1
|
Leng Y, Wu Y, Xiao W, Su X, Liu Z. Dynamic-Covalent Mesoporous Silica Nanohybrid with pH/ROS-Responsive Drug Release for Targeted Tumor Therapy. ACS OMEGA 2024; 9:47428-47435. [PMID: 39651082 PMCID: PMC11618396 DOI: 10.1021/acsomega.4c04502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
Nanomedicine provides promising new methodologies for the treatment of tumors but still faces several limitations, including poor colloidal stability, uncontrollable drug release, and insufficient drug targeting. Herein, hyaluronic acid (HA) was used to modify the surface of mesoporous silica nanoparticles (MSNs) via a dynamic-covalent linker, phenylborate ester (PBAE), termed MA. The HA modifier provided enhanced colloidal stability to the hybrid nanoparticles. As expected, MA exhibited an improved biocompatibility and high potential for biomedical applications. Moreover, MA with a negatively charged surface effectively adsorbed the drug Doxorubicin (DOX) inside the carriers, ensuring minimal drug leakage. In an acidic and reactive oxygen species (ROS)-containing condition mimicking the tumor microenvironment, MA@DOX (MAD) continuously released its payloads, likely due to the cleavage of the pH/ROS-sensitive PBAE. Compared with free DOX, MAD had 2.2 times higher accessibility to tumor cells than free DOX. The favorable stability and cancer-selective drug release make this nanoformulation a promising platform for potent cancer treatment.
Collapse
Affiliation(s)
- Yurong Leng
- School
of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi
Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi
Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yanmei Wu
- School
of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi
Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi
Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Wenjing Xiao
- School
of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaoquan Su
- School
of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhe Liu
- School
of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi
Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi
Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
2
|
Lakkakula J, Srilekha GKP, Kalra P, Varshini SA, Penna S. Exploring the promising role of chitosan delivery systems in breast cancer treatment: A comprehensive review. Carbohydr Res 2024; 545:109271. [PMID: 39270442 DOI: 10.1016/j.carres.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Breast cancer presents a significant global health challenge, driving the development of novel treatment strategies for therapeutic interventions. Nanotechnology has emerged as a promising avenue for addressing this challenge, with Chitosan (CS) nanoparticles receiving prominence due to their unique characteristics and multitude of potential applications. This review provides a comprehensive overview of the role of Chitosan nanoparticles in breast cancer therapy. The review begins by emphasizing the prevalence and importance of breast cancer as a major health issue, underscoring the necessity for effective treatments. It then delves into the application of Chitosan nanoparticles in breast cancer therapy. One key aspect discussed is their role as carriers for anticancer drugs, enabling targeted delivery and improved cellular uptake. Furthermore, the review explores modified Chitosan nanoparticles and strategies for enhancing their efficacy and specificity in breast cancer treatment. It also examines Chitosan conjugates and hybrids, which offer innovative approaches for combination therapy. Additionally, metal and magnetic Chitosan nanoparticles are discussed spanning their capacity to assist in imaging, hyperthermia, as well as targeted drug delivery. In conclusion, the review summarizes the current research landscape regarding Chitosan nanoparticles for breast cancer therapy and offers insights into future directions. Overall, the review highlights the versatility, potential benefits, and future prospects of Chitosan nanoparticles in combating breast cancer.
Collapse
Affiliation(s)
- Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206; Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - G K P Srilekha
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - Palak Kalra
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - S A Varshini
- Ramaiah University of Applied Sciences, Bangalore, India
| | - Suprasanna Penna
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206.
