1
|
Li S, Yang R, Zhao Z, Xie M, Zhou Y, Zeng Q, Zhu X, Zhang X. The multifunctional role of hydroxyapatite nanoparticles as an emerging tool in tumor therapy. Acta Biomater 2025:S1742-7061(25)00344-7. [PMID: 40374135 DOI: 10.1016/j.actbio.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Hydroxyapatite nanoparticles (HANPs) are well-known nanomaterials for bone regeneration or repair. In recent years, HANPs have emerged as a potential tool in tumor therapy because of the numerous advantages the nanoparticles offer, including the diverse physicochemical properties, the selective anti-tumor effect, intrinsic immunomodulatory activity, ability to reverse of drug or immune tolerance, allowance of ion substation, good drug-loading capabilities, etc. Notably, the physicochemical properties of the particles, such as size and shape, significantly influence their anti-tumor efficacy. Therefore, to offer a comprehensive understanding of the key properties of HANPs and the involving molecular mechanisms, and provide crucial cues for rational design and development of novel HANPs-based anti-tumor platforms, this review summarizes various synthesis methods of HANPs with controlled physiochemical characteristics and highlights the multifaceted effects such as interactions with tumor cells and immune cells, regulation of the tumor microenvironment (TME), overcoming drug or immune resistance, and their potentials as effective drug carriers. This review also outlines the emerging strategies leveraging HANPs for tumor therapy and diagnostic imaging. At last, we discuss the challenges HANPs face when used for tumor treatment. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HANPs) have emerged as a promising tool in tumor therapy without compromising biocompatibility. This review highlights the unique and multifaceted features of HANPs in tumor therapy, including the selective induction of tumor cell apoptosis, engagement in immune regulation, reversal of drug or immune resistance, and the loading of diverse anti-tumor drugs or biomaterials. Additionally, this review emphasizes the influence of the intrinsic physicochemical properties of HANPs on their anti-tumor activity, and explores the emerging strategies that leverage HANPs for tumor therapy and diagnostic imaging. In summary, this work aims to provide a comprehensive and deep understanding of the role of HANPs in tumor therapy and is significant for the improved design of HANP-based platforms for tumor therapy.
Collapse
Affiliation(s)
- Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Ruinan Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Zhengyi Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064
| | - Mengzhang Xie
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| |
Collapse
|
2
|
Chen X, Yang J, Xia L, Yang R, Ding C, Huang X, Chen Y, Luo J. Core reinforcement strategy enhances the foliar stability and efficacy of electrostatic self-assembled microcapsules. PEST MANAGEMENT SCIENCE 2025. [PMID: 40119541 DOI: 10.1002/ps.8792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND At present, it is vital to develop a stable and efficient pesticide delivery system to optimize pesticide foliar utilization, which could improve control efficacy, enhance resistance to adverse climates, and prolong foliar retention. In this study, reaction monomers methylene diphenyl diisocyanate (MDI) and polycaprolactone diol (PCL) were used to synthesize a polymer network structure for loading the organic phase of pesticides in a micron-reactor, then the shell was formed by sodium lignosulfonate (SL) and didecyl dimethyl ammonium chloride (DDAC) through electrostatic self-assembly, resulting in self-assembled microcapsules and efficient pesticide loading, and the stability and efficacy were discussed. RESULTS Self-assembled microcapsules Pyr@MCs-C and Pyr@MCs-V with cores of different mechanical strength and morphological characteristics are realized by regulating the reaction ratio of MDI and PCL. Compared with conventional self-assembled microcapsule Pyr@MCs-S, Pyr@MCs-C and Pyr@MCs-V exhibit stable and unruptured morphology in dehydrated environment. Moreover, self-assembled microcapsules provide similar fungicidal activity as emulsifiable concentrate. Notably, the washout resistance property of Pyr@MCs-C and Pyr@MCs-V increased by 3.20 and 3.51 times, respectively, and ultraviolet (UV) resistances of the two microcapsules increased by 5.72 and 5.02 times, respectively, which promote the control efficiency and prolong the duration. CONCLUSION In summary, this system has simple preparation process and stable foliar performances, making it a promising precise pesticide delivery platform. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Junpeng Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lingmin Xia
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Rui Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chaoyang Ding
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xueping Huang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jian Luo
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Gao W, Bigham A, Ghomi M, Zarrabi A, Rabiee N, Saeb MR, Nuri Ertas Y, Goel A, Sharifi E, Ashrafizadeh M, Sethi G, Tambuwala MM, Wang Y, Ghaffarlou M, Jiao T. Micelle-engineered nanoplatforms for precision oncology. CHEMICAL ENGINEERING JOURNAL 2024; 495:153438. [DOI: 10.1016/j.cej.2024.153438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Park JK, Piao Z, Lee HJ, Jeong B. Poly(l-threonine- co-l-threonine Succinate) Thermogels for Sustained Release of Lixisenatide. Biomacromolecules 2024; 25:4946-4955. [PMID: 38949062 DOI: 10.1021/acs.biomac.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Negatively charged poly(l-Thr-co-l-Thr succinate) (PTTs) was developed as a new thermogel. Aqueous PTT solutions underwent thermogelation over a concentration range of 6.0-8.3 wt %. Dynamic light scattering, FTIR, 1H NMR, and COSY spectra revealed the partial strengthening of the β-sheet conformation and the dehydration of PTTs during the transition. Extendin-4 was released from the PTTs thermogel with a large initial burst release, whereas positively charged lixisenatide significantly reduced its initial burst release to 25%, and up to 77% of the dose was released from the gel over 14 days. In vivo study revealed a high plasma concentration of lixisenatide over 5 days and hypoglycemic efficacy was observed for type II diabetic rats over 7-10 days. The biocompatible PTTs were degraded by subcutaneous enzymes. This study thus demonstrates an effective strategy for reducing the initial burst release of protein drugs from thermogels with the introduction of electrostatic interactions between the drug and the thermogel.
Collapse
Affiliation(s)
- Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
5
|
Chen J, Zhao Q, Tang J, Lei X, Zhang J, Li Y, Li J, Li Y, Zuo Y. Enzyme-Activated Biomimetic Vesicles Confining Mineralization for Bone Maturation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33005-33020. [PMID: 38900067 DOI: 10.1021/acsami.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.
Collapse
Affiliation(s)
- Jieqiong Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Qing Zhao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jiajing Tang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Xiaoyu Lei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jinzheng Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yuping Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
6
|
Sun L, Niu H, Wu Y, Dong S, Li X, Kim BY, Liu C, Ma Y, Jiang W, Yuan Y. Bio-integrated scaffold facilitates large bone regeneration dominated by endochondral ossification. Bioact Mater 2024; 35:208-227. [PMID: 38327823 PMCID: PMC10847751 DOI: 10.1016/j.bioactmat.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Repair of large bone defects caused by severe trauma, non-union fractures, or tumor resection remains challenging because of limited regenerative ability. Typically, these defects heal through mixed routines, including intramembranous ossification (IMO) and endochondral ossification (ECO), with ECO considered more efficient. Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit. Herein, we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2 (rhBMP-2), aiming to induce ECO-dominated repair. Specifically, we apply a mesoporous structure to accelerate iron chelation, this promoting early chondrogenesis via deferoxamine (DFO)-induced hypoxia-inducible factor-1α (HIF-1α). Through the delicate segmentation of click-crosslinked PEGylated Poly (glycerol sebacate) (PEGS) layers, we achieve programmed release of low-dose rhBMP-2, which can facilitate cartilage-to-bone transformation while reducing side effect risks. We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance. Collectively, these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing, paving a promising pave towards its clinical use in addressing large bone defects.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqiong Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Shiyan Dong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
7
|
Mohamed EE, Ahmed OM, Zoheir KMA, El-Shahawy AAG, Tamur S, Shams A, Burcher JT, Bishayee A, Abdel-Moneim A. Naringin-Dextrin Nanocomposite Abates Diethylnitrosamine/Acetylaminofluorene-Induced Lung Carcinogenesis by Modulating Oxidative Stress, Inflammation, Apoptosis, and Cell Proliferation. Cancers (Basel) 2023; 15:5102. [PMID: 37894468 PMCID: PMC10605195 DOI: 10.3390/cancers15205102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotechnology has proven advantageous in numerous scientific applications, one being to enhance the delivery of chemotherapeutic agents. This present study aims to evaluate the mechanisms underlying the chemopreventive action of naringin-dextrin nanocomposites (Nar-Dx-NCs) against diethylnitrosamine (DEN)/2-acetylaminofluorene (2AAF)-induced lung carcinogenesis in male Wistar rats. DEN was administered intraperitoneally (i.p.) (150 mg/kg/week) for two weeks, followed by the oral administration of 2AAF (20 mg/kg) four times a week for three weeks. Rats receiving DEN/2AAF were concurrently treated with naringin or Nar-Dx-NCs orally at a dose of 10 mg/kg every other day for 24 weeks. Naringin and Nar-Dx-NCs treatments prevented the formation of tumorigenic cells within the alveoli of rats exposed to DEN/2AAF. These findings were associated with a significant decrease in lipid peroxidation, upregulation of antioxidant enzyme (glutathione peroxidase and superoxide dismutase) activity, and enhanced glutathione and nuclear factor erythroid 2-related factor 2 expression in the lungs. Naringin and Nar-Dx-NCs exerted anti-inflammatory actions manifested by a decrease in lung protein expression of tumor necrosis factor-α and interleukin-1β and mRNA expression of interleukin-6, interferon-γ, nuclear factor-κB, and inducible nitric oxide synthase, with a concurrent increase in interleukin-10 expression. The anti-inflammatory effect of Nar-Dx-NCs was more potent than naringin. Regarding the effect on apoptosis, both naringin and Nar-Dx-NCs significantly reduced Bcl-2 and increased Bax and P53 expressions. Moreover, naringin or Nar-Dx-NCs induced a significant decrease in the expression of the proliferator marker, Ki-67, and the effect of Nar-Dx-NCs was more marked. In conclusion, Nar-Dx-NCs improved naringin's preventive action against DEN/2AAF-induced lung cancer and exerted anticarcinogenic effects by suppressing oxidative stress and inflammation and improving apoptotic signal induction and propagation.
Collapse
Affiliation(s)
- Eman E. Mohamed
- Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (E.E.M.)
| | - Osama M. Ahmed
- Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (E.E.M.)
| | - Khairy M. A. Zoheir
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Ahmed A. G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Shadi Tamur
- Departement of Pediatrics, College of Medicine, Taif University, Taif 21944, Saudi Arabia;
| | - Anwar Shams
- Departement of Pharmacology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research, Deanship of Scientific Research, Taif University, Taif 21974, Saudi Arabia
- High Altitude Research Center, Taif University, Taif 21944, Saudi Arabia
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.T.B.); or (A.B.)
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.T.B.); or (A.B.)
| | - Adel Abdel-Moneim
- Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (E.E.M.)
