SARS-CoV-2 strains: Wuhan, B.1.1.7 (U.K. variant), and P.1 (Brazilian variant). Plaque assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that 50 and 98% of the virus in a supernatant could be cleared following incubation with GO (100 μg/mL) for 1 and 60 min, respectively. Transmission electron microscopy (TEM) analysis and protein (spike (S) and nucleocapsid (N) proteins) decomposition evaluation confirm a two-step virus inactivation mechanism that includes (i) adsorption of the positively charged spike of SARS-CoV-2 on the negatively charged GO surface and (ii) neutralization/inactivation of the SARS-CoV-2 on the surface of GO through decomposition of the viral protein. As the interaction of S protein with human angiotensin-converting enzyme 2 (ACE2) is required for SARS-CoV-2 to enter into human cells, the damage to the S protein using GO makes it a potential candidate for use in contributing to the inhibition of the worldwide spread of SARS-CoV-2. Specifically, our findings provide the potential for the construction of an effective anti-SARS-CoV-2 face mask using a GO nanosheet, which could contribute greatly to preventing the spread of the virus. In addition, as the effect of surface contamination can be severe in the spreading of SARS-CoV-2, the development of efficient anti-SARS-CoV-2 protective surfaces/coatings based on GO nanosheets could play a significant role in controlling the spread of the virus through the utilization of GO-based nonwoven cloths, filters, and so on.
Collapse
Affiliation(s)
- Masahiro Fukuda
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
| | - M. Saidul Islam
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
- Institute of Industrial Nanomaterials,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint
Research Center for Human Retrovirus Infection, Kumamoto
University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences,
Kumamoto University, Kumamoto 860-0811,
Japan
| | - Hesham Nassar
- Division of Molecular Virology and Genetics, Joint
Research Center for Human Retrovirus Infection, Kumamoto
University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
- Department of Clinical Pathology, Faculty of Medicine,
Suez Canal University, Ismailia 41511,
Egypt
| | - Nurun Nahar Rabin
- Institute of Industrial Nanomaterials,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| | - Yukie Takahashi
- International Research Center for Medical Sciences, Faculty
of Life Sciences, Kumamoto University, Kumamoto 860-8556,
Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
- Priority Organization for Innovation and Excellence,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| | - Leonard F. Lindoy
- School of Chemistry F11, The University
of Sydney, Sydney, New South Wales 2006,
Australia
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate
School of Medical Sciences, Kumamoto University, 2-2-1 Honjo,
Kumamoto 860-8556, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint
Research Center for Human Retrovirus Infection, Kumamoto
University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Shinya Hayami
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
- Institute of Industrial Nanomaterials,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| |
Collapse
|
45
|
Abdelhalim AOE, Meshcheriakov AA, Maistrenko DN, Molchanov OE, Ageev SV, Ivanova DA, Iamalova NR, Luttsev MD, Vasina LV, Sharoyko VV, Semenov KN. Graphene oxide enriched with oxygen-containing groups: on the way to an increase of antioxidant activity and biocompatibility. Colloids Surf B Biointerfaces 2021; 210:112232. [PMID: 34838416 DOI: 10.1016/j.colsurfb.2021.112232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
The article is dedicated to the comprehensive biocompatibility investigation of synthesised graphene oxide (GO) enriched with oxygen-containing functional groups (⁓85%). GO was synthesised through a modified Hummers and Offeman's method and characterised using 13C NMR, Raman, and IR spectroscopy, XRD, HRTEM, along with size dimensions and ζ-potentials in aqueous dispersions. Biocompatibility study included tests on haemocompatibility (haemolysis, platelet aggregation, binding to human serum albumin and its esterase activity), antioxidant activity (2,2-diphenyl-1-picrylhydrazyl reaction, NO-radical uptake, Radachlorin photobleaching, photo-induced haemolysis), genotoxicity using DNA comet assay, as well as metabolic activity and proliferation of HEK293 cells.
Collapse
Affiliation(s)
- Abdelsattar O E Abdelhalim
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Environmental Research Department, National Center for Social and Criminological Research (NCSCR), 4 Agouza, Giza, 11561, Egypt
| | - Anatolii A Meshcheriakov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Dmitrii N Maistrenko
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia
| | - Oleg E Molchanov
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia
| | - Sergei V Ageev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Nailia R Iamalova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Mikhail D Luttsev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia.
| | - Konstantin N Semenov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia.
| |
Collapse
|
46
|
Chung H, Nguyen VG, Kim CU, Do H, Park BK, Park YH, Song D, Kong A, Ryu J, Kang K. Application of nano-graphene oxide as nontoxic disinfectant against alpha and betacoronaviruses. Vet Med Sci 2021; 7:2434-2439. [PMID: 34313392 PMCID: PMC8604132 DOI: 10.1002/vms3.584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
New viruses are continuously emerging and recently there have been many great concerns on severe acute respiratory syndrome coronavirus (SARS-CoV-2). Nanographene oxide (nanoGO) has received much attention and is widely investigated to be utilised in therapy for infectious diseases by viruses. Thus, antiviral activity of nanoGO was evaluated using the porcine epidemic diarrhoea virus (PEDV), bovine coronavirus (BCoV), and SARS-CoV-2, which are all Alpha- and Beta-coronavirus. In a virus inhibition assay, the three viruses were inhibited by nanoGO in a dose-dependent manner, including attempts in the presence of high serum solution which partially mimicked biological fluid.