| |
Collapse
|
3
|
Basu A, Sae-be A, Namporn T, Suriyaphan O, Sithisarn P, Leanpolchareanchai J, Plommaithong P, Chatsukit A, Sa-ngiamsuntorn K, Naruphontjirakul P, Ruenraroengsak P. Delivery of Avocado Seed Extract Using Novel Charge-Switchable Mesoporous Silica Nanoparticles with Galactose Surface Modified to Target Sorafenib-Resistant Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:10341-10365. [PMID: 39430309 PMCID: PMC11488512 DOI: 10.2147/ijn.s478574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Background Sorafenib-resistant (SR) hepatocellular carcinoma (HCC) is a current serious problem in liver cancer treatment. Numerous phytochemicals derived from plants exhibit anticancer activity but have never been tested against drug-resistant cells. Methods Avocado seed extract (APE) isolated by maceration was analysed for its phytochemical composition and anticancer activity. Novel design charge-switchable pH-responsive nanocarriers of aminated mesoporous silica nanoparticles with conjugated galactose (GMSN) were synthesised for delivering APE and their physicochemical properties were characterized. The drug loading efficiency (%LE) and entrapment efficiency (%EE) were evaluated. Anticancer activity of APE loaded GMSN was measured against HCC (HepG2, Huh-7) and SR-HCC (SR-HepG2). Results Anticancer activity of APE against non-resistant HepG2 (IC50 50.9 ± 0.83 μg mL-1), Huh-7 (IC50 42.41 ± 1.88 μg mL-1), and SR-HepG2 (IC50 62.58 ± 2.29 μg mL-1) cells was confirmed. The APE loaded GMSN had a diameter of 131.41 ± 14.41 nm with 41.08 ± 2.09%LE and 44.96 ± 2.26%EE. Galactose functionalization (55%) did not perturb the original mesoporous structure. The GMSN imparted positive surface charges, 10.3 ± 0.61mV at acidic medium pH 5.5 along with rapid release of APE 45% in 2 h. The GMSN boosted cellular uptake by HepG2 and SR-HepG2 cells, whereas the amine functionalized facilitated their endosomal escape. Their anticancer activity was demonstrated in non-resistant HCC and SR-HCC cells with IC50 values at 30.73 ± 3.14 (HepG2), 21.86 ± 0.83 (Huh-7), 35.64 ± 1.34 (SR-HepG2) μg mL-1, respectively, in comparison to the control and non-encapsulated APE. Conclusion APE loaded GMSN is highly effective against both non-resistant HCC and SR-HCC and warrants further in vivo investigation.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Arunsajee Sae-be
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Orasa Suriyaphan
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pongtip Sithisarn
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | | | - Apichat Chatsukit
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Centre of Molecular Targeting and Integrated Drug Development, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Nair A, Chandrashekhar H R, Day CM, Garg S, Nayak Y, Shenoy PA, Nayak UY. Polymeric functionalization of mesoporous silica nanoparticles: Biomedical insights. Int J Pharm 2024; 660:124314. [PMID: 38862066 DOI: 10.1016/j.ijpharm.2024.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.
Collapse
Affiliation(s)
- Akhil Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekhar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Candace M Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
6
|
Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020447. [PMID: 36839771 PMCID: PMC9965229 DOI: 10.3390/pharmaceutics15020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.
Collapse
|
7
|
CD13-Mediated Pegylated Carboxymethyl Chitosan-Capped Mesoporous Silica Nanoparticles for Enhancing the Therapeutic Efficacy of Hepatocellular Carcinoma. Pharmaceutics 2023; 15:pharmaceutics15020426. [PMID: 36839748 PMCID: PMC9962034 DOI: 10.3390/pharmaceutics15020426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Liver cancer, especially hepatocellular carcinoma, is an important cause of cancer-related death, and its incidence is increasing worldwide. Nano drug delivery systems have shown great promise in the treatment of cancers. In order to improve their therapeutic efficacy, it is very important to realize the high accumulation and effective release of drugs at the tumor site. In this manuscript, using doxorubicin (DOX) as a model drug, CD13-targeted mesoporous silica nanoparticles coated with NGR-peptide-modified pegylated carboxymethyl chitosan were constructed (DOX/MSN-CPN). DOX/MSN-CPN comprises a spherical shape with an obvious capping structure and a particle size of 125.01 ± 1.52 nm. With a decrease in pH, DOX/MSN-CPN showed responsive desorption from DOX/MSN-CPN and pH-responsive release of DOX was observed. Meanwhile, DOX/MSN-CPN could be efficiently absorbed through NGR-mediated internalization in vitro and could efficiently deliver DOX to tumor tissues with long accumulation times in vivo, suggesting good active targeting properties. Moreover, significant tumor inhibition has been observed in antitumor studies in vivo. This study provides a strategy of utilizing DOX/MSN-CPN as a nano-platform for drug delivery, which has superb therapeutic efficacy and safety for the treatment of hepatocellular carcinoma both in vivo and in vitro.