| |
Collapse
|
8
|
Jiang W, Wang Q, Cui D, Han L, Chen L, Xu J, Niu N. Metal-polyphenol network coated magnetic hydroxyapatite for pH-activated MR imaging and drug delivery. Colloids Surf B Biointerfaces 2023; 222:113076. [PMID: 36563416 DOI: 10.1016/j.colsurfb.2022.113076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Engineered nanoparticles responsive to tumor microenvironment parameters such as pH have been developed as drug carriers and for magnetic resonance imaging (MRI) as contrast agents (CA). Nanoscale hydroxyapatite (HAP) has good biocompatibility and specific inhibition of tumor cells. However, the inherent tendency of nanoscale HAP to agglomerate and degrade under natural conditions has hindered its further application. To address this challenge, polyacrylic acid-coordinated Mn2+ and F- co-doped nanoscale HAP (MnxFHA-PAA) were developed for MRI and doxorubicin (DOX) loading. Moreover, the metal-polyphenol network (MPN) formed by ligating tannic acid (TA) and Fe3+ was successfully functionalized onto the surface of MnxFHA-PAA-DOX. The pH-sensitive MPN improves biocompatibility and therapeutic efficacy while preventing the premature release of DOX in a neutral environment. It was demonstrated that the mesoporous structure of MnxFHA-PAA@TA-Fe nanoparticles with good dispersion, high specific surface area and large pore size, which can reach more than 90 % encapsulation efficiency (EE) for DOX. MnxFHA-PAA-DOX@TA-Fe degrades at low pH and releases Mn2+ and DOX that are confined in the nanoparticles. Binding of Mn2+ to proteins leads to increased relaxation and enhanced MRI contrast. Such nanoparticles with sensitive pH responsiveness have great potential for tumor diagnosis and therapeutic synergy.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Qiang Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Di Cui
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Lixia Han
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiating Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
9
|
Liu AA, Wang ZG, Pang DW. Medical Nanomaterials. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Asgharnejad-Laskoukalayeh M, Golbaten-Mofrad H, Jafari SH, Seyfikar S, Yousefi Talouki P, Jafari A, Goodarzi V, Zamanlui S. Preparation and characterization of a new sustainable bio-based elastomer nanocomposites containing poly(glycerol sebacate citrate)/chitosan/n-hydroxyapatite for promising tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2385-2405. [PMID: 35876727 DOI: 10.1080/09205063.2022.2104600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poly (glycerol sebacate citrate) (PGSC) has potential applications in tissue engineering due to its biodegradability and suitable elasticity. However, its applications are restricted owing to its acidity and high degradation rate. In this study, a new bio-nanocomposite based on PGSC has been synthesized by incorporating chitosan (CS) and various concentrations of hydroxyapatite nanoparticles (n-HA). It is assumed that the basicity of a CS and hydroxyl groups of n-HA will reduce the acidity of PGSC and control the rate of degradation. Also, the biocompatibility of n-HA and inherent hydrophilicity of CS can improve cell adhesion and proliferation of PGSC-based scaffolds. FTIR, XRD, FESEM, and EDX tests confirmed the synthesis of these nanocomposites and the interaction between each of the components. The results of the DMTA test also indicated the elastic behavior of the samples embedded with n-HA. The hydrophilicity assay demonstrated that the water contact angle of the scaffolds decreased as the concentration of n-HA augmented, and it reached the value of 44 ± 0.9° for nanocomposite containing 5 wt.% n-HA. The degradation rate of all PGSC nanocomposites was reduced due to the anionic groups of n-HA and CS. TGA assay indicated that the incorporation of n-HA led to the enhancement of scaffolds' thermal stability. Furthermore, the synergistic effect of CS and n-HA on the enhancement of protein adsorption and cell proliferation was confirmed through protein adhesion and MTT assay, respectively. Consequently, the addition of n-HA and CS perform the new bio-nanocomposites scaffolds based on PGSC with sufficient hydrophilicity, flexibility, and thermal stability in tissue engineering applications.