Collapse
Affiliation(s)
- Hee‐Chun Chung
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversityGwanAk‐GuSeoulKorea
| | - Van Giap Nguyen
- Faculty of Veterinary MedicineDepartment of Veterinary Microbiology and Infectious DiseasesVietnam National University of AgricultureHanoiVietnam
| | - Cheong Ung Kim
- Department of Veterinary MicrobiologyCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
| | - Hai‐Quynh Do
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversityGwanAk‐GuSeoulKorea
- Institute of Genome ResearchVietnam Academy of Science and TechnologyHanoiVietnam
| | - Bong Kyun Park
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversityGwanAk‐GuSeoulKorea
| | - Yong Ho Park
- Department of Veterinary MicrobiologyCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
| | - Dae‐Sub Song
- Department of PharmacyCollege of PharmacyKorea UniversitySejongRepublic of Korea
| | - Aeri Kong
- Department of Medical ScienceUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jae‐Chul Ryu
- Adult StemCell Research Center and Research Institute for Veterinary ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Kyung‐Sun Kang
- Adult StemCell Research Center and Research Institute for Veterinary ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
47
|
Rhazouani A, Aziz K, Gamrani H, Gebrati L, Uddin MS, Faissal A. Can the application of graphene oxide contribute to the fight against COVID-19? Antiviral activity, diagnosis and prevention. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100062. [PMID: 34870157 PMCID: PMC8491929 DOI: 10.1016/j.crphar.2021.100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is an infectious disease that affects the respiratory system and is caused by the novel coronavirus SARS-CoV-2. It was first reported in Wuhan, China, on December 31, 2019, and has affected the entire world. This pandemic has caused serious health, economic and social problems. In this situation, the only solution to combat COVID-19 is to accelerate the development of antiviral drugs and vaccines to mitigate the virus and develop better antiviral methods and excellent diagnostic and prevention techniques. With the development of nanotechnology, nanoparticles are being introduced to control COVID-19. Graphene oxide (GO), an oxidized derivative of graphene, is currently used in the medical field to treat certain diseases such as cancer. It is characterized by very important antiviral properties that allow its use in treating certain infectious diseases. The GO antiviral mechanism is discussed by the virus inactivation and/or the host cell receptor or by the physicochemical destruction of viral species. Moreover, the very high surface/volume ratio of GO allows the fixation of biomolecules by simple absorption. This paper summarizes the different studies performed on GO's antiviral activities and discusses GO-based biosensors for virus detection and approaches for prevention.
Collapse
Affiliation(s)
- Asmaa Rhazouani
- Laboratory of Water, Biodiversity & Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- Team of Neurosciences, Pharmacology and Environment (ENPE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
- National Centre for Studies and Research on Water and Energy (CNEREE), Faculty of Technical Sciences, Cadi Ayyad University, B.P 511, 40000, Marrakech, Morocco
| | - Khalid Aziz
- Materials, Catalysis and Valorization of Natural Resources, Faculty of Sciences, University Ibn Zohr, BP 8106, Agadir, Morocco
| | - Halima Gamrani
- Team of Neurosciences, Pharmacology and Environment (ENPE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Lhoucine Gebrati
- Laboratory of Materials, Processes, Environment and Quality, Cadi Ayyad University, BP 63, 46000, Safi, Morocco
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Aziz Faissal
- Laboratory of Water, Biodiversity & Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Centre for Studies and Research on Water and Energy (CNEREE), Faculty of Technical Sciences, Cadi Ayyad University, B.P 511, 40000, Marrakech, Morocco
| |
Collapse
|
48
|
Hu Q, Zhou Z, Gao L, Zhou N, Chen Y, Wang S. Green Synthesis of Ag NP‐Decorated Poly(dopamine) Microcapsules for Antibacterial Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202102654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiyan Hu
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Zhiyuan Zhou
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Liwen Gao
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Naijun Zhou
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Yuanyan Chen
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| | - Shaozhen Wang
- School of Pharmacy Wannan Medical College Wuhu 241002 PR China
| |
Collapse
|
49
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
50
|
Sadique MA, Yadav S, Ranjan P, Verma S, Salammal ST, Khan MA, Kaushik A, Khan R. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J Mater Chem B 2021; 9:4620-4642. [PMID: 34027540 DOI: 10.1039/d1tb00472g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite significant accomplishments in developing efficient rapid sensing systems and nano-therapeutics of higher efficacy, the recent coronavirus disease (COVID-19) pandemic is not under control successfully because the severe acute respiratory syndrome virus (SARS-CoV-2, original and mutated) transmits easily from human to -human and causes life-threatening respiratory disorders. Thus, it has become crucial to avoid this transmission through precautions and keep premises hygienic using high-performance anti-viral nanomaterials to trap and eradicate SARS-CoV-2. Such an antiviral nano-system has successfully demonstrated useful significant contribution in COVID-19 pandemic/endemic management effectively. However, their projection with potential sustainable prospects still requires considerable attention and efforts. With this aim, the presented review highlights various severe life-threatening viral infections and the role of multi-functional anti-viral nanostructures with manipulative properties investigated as an efficient precative shielding agent against viral infection progression. The salient features of such various nanostructures, antiviral mechanisms, and high impact multi-dimensional roles are systematically discussed in this review. Additionally, the challenges associated with the projection of alternative approaches also support the demand and significance of this selected scientific topic. The outcomes of this review will certainly be useful to motivate scholars of various expertise who are planning future research in the field of investigating sustainable and affordable high-performance nano-systems of desired antiviral performance to manage not only COVID-19 infection but other targeted viral infections as well.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
| | - Shalu Yadav
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpesh Ranjan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Verma
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shabi Thankaraj Salammal
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Akram Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|