Collapse
|
8
|
Siddiqui B, Rehman AU, Haq IU, Al-Dossary AA, Elaissari A, Ahmed N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int J Pharm X 2022; 4:100116. [PMID: 35509288 PMCID: PMC9058968 DOI: 10.1016/j.ijpx.2022.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Rapid progress in developing multifunctional nanocarriers for drug delivery has been observed in recent years. Inorganic mesoporous silica nanocarriers (MSNs), emerged as an ideal candidate for gene/drug delivery with distinctive morphological features. These ordered carriers of porous nature have gained unique attention due to their distinctive features. Moreover, transformation can be made to these nanocarriers in terms of pores size, pores volume, and particle size by altering specific parameters during synthesis. These ordered porous materials have earned special attention as a drug carrier for treating multiple diseases. Herein, we highlight the strategies employed in synthesizing and functionalizing these versatile nanocarriers. In addition, the various factors that influence their sizes and morphological features were also discussed. The article also summarizes the recent advancements and strategies for drug and gene delivery by rendering smarter MSNs by incorporating functional groups on their surfaces. Averting off-target effects through various capping strategies is a massive milestone for the induction of stimuli-responsive nanocarriers that brings out a great revolution in the biomedical field. MSNs serve as an ideal candidate for gene/drug delivery with unique and excellent attributes. MSNs surface can be functionalized using specific materials to impart unique structural features. Functionalization of MSNs with stimuli-responsive molecules can act as gatekeepers by responding to the desired stimulus after uncapping. These capping agents act as vital targeting agents in developing MSNs being employed in various biomedical applications.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Amal A Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| |
Collapse
|
9
|
Mahmudi H, Adili-Aghdam MA, Shahpouri M, Jaymand M, Amoozgar Z, Jahanban-Esfahlan R. Tumor microenvironment penetrating chitosan nanoparticles for elimination of cancer relapse and minimal residual disease. Front Oncol 2022; 12:1054029. [PMID: 36531004 PMCID: PMC9751059 DOI: 10.3389/fonc.2022.1054029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 10/17/2023] Open
Abstract
Chitosan and its derivatives are among biomaterials with numerous medical applications, especially in cancer. Chitosan is amenable to forming innumerable shapes such as micelles, niosomes, hydrogels, nanoparticles, and scaffolds, among others. Chitosan derivatives can also bring unprecedented potential to cross numerous biological barriers. Combined with other biomaterials, hybrid and multitasking chitosan-based systems can be realized for many applications. These include controlled drug release, targeted drug delivery, post-surgery implants (immunovaccines), theranostics, biosensing of tumor-derived circulating materials, multimodal systems, and combination therapy platforms with the potential to eliminate bulk tumors as well as lingering tumor cells to treat minimal residual disease (MRD) and recurrent cancer. We first introduce different formats, derivatives, and properties of chitosan. Next, given the barriers to therapeutic efficacy in solid tumors, we review advanced formulations of chitosan modules as efficient drug delivery systems to overcome tumor heterogeneity, multi-drug resistance, MRD, and metastasis. Finally, we discuss chitosan NPs for clinical translation and treatment of recurrent cancer and their future perspective.
Collapse
Affiliation(s)
- Hossein Mahmudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Adili-Aghdam
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Mesoporous silica nanoparticle core-shell matrix (MSN CSM) engineered by green approach for pH triggered release of anticancer drugs. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Jin L, Wang Q, Yang M, Zhang J, Liang H, Tan H, Liang Z, Ma X, Liu J, Li H, Cai X, Cui W, Zhao L. Indirubin-3′-monoxime-loaded PLGA-PEG nanoparticles for potential Alzheimer's disease treatment. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Partow AJ, Kim M, Fan P, Liu T, Tong Z, Jeong KC. Comprehensive in vitro and in vivo risk assessments of β-lactam antibiotic and β-lactamase inhibitor loaded chitosan nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Singh A, Yadagiri G, Negi M, Kushwaha AK, Singh OP, Sundar S, Mudavath SL. Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. Int J Biol Macromol 2022; 204:373-385. [PMID: 35149096 DOI: 10.1016/j.ijbiomac.2022.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022]
Abstract
Herein, carboxymethyl chitosan (CMC) grafted lipid nanoformulations were facilely prepared by thin-film hydration method as a highly efficient biocompatible anti-leishmanial carrier encapsulating amphotericin B (AmB). Nanoformulations were characterized for their physicochemical characteristics wherein TEM analysis confirmed the spherical structure, whereas FTIR analysis revealed the conjugation of CMC onto nanoformulations and confirmed the free state of AmB. Furthermore, the wettability study confirmed the presence of CMC on the surface of nanoformulations attributed to the enhanced hydrophilicity. Surface hydrophilicity additionally contributes towards consistent mucin retention ability for up to 6 h, superior mucoadhesiveness, and hence enhanced bioavailability. The proposed nanoformulations with high encapsulation and drug loading properties displayed controlled drug release in the physiological microenvironment. In vitro, antileishmanial results showed an astounding 97% inhibition in amastigote growth. Additionally, in vivo studies showed that treatment with nanoformulations significantly reduced the liver parasitic burden (93.5%) without causing any toxicity when given orally.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Manorma Negi
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Anurag Kumar Kushwaha
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
14
|
Wang Y, Ke J, Guo X, Gou K, Sang Z, Wang Y, Bian Y, Li S, Li H. Chiral mesoporous silica nano-screws as an efficient biomimetic oral drug delivery platform through multiple topological mechanisms. Acta Pharm Sin B 2022; 12:1432-1446. [PMID: 35530160 PMCID: PMC9072246 DOI: 10.1016/j.apsb.2021.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
In the microscale, bacteria with helical body shapes have been reported to yield advantages in many bio-processes. In the human society, there are also wisdoms in knowing how to recognize and make use of helical shapes with multi-functionality. Herein, we designed atypical chiral mesoporous silica nano-screws (CMSWs) with ideal topological structures (e.g., small section area, relative rough surface, screw-like body with three-dimension chirality) and demonstrated that CMSWs displayed enhanced bio-adhesion, mucus-penetration and cellular uptake (contributed by the macropinocytosis and caveolae-mediated endocytosis pathways) abilities compared to the chiral mesoporous silica nanospheres (CMSSs) and chiral mesoporous silica nanorods (CMSRs), achieving extended retention duration in the gastrointestinal (GI) tract and superior adsorption in the blood circulation (up to 2.61- and 5.65-times in AUC). After doxorubicin (DOX) loading into CMSs, DOX@CMSWs exhibited controlled drug release manners with pH responsiveness in vitro. Orally administered DOX@CMSWs could efficiently overcome the intestinal epithelium barrier (IEB), and resulted in satisfactory oral bioavailability of DOX (up to 348%). CMSWs were also proved to exhibit good biocompatibility and unique biodegradability. These findings displayed superior ability of CMSWs in crossing IEB through multiple topological mechanisms and would provide useful information on the rational design of nano-drug delivery systems.