Collapse
Affiliation(s)
| | - Hooman Golbaten-Mofrad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saba Seyfikar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Aliakbar Jafari
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheila Zamanlui
- Department of Biomedical Engineering, Islamic Azad University, Tehran, Iran.,Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Zhang M, Zhang Z, Song X, Zhu J, Sng JA, Li J, Wen Y. Synthesis and Characterization of Palmitoyl- block-poly(methacryloyloxyethyl Phosphorylcholine) Polymer Micelles for Anticancer Drug Delivery. Biomacromolecules 2022; 23:4586-4596. [DOI: 10.1021/acs.biomac.2c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miao Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Zhongxing Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jing An Sng
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| |
Collapse
|
13
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
14
|
Li C, Salmen SH, Awad Alahmadi T, Priya Veeraraghavan V, Krishna Mohan S, Natarajan N, Subramanian S. Anticancer effect of Selenium/Chitosan/Polyethylene glycol/Allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats. Saudi J Biol Sci 2022; 29:3354-3365. [PMID: 35844425 PMCID: PMC9280227 DOI: 10.1016/j.sjbs.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Nano-based drug delivery systems have shown several advantages in cancer treatment like specific targeting of cancer cells, good pharmacokinetics, and lesser adverse effects. Liver cancer is a fifth most common cancer and third leading cause of cancer-related mortalities worldwide. Objective The present study focusses to formulate the selenium (S)/chitosan (C)/polyethylene glycol (Pg)/allyl isothiocyanate (AI) nanocomposites (SCPg-AI-NCs) and assess its therapeutic properties against the diethylnitrosamine (DEN)-induced liver cancer in rats via inhibition of oxidative stress and tumor markers. Methodology The SCPg-AI-NCs were synthesized by ionic gelation technique and characterized by various characterization techniques. The liver cancer was induced to the rats by injecting a DEN (200 mg/kg) on the 8th day of experiment. Then DEN-induced rats treated with 10 mg/kg of formulated SCPg-AI-NCs an hour before DEN administration for 16 weeks. The 8-hydroxy-2′ -deoxyguanosine (8-OHdG) content, albumin, globulin, and total protein were examined by standard methods. The level of glutathione (GSH), vitamin-C & -E, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities were examined using assay kits. The liver marker enzymes i.e., alanine transaminase (ALT), aspartate tansaminase (AST), γ-glutamyl transaminase (GGT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activities, alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA), Bax, and Bcl-2 levels, and caspase-3&9 activities was examined using assay kits and the liver histopathology was assessed microscopically by hematoxylin and eosin staining method. The effect of formulated SCPg-AI-NCs on the viability and apoptotic cell death on the HepG2 cells were examined using MTT and dual staining assays, respectively. Results The results of different characterization studies demonstrated the formation of SCPg-AI-NCs with tetragonal shape, narrowed distribution, and size ranging from 390 to 450 nm. The formulated SCPg-AI-NCs treated liver cancer rats indicated the reduced levels of 8-OHdG, albumin, globulin, and total protein. The SCPg-AI-NCs treatment appreciably improved the GSH, vitamin-C & -E contents, and SOD, CAT, GPx, and GR activities in the serum of liver cancer rats. The SCPg-AI-NCs treatment remarkably reduced the liver marker enzyme activities in the DEN-induced rats. The SCPg-AI-NCs treatment decreased the AFP and CEA contents and enhanced the Bax and caspase 3&9 activities in the DEN-induced rats. The SCPg-AI-NCs effectively decreased the cell viability and induced apoptosis in the HepG2 cells. Conclusion The present findings suggested that the formulated SCPg-AI-NCs remarkably inhibited the DEN-induced liver carcinogenesis in rats. These findings provide an evidence that SCPg-AI-NCs can be a promising anticancer nano-drug in the future to treat the liver carcinogenesis.