Collapse
Key Words
- APTES, 3-aminopropyltriethoxysilane
- AR, aspect ratio
- AUC0‒∞, area under the curve
- CMSRs, chiral mesoporous silica nanorods
- CMSSs, chiral mesoporous silica nanospheres
- CMSWs, chiral mesoporous silica nano-screws
- CMSs, chiral mesoporous silicas nanoparticles
- Cd, drug loading capacity
- Chiral mesoporous silica
- Cmax, maximum concentration
- DAPI, 4,6-diamidino-2-phenylindole
- DCM, dichloromethane
- DOX, doxorubicin
- EDC·HCl, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
- FBS, fetal bovine serum
- FITC, Fluorescein isothiocyanate
- Frel, relative bioavailability
- GI, gastrointestinal
- Geometric topological structure
- HOBT, 1-hydroxybenzotriazole
- IEB, intestinal epithelium barrier
- IR, infrared spectroscopy
- Intestinal epithelium barrier
- MRT0‒∞, mean residence time
- MSNs, mesoporous silica nanoparticles
- Morphology
- Mβ-CD, methyl-β-cyclodextrin
- N-PLA, N-palmitoyl-l-alanine
- NPs, nanoparticles
- Nano-screw
- Oral adsorption
- PBS, phosphate buffer solution
- RBCs, red blood cells
- RITC, rhodamine B isothiocyanate
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SBET, Specific surface area
- SBF, simulated body fluid
- SD, Sprague–Dawley
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- TEOS, ethylsilicate
- Tmax, peak time
- Vt, pore volume
- WBJH, pore diameter
- XRD, X-ray diffractometry
- nano-DDS, nano-drug delivery systems
- t1/2, half-life
Collapse
|
15
|
Mallakpour S, Azadi E, Hussain CM. Recent advancements in synthesis and drug delivery utilization of polysaccharides-based nanocomposites: The important role of nanoparticles and layered double hydroxides. Int J Biol Macromol 2021; 193:183-204. [PMID: 34695491 DOI: 10.1016/j.ijbiomac.2021.10.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Drug delivery systems are explained as methods to deliver a specific drug to desired organs, tissues, and cells for drug release to diseases treatment. Recently, considerable development has been interested in stimuli-responsive nano-systems, which respond to the essential pathological and physicochemical issues in diseased sites. During the last decades, researchers in the world presented, investigated, and implemented novel different nanomaterials with a focus on developing drug delivery. Polysaccharides including chitosan, alginate, hyaluronic acid, gums, and cellulose, as natural bio-materials, are suitable candidates for designing and formulations of these nano-systems because of the outstanding merits such as bio-compatibility, bio-degradability, non-toxicity, and gelling characteristics. On the other side, nanoparticles including metals (Au, Ag), metal oxides (Fe3O4, ZnO, CuO), or non-metal oxides (SiO2) and also, layered double hydroxides nanostructures have appealed significant consideration in the fields of biomedical therapeutics and cancer therapy owing to the bio-compatibility, great surface area, good chemical and mechanical features, and also proper magnetic characteristics. This comprehensive review provides an overview of current advancements in drug delivery strategies, and manufacturing methods using chitosan, alginate, hyaluronic acid, gums, and also, metals, metal oxides, non-metal oxides, and LDHs for delivery system uses.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
16
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
17
|
Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Bombesin Peptide Conjugated Water-Soluble Chitosan Gallate-A New Nanopharmaceutical Architecture for the Rapid One-Pot Synthesis of Prostate Tumor Targeted Gold Nanoparticles. Int J Nanomedicine 2021; 16:6957-6981. [PMID: 34675516 PMCID: PMC8520890 DOI: 10.2147/ijn.s327045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We report herein bombesin peptide conjugated water-soluble chitosan gallate as a template for rapid one-pot synthesis of gold nanoparticles (AuNPs) with capabilities to target receptors on prostate cancer cells. METHODS Water-soluble chitosan (WCS), anchored with gallic acid (GA) and LyslLys3 (1,4,7,10-tetraazacyclo dodecane-1,4,7,10-tetraacetic acid) bombesin 1-14 (DBBN) peptide, provides a tumor targeting nanomedicine agent. WCS nanoplatforms provide attractive strategies with built-in capabilities to reduce gold (III) to gold nanoparticles with stabilizing and tumor-targeting capabilities. WCS-GA-DBBN encapsulation around gold nanoparticles affords optimum in vitro stability. RESULTS The DBBN content in the WCS-GA-DBBN sample was ~27%w/w. The antioxidant activities of WCS-GA and WCS-GA-DBBN nanocolloids were enhanced by 12 times as compared to the nascent WCS. AuNPs with a desirable hydrodynamic diameter range of 40-60 nm have been efficiently synthesized using WCS-GA and WCS-GA-DBBN platforms. The AuNPs were stable over 4 days after preparation and ~3 days after subjecting to all relevant biological fluids. The AuNPs capped with WCS-GA-DBBN peptide exhibited superior cellular internalization into prostate tumor (PC-3) cells with evidence of receptor mediated endocytosis. CONCLUSION The AuNPs capped with WCS-GA-DBBN exhibited selective affinity toward prostate cancer cells. AuNPs conjugated with WCS-GA-DBBN serve as a new generation of theranostic agents for treating various neoplastic diseases, thus opening-up new applications in oncology.
Collapse
Affiliation(s)
- Theeranan Tangthong
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| | - Thananchai Piroonpan
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| | - Velaphi C Thipe
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kavita Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
18
|
Hernández-Castillo DJ, de la Cruz Hernández EN, Frías Márquez DM, Tilley RD, Gloag L, Owen PQ, López González R, Alvarez Lemus MA. Albendazole Release from Silica-Chitosan Nanospheres. In Vitro Study on Cervix Cancer Cell Lines. Polymers (Basel) 2021; 13:1945. [PMID: 34208138 PMCID: PMC8230914 DOI: 10.3390/polym13121945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
In this work, a pH-responsive drug-carrier based on chitosan-silica nanospheres was developed as a carrier for Albendazole (ABZ), a poorly water-soluble anthelmintic drug. Spherical silica nanoparticles were obtained by Stöber method and further etched to obtain mesoporous particles with sizes ranging from 350 to 400 nm. The specific BET area of nanoparticles increased from 15 m2/g to 150 m2/g for etched silica, which also exhibited a uniform pore size distribution. X-ray powder diffraction showed the presence of amorphous phase of silica and a low-intensity peak attributed to ABZ for the drug-loaded nanoparticles. A uniform layer of chitosan was obtained ranging from 10 to 15 nm in thickness due to the small concentration of chitosan used (0.45 mg of chitosan/mg of SiO2). The in vitro evaluation of hybrid nanoparticles was performed using four cervical cancer cell lines CaSki, HeLa, SiHa and C33A, showing a significant reduction in cell proliferation (>85%) after 72 h. Therefore, we confirmed the encapsulation and bioavailability of the drug, which was released in a controlled way, and the presence of chitosan delayed the release, which could be of interest for the development of prolonged release drug delivery systems.
Collapse
Affiliation(s)
- Daniela J. Hernández-Castillo
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez, Km 1 Cunduacán, Tabasco 86690, Mexico; (D.J.H.-C.); (D.M.F.M.); (R.L.G.)
| | | | - Dora M. Frías Márquez
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez, Km 1 Cunduacán, Tabasco 86690, Mexico; (D.J.H.-C.); (D.M.F.M.); (R.L.G.)
| | - Richard D. Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (R.D.T.); (L.G.)
| | - Lucy Gloag
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (R.D.T.); (L.G.)
| | - Patricia Quintana Owen
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida, AP 73 Cordemx, Mérida 97310, Mexico;
| | - Rosendo López González
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez, Km 1 Cunduacán, Tabasco 86690, Mexico; (D.J.H.-C.); (D.M.F.M.); (R.L.G.)
| | - Mayra A. Alvarez Lemus
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez, Km 1 Cunduacán, Tabasco 86690, Mexico; (D.J.H.-C.); (D.M.F.M.); (R.L.G.)
| |
Collapse
|
19
|
Guo L, Ping J, Qin J, Yang M, Wu X, You M, You F, Peng H. A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1293. [PMID: 34069019 PMCID: PMC8156057 DOI: 10.3390/nano11051293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Although hollow mesoporous silica nanoparticles (HMSNs) have been intensively studied as nanocarriers, selecting the right HMSNs for specific drugs still remains challenging due to the enormous diversity in so far reported HMSNs and drugs. To this end, we herein made a comprehensive study on drug loading in HMSNs from the viewpoint of impacting factors and loading efficiency. Specifically, two types of HMSNs with negative and positive zeta potential were delicately constructed, and three categories of drugs were selected as delivery targets: highly hydrophobic and lipophobic (oily), hydrophobic, and hydrophilic. The results indicated that (i) oily drugs could be efficiently loaded into both of the two HMSNs, (ii) HMSNs were not good carriers for hydrophobic drugs, especially for planar drugs, (iii) HMSNs had high loading efficiency towards oppositely charged hydrophilic drugs, i.e., negatively charged HMSNs for cationic molecules and vice versa, (iv) entrapped drugs would alter zeta potential of drug-loaded HMSNs. This work may provide general guidelines about designing high-payload HMSNs by reference to the physicochemical property of drugs.