Collapse
|
15
|
Medical Nanomaterials. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Sha D, Wu Z, Zhang J, Ma Y, Yang Z, Yuan Y. Development of modified and multifunctional poly(glycerol sebacate) (PGS)-based biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Liu X, Liu W, Lu J, Li Q, Han W. Hybrid micelles enhance tumour therapy by remodelling biodistribution and improving intracellular drug release. Biomater Sci 2021; 9:7183-7193. [PMID: 34553200 DOI: 10.1039/d1bm01158h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PEGylated micelles have been widely used for tumour therapy. Although PEGylation can prolong the blood circulation time, there is only less than 5% of administered micelles that can be transported to tumour sites and over 95% are cleared by the reticuloendothelial system (RES). Besides, the limited intracellular drug release also restricts their efficacy. To improve the therapeutic efficacy of PEGylated micelles, a safe, simple and efficient hybrid micellar system, composed of poly(aminoethyl ethylene phosphate)-poly(L-lactic acid) (PAEEP-PLLA) and poly(ethylene glycol)-poly(L-lactic acid) (PEG-PLLA), was developed. The hybrid micelles significantly prolonged the blood circulation time by decreasing the plasma protein adsorption and reducing the clearance by the RES. The deposition of the hybrid micelles in the liver and spleen was reduced, and the tumour accumulation was greatly improved. In addition, the intracellular drug release of the hybrid micelles was obviously increased due to the easy degradation of PAEEP in the endo/lysosomes. The tumour growth inhibition efficiency of the hybrid micelles was much higher than that of the PEG-PLLA micelles (84.5% vs. 44.5%). Furthermore, the hybrid micelles exhibited low hemolysis and reduced deposition in normal organs, which revealed their excellent bio-safety. Therefore, we established a promising hybrid micelle system for efficient anti-tumour therapy.
Collapse
Affiliation(s)
- Xuhan Liu
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Avenue, Shenzhen 518000, PR China.
| | - Wei Liu
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiafa Lu
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Avenue, Shenzhen 518000, PR China.
| | - Qin Li
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Avenue, Shenzhen 518000, PR China.
| | - Wei Han
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Avenue, Shenzhen 518000, PR China.
| |
Collapse
|
18
|
Zhang DX, Wang R, Cao H, Luo J, Jing TF, Li BX, Mu W, Liu F, Hou Y. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy. Colloids Surf B Biointerfaces 2021; 209:112166. [PMID: 34739877 DOI: 10.1016/j.colsurfb.2021.112166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022]
Abstract
To reduce the negative impact of nanopesticide carriers of on the environment, a greener nanodelivery system is necessary. Nanogels are nontoxic and degradable carriers, however, the potential of nanogels for delivering pesticides has not been proven. In this study, poly(vinyl alcohol)-valine, an ecofriendly polymer, was synthesized and used to fabricate emamectin benzoate nanogel suspension (EB NS). The nanoformulation showed favorable stability at low temperature, high temperature or one year storage, and in water with different hardnesses. The retention of the EB NS solution on leaves was higher than that of an EB emulsifiable concentrate (EC) by approximately 9% at a concentration of 10 mg L-1. The half-life of EB nanogels under Ultra Violet irradiation was prolonged by 3.3-fold. Moreover, the bioactivity of the EB NS against Plutella xylostella was higher than that of the EB EC. These advantages resulted in a relatively long duration of pest control. The response of nanogels to laccase, a digestive enzyme in the digestive tract of lepidopteran pests, enables pesticide release on demand. Nanogels have the advantages of being ecofriendly carriers, exhibiting higher utilization, and prolonged pest control periods, and they have a brilliant future in pesticide delivery.
Collapse
Affiliation(s)
- Da-Xia Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Rui Wang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haichao Cao
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Tong-Fang Jing
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bei-Xing Li
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
19
|
Shah N, Hussain M, Rehan T, Khan A, Khan ZU. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr Pharm Des 2021; 28:352-367. [PMID: 34514984 DOI: 10.2174/1381612827666210910104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Polyethylene glycols (PEG) are water-soluble nonionic polymeric molecules. PEG and PEG-based materials are used for various important applications such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications specifically their use in drug delivery.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Manzoor Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, KP 45000. Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Zubair Ullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| |