Collapse
Affiliation(s)
- Lanying Guo
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Jiantao Ping
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Jinglei Qin
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Mu Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Xi Wu
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Mei You
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| | - Fangtian You
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; (L.G.); (J.Q.); (M.Y.)
| | - Hongshang Peng
- Optoelectronics Research Center, College of Science, Minzu University of China, Beijing 100081, China; (X.W.); (M.Y.)
| |
Collapse
|
20
|
Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13:570. [PMID: 33920503 PMCID: PMC8072651 DOI: 10.3390/pharmaceutics13040570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations.
Collapse
Affiliation(s)
- Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Jordan M. Hagood
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Collin N. Britten
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Brandon S. Abbott
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Catherine A. Vopat
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
| | - Eian G. Patterson
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Ajay Jain
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Keisha B. Walters
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
21
|
Wang Y, Gou K, Guo X, Ke J, Li S, Li H. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to overcome biological barriers. Acta Biomater 2021; 123:72-92. [PMID: 33454385 DOI: 10.1016/j.actbio.2021.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) with remarkable structural features have been proven to be an excellent platform for the delivery of therapeutic molecules. Biological barriers in various forms (e.g., mucosal barrier, cellular barrier, gastrointestinal barrier, blood-brain barrier, and blood-tumor barrier) present substantial obstacles for MSNs. The physicochemical parameters of MSNs are known to be effective and tunable not only for load and release of therapeutic molecules but also for their biological responsiveness that is beneficial for cells and tissues. This review innovatively provides a description of how and why physicochemical properties (e.g., particle size, morphology, surface charge, hydrophilic-hydrophobic property, and surface modification) of MSNs influence their ability to cross the biological barriers prior to reaching targeted sites. First, the structural and physiological features of biological barriers are outlined. Next, the recent progresses in the critical physicochemical parameters of MSNs are highlighted from physicochemical and biological aspects. Surface modification, as an important strategy for achieving rapid transport, is also reviewed with special attention to the latest findings of bioactive groups and molecular mechanisms. Furthermore, advanced designs of multifunction intelligent MSNs to surmount the blood-tumor barrier and to actively target tumor sites are demonstrated in detail. Lastly, the biodegradability and toxicity of MSNs are evaluated. With perspectives for their potential application and biosafety, the clues in summary might lead to drug delivery with high efficiency and provide useful knowledge for rational design of nanomaterials.
Collapse
|
22
|
Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal Chem 2021; 93:1889-1911. [PMID: 33434434 PMCID: PMC7941215 DOI: 10.1021/acs.analchem.0c05208] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- H Surangi N Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
23
|
Yang C, Cheng X, Shen P. Silencing of BCSG1 with specific siRNA via nanocarriers for breast cancer treatment. Bull Cancer 2021; 108:323-332. [PMID: 33423781 DOI: 10.1016/j.bulcan.2020.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. The current treatments for breast cancer, including surgery, radiotherapy and chemotherapy aim to destroy cancer cells, whereas they also cause damage to normal tissues and cells. Thus, an effective, safe and specific breast cancer treatment is urgently needed. The breast cancer-specific gene 1 (BCSG1) has been shown to be specific for the development of breast cancer and is a target for breast cancer diagnosis and treatment. It is expected to silence the expression of BCSG1 at the gene level for the purpose of treating breast cancer. The effect of RNAi technology on silencing target genes is comparable to gene knockout and has been widely used in animal experiments and plant genetic research. In the field of cancer therapy, numerous investigators have used siRNAs to specifically inhibit target genes, demonstrating that siRNAs can treat cancers at the molecular level. However, the delivery of siRNAs into humans needs to overcome multiple physiological barriers, limiting the clinical applications of siRNAs. This review focuses on the application of BCSG1 gene, siRNAs in cancer treatments, and the nanocarrier delivery system of siRNAs. The potential application and research value of BCSG1-specific siRNA in the treatment of breast cancer are discussed.
Collapse
Affiliation(s)
- Chenbo Yang
- Zhengzhou University, School of Basic Medical Sciences, Zhengzhou, Henan Province 450001, China
| | - Xiaoman Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Peihong Shen
- The Cancer Hospital Affiliated of Zhengzhou University, Zhengzhou, Henan Province 450008, China.