Collapse
|
20
|
He X, Ma Y, Xie H, Rao G, Yang Z, Zhang J, Feng Z. Biomimetic Nanostructure Platform for Cancer Diagnosis Based on Tumor Biomarkers. Front Bioeng Biotechnol 2021; 9:687664. [PMID: 34336803 PMCID: PMC8320534 DOI: 10.3389/fbioe.2021.687664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and its clinical use have attracted considerable attention since early cancer diagnosis can significantly decrease mortality. Cancer biomarkers include a wide range of biomolecules, such as nucleic acids, proteins, metabolites, sugars, and cytogenetic substances present in human biofluids. Except for free-circulating biomarkers, tumor-extracellular vesicles (tEVs) and circulating tumor cells (CTCs) can serve as biomarkers for the diagnosis and prognosis of various cancers. Considering the potential of tumor biomarkers in clinical settings, several bioinspired detection systems based on nanotechnologies are in the spotlight for detection. However, tremendous challenges remain in detection because of massive contamination, unstable signal-to-noise ratios due to heterogeneity, nonspecific bindings, or a lack of efficient amplification. To date, many approaches are under development to improve the sensitivity and specificity of tumor biomarker isolation and detection. Particularly, the exploration of natural materials in biological frames has encouraged researchers to develop new bioinspired and biomimetic nanostructures, which can mimic the natural processes to facilitate biomarker capture and detection in clinical settings. These platforms have substantial influence in biomedical applications, owing to their capture ability, significant contrast increase, high sensitivity, and specificity. In this review, we first describe the potential of tumor biomarkers in a liquid biopsy and then provide an overview of the progress of biomimetic nanostructure platforms to isolate and detect tumor biomarkers, including in vitro and in vivo studies. Capture efficiency, scale, amplification, sensitivity, and specificity are the criteria that will be further discussed for evaluating the capability of platforms. Bioinspired and biomimetic systems appear to have a bright future to settle obstacles encountered in tumor biomarker detection, thus enhancing effective cancer diagnosis.
Collapse
Affiliation(s)
- Xiping He
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhong Feng
- Department of Neurology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| |
Collapse
|
21
|
Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021; 21:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
22
|
Li Y, Jia F, Deng X, Wang X, Lu J, Shao L, Cui X, Pan Z, Wu Y. Combinatorial miRNA-34a replenishment and irinotecan delivery via auto-fluorescent polymeric hybrid micelles for synchronous colorectal cancer theranostics. Biomater Sci 2021; 8:7132-7144. [PMID: 33150879 DOI: 10.1039/d0bm01579b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synergistic combination of microRNA (miRNA) modulation and chemotherapy has emerged as an effective strategy to combat cancer. Irinotecan (IRI) is a potent antitumor chemotherapeutic in clinical practice and has been used for treating various malignant tumors, including colorectal cancer (CRC). However, IRI is not effective for advanced CRC or metastatic behavior. Herein, novel polymeric hybrid micelles were engineered based on two different amphiphilic copolymers, polyethyleneimine-poly(d,l-lactide) (PEI-PLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethyleneglycol) (DSPE-PEG), in which IRI and a tumor suppressive microRNA-34a (miR-34a) gene were efficiently co-loaded (MINPs) to achieve a chemo-miRNA combination therapy against CRC. MINPs were successfully constructed by two-step film dispersion and electrostatic interaction methods. IRI and miR-34a could be efficaciously encapsulated as MINPs and transferred to CRC cells. After encapsulation, MINPs would then upregulate miR-34a expression and regulate miR-34a-related downstream genes, which in turn led to enhanced cell cytotoxicity and apoptosis ratios. MINPs presented an excitation-dependent multi-wavelength emission feature due to the intrinstic fluorescence properties of PEI-PLA and could be utilized for in vitro/vivo imaging. According to the in vivo experimental results, MINPs possess the great characteristic of accumulating in situ in a tumor site and lightening it after intravenous administration. Furthermore, MINPs presented extraordinary antitumor efficacy owing to the combined therapy effects of IRI and miR-34a with good biocompability. Overall, our findings validated MINPs-mediated miR-34a replenishment and IRI co-delivery to serve as an effective theranostic platform and provided an innovative horizon for combining chemo-gene therapy against CRC.