| |
Collapse
|
24
|
Zhao T, Fu Y, Jang MS, Sun XS, Wu T, Lee JH, Li Y, Lee DS, Yang HY. A pH-activated charge convertible quantum dot as a novel nanocarrier for targeted protein delivery and real-time cancer cell imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111449. [PMID: 33255037 DOI: 10.1016/j.msec.2020.111449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The rapid developments of nanocarriers based on quantum dots (QDs) have been confirmed to show substantial promise for drug delivery and bioimaging. However, optimal QDs-based nanocarriers still need to have their controlled behavior in vitro and in vivo and decrease heavy metal-associated cytotoxicity. Herein, a pH-activated charge convertible QD-based nanocarrier was fabricated by capping multifunctional polypeptide ligands (mPEG-block-poly(ethylenediamine-dihydrolipoic acid-2,3-dimethylmaleic anhydride)-L-glutamate, PEG-P(ED-DLA-DMA)LG) onto the surface of core/multishell CdSe@ZnS/ZnS QD by means of a ligand exchange strategy, followed by uploading of cytochrome C (CC) (CC-loaded QD-PEG-P(ED-DLA-DMA)LG) via electrostatic interactions, in which QDs that were water-soluble and protein-loading were perfectly integrated. That is, the CC-loaded QD-PEG-P(ED-DLA-DMA)LG inherited excellent fluorescence properties from CdSe@ZnS/ZnS QD for real-time imaging, as well as tumor-microenvironment sensitivities from PEG-P(ED-DLA-DMA)LG for enhanced cellular uptake and CC release. Experimental results verified that the QD-PEG-P(ED-DLA-DMA)LG showed enhanced internalization, rapid endo/lysosomal escape, and supplied legible real-time imaging for lung carcinoma cells. Furthermore, pH-triggered charge-convertible ability enabled the QD-PEG-P(ED-DLA-DMA)LG-CC to effectively kill cancer cells better than did the control groups. Hence, constructing smart nanocomposites by facile ligand-exchange strategy is beneficial to QD-based nanocarrier for tumor-targeting cancer therapy.
Collapse
Affiliation(s)
- Ting Zhao
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China; College of Chemistry, Jilin University, Changchun City 130012, People's Republic of China
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Tepeng Wu
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China.
| |
Collapse
|
25
|
Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Lett 2020; 490:31-43. [DOI: 10.1016/j.canlet.2020.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
|
26
|
Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111498. [PMID: 33255062 DOI: 10.1016/j.msec.2020.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Two core-double-shell pH-sensitive nanocarriers were fabricated using Fe3O4 as magnetic core, poly(glycidyl methacrylate-PEG) and salep dialdehyde as the first and the second shell, and doxorubicin as the hydrophobic anticancer drug. Two nanocarriers were different in the drug loading steps. The interaction between the first and the second shell assumed to be pH-sensitive via acetal cross linkages. The structure of nanocarriers, organic shell loading, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HRTEM and UV-Vis analyses. The long-term drug release profiles of both nanocarriers showed that the drug loading before cross-linking between the first and second shell led to a more pH-sensitive nanocarrier exhibiting higher control on DOX release. Cellular toxicity assay (MTT) showed that DOX-free nanocarrier is biocompatible having cell viability greater than 80% for HEK-293 and MCF-7 cell lines. Besides, high cytotoxic effect observed for drug-loaded nanocarrier on MCF-7 cancer cells. Cellular uptake analysis showed that the nanocarrier is able to transport DOX into the cytoplasm and perinuclear regions of MCF-7 cells. In vitro hemolysis and coagulation assays demonstrated high blood compatibility of nanocarrier. The results also suggested that low concentration of nanocarrier have a great potential as a contrast agent in magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran.
| | - Zahra Rastegaran
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1414713135, Iran
| | - Cosmin Istrate
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Magurele, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
27
|
Cui L, Liu W, Liu H, Qin Q, Wu S, He S, Zhang Z, Pang X, Zhu C. Cascade-Targeting of Charge-Reversal and Disulfide Bonds Shielding for Efficient DOX Delivery of Multistage Sensitive MSNs-COS-SS-CMC. Int J Nanomedicine 2020; 15:6153-6165. [PMID: 32884269 PMCID: PMC7443036 DOI: 10.2147/ijn.s252769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although pH and redox sensitiveness have been extensively investigated to improve therapeutic efficiency, the effect of disulfide bonds location and pH-triggered charge-reversal on cascade-targeting still need to be further evaluated in cancer treatment with multi-responsive nanoparticles. PURPOSE The aim of this study was to design multi-responsive DOX@MSNs-COS-NN-CMC, DOX@MSNs-COS-SS-CMC and DOX@MSNs-COS-CMC-SS and systematically investigate the effects of disulfide bonds location and charge-reversal on the cancer cell specificity, endocytosis mechanisms and antitumor efficiency. RESULTS In vitro drug release rate of DOX@MSNs-COS-SS-CMC in tumor environments was 7-fold higher than that under normal physiological conditions after 200 h. Furthermore, the fluorescence intensity of DOX@MSNs-COS-SS-CMC and DOX@MSNs-COS-CMC-SS was 1.9-fold and 1.3-fold higher than free DOX at pH 6.5 and 10 mM GSH. In addition, vesicular transport might be a factor that affects the uptake efficiency of DOX@MSNs-COS-SS-CMC and DOX@MSNs-COS-CMC-SS. The clathrin-mediated endocytosis and endosomal escape of DOX@MSNs-COS-SS-CMC enhanced cellular internalization and preserved highly controllable drug release into the perinuclear of HeLa cells. DOX@MSNs-COS-SS-CMC exhibited a synergistic chemotherapy in preeminent tumor inhibition and less side effects of cardiotoxicity. CONCLUSION The cascade-targeting of charge-reversal and disulfide bonds shielding would be a highly personalized strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Lan Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Qian Qin