Collapse
Affiliation(s)
- Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang S, Ma X, Sha D, Qian J, Yuan Y, Liu C. A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine. J Mater Chem B 2021; 8:9589-9600. [PMID: 33006361 DOI: 10.1039/d0tb01603a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of nanotechnology has provided new strategies for the treatment of tumors. Nano-scale hydroxyapatite (HAP), as the main component of hard tissues in humans and vertebrates, have been found to specifically inhibit tumor cells. However, achieving controllable synthesis of HAP and endowing it with cancer cell-targeting properties remain enormous challenges. To solve this problem, we developed polyacrylic acid-coordinated hydroxyapatite nanoparticles (HAP-PAA) and further chemically grafted them with folic acid (HAP-PAA-FA) for cancer treatment in this study. The nucleation sites and steric hindrance provided by the PAA greatly inhibited the agglomeration of the nanoparticles, and at the same time, the excess functional groups further modified the surface of nanoparticles to achieve targeting efficiency. The spherical, low-crystallinity HAP-PAA nanoparticles exhibited good tumor cell lethality. After grafting the nanoparticles with folic acid for molecular targeting, their cellular uptake and specific killing ability of tumor cells were further enhanced. The HAP-PAA-FA nanoparticle system exerted a regulatory effect on the tumor microenvironment and had good biological safety. All the above results indicate that this research will broaden the application of hydroxyapatite in tumor treatment.
Collapse
Affiliation(s)
- Shuiquan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyu Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dongyong Sha
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiangchao Qian
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
24
|
Lee S, Miyajima T, Sugawara-Narutaki A, Kato K, Nagata F. Development of paclitaxel-loaded poly(lactic acid)/hydroxyapatite core-shell nanoparticles as a stimuli-responsive drug delivery system. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202030. [PMID: 33959355 PMCID: PMC8074949 DOI: 10.1098/rsos.202030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biodegradable nanoparticles have been well studied as biocompatible delivery systems. Nanoparticles of less than 200 nm in size can facilitate the passive targeting of drugs to tumour tissues and their accumulation therein via the enhanced permeability and retention (EPR) effect. Recent studies have focused on stimuli-responsive drug delivery systems (DDS) for improving the effectiveness of chemotherapy; for example, pH-sensitive DDS depend on the weakly acidic and neutral extracellular pH of tumour and normal tissues, respectively. In our previous work, core-shell nanoparticles composed of the biodegradable polymer poly(lactic acid) (PLA) and the widely used inorganic biomaterial hydroxyapatite (HAp, which exhibits pH sensitivity) were prepared using a surfactant-free method. These PLA/HAp core-shell nanoparticles could load 750 wt% of a hydrophobic model drug. In this work, the properties of the PLA/HAp core-shell nanoparticles loaded with the anti-cancer drug paclitaxel (PTX) were thoroughly investigated in vitro. Because the PTX-containing nanoparticles were approximately 80 nm in size, they can be expected to facilitate efficient drug delivery via the EPR effect. The core-shell nanoparticles were cytotoxic towards cancer cells (4T1). This was due to the pH sensitivity of the HAp shell, which is stable in neutral conditions and dissolves in acidic conditions. The cytotoxic activity of the PTX-loaded nanoparticles was sustained for up to 48 h, which was suitable for tumour growth inhibition. These results suggest that the core-shell nanoparticles can be suitable drug carriers for various water-insoluble drugs.
Collapse
Affiliation(s)
- Sungho Lee
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
| | - Tatsuya Miyajima
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
| | - Fukue Nagata
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
| |
Collapse
|
25
|
Preparation and Antifouling Property of Polyurethane Film Modified by PHMG and HA Using Layer-by-Layer Assembly. Polymers (Basel) 2021; 13:polym13060934. [PMID: 33803560 PMCID: PMC8002859 DOI: 10.3390/polym13060934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022] Open
Abstract
To reduce the possibility of bacterial infection and implant-related complications, surface modification on polyurethane (PU) film is an ideal solution to endow hydrophobic PU with antibacterial and antifouling properties. In this work, a variety of polyhexamethylene guanidine/ hyaluronic acid (PHMG/HA) multilayer films were self-assembled layer-by-layer on PU films using polyanions, carboxyl-activated HA, and polycations PHMG by controlling the concentration of these polyelectrolytes