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Louvain-la-NeuveB-1348, Belgium
| | - Shuangxia Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Zhenya Zhang
- Department of Chemistry, Changwon National University of Korea, Changwon-city, Gyeongnam-do51140, Republic of Korea
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| |
Collapse
|
28
|
Cui L, Feng X, Liu W, Liu H, Qin Q, Wu S, He S, Pang X, Men D, Zhu C. Cell Type-Dependent Specificity and Anti-Inflammatory Effects of Charge-Reversible MSNs-COS-CMC for Targeted Drug Delivery in Cervical Carcinoma. Mol Pharm 2020; 17:1910-1921. [PMID: 32223247 DOI: 10.1021/acs.molpharmaceut.0c00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface charge of nanocarriers inevitably affects drug delivery efficiency; however, the cancer cell specificity, anti-inflammatory effects, and charge-reversal points remain to be further addressed in biomedical applications. The aim of this study was to comprehensively assess the cancer cell specificity of DOX-loaded mesoporous silica-chitosan oligosaccharide-carboxymethyl chitosan nanoparticles (DOX@MSNs-COS-CMC) in MCF-7 and HeLa cells, inhibit the production of inflammatory cytokines, and improve the drug accumulation in the tumor site. Intracellular results reveal that the retention time prolonged to 48 h in both HeLa and MCF-7 cells at pH 7.4. However, DOX@MSNs-COS-CMC exhibited a cell type-dependent cytotoxicity and enhanced intracellular uptake in HeLa cells at pH 6.5, due to the clathrin-mediated endocytosis and macropinocytosis in HeLa cells in comparison with the vesicular transport in MCF-7 cells. Moreover, Pearson's correlation coefficient value significantly decreased to 0.25 after 8 h, prompting endosomal escape and drug delivery into the HeLa nucleus. After the treatment of MSNs-COS-CMC at 200 μg/mL, the inflammatory cytokines IL-6 and TNF-α level decreased by 70% and 80%, respectively. Tumor inhibition of DOX@MSNs-COS-CMC was 0.4 times higher than free DOX, alleviating cardiotoxicity and inflammation in the HeLa xenograft tumor model. Charge-reversible DOX@MSNs-COS-CMC could be a possible candidate for clinical therapy of cervical carcinoma.
Collapse
Affiliation(s)
- Lan Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiayi Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qian Qin
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.,Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Croix du Sud 1/L7.04.02, B-1348 Louvain-la-Neuve, Belgium
| | - Shuangxia Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
29
|
Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020; 41:e2000106. [DOI: 10.1002/marc.202000106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P. R. China
| | - Yi Li
- College of Material and Textile Engineering Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
30
|
Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 2020; 8:7275-7287. [DOI: 10.1039/d0tb00772b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chitosan is functionalized with oxidative stress-sensitive thioketal entities in a one-pot methodology, and self-assembled into drugs or protein loaded dual stimuli responsive nanoparticles, which kill glioblastoma cells and increase nerve outgrowth.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Chemical and Petroleum Engineering
| | - Jeff Ji
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | | | - Alexandre Moquin
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
31
|
Wang Y, Qian J, Yang M, Xu W, Wang J, Hou G, Ji L, Suo A. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr Polym 2019; 225:115206. [PMID: 31521263 DOI: 10.1016/j.carbpol.2019.115206] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has attracted more and more attention in the field of anticancer treatment. Herein, a synergetic targeted combination chemotherapy of doxorubicin (DOX) and cisplatin in breast cancer was realized by HER2 antibody-decorated nanoparticles assembled from aldehyde hyaluronic acid (AHA) and hydroxyethyl chitosan (HECS). Cisplatin and DOX were successively conjugated onto AHA through chelation and Schiff's base reaction, respectively, forming DOX/cisplatin-loaded AHA inner core. The core was sequentially complexed with HECS and targeting HER2 antibody-conjugated AHA. The formed near-spherical nanoplatform had an average size of ∼160 nm and a zeta potential of -28 mV and displayed pH-responsive surface charge reversal and drug release behaviors. HER2 receptor-mediated active targeting significantly enhanced the cellular uptake of nanoplatform. Importantly, DOX and cisplatin exhibited a synergistic cell-killing effect in human breast cancer MCF-7 cells. These results clearly indicate that the novel nanoplatform is promising for synergistic combination chemotherapy of breast cancer.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ming Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lijie Ji
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
32
|
Thirumalaivasan N, Venkatesan P, Lai PS, Wu SP. In Vitro and In Vivo Approach of Hydrogen-Sulfide-Responsive Drug Release Driven by Azide-Functionalized Mesoporous Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:3886-3896. [DOI: 10.1021/acsabm.9b00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
33
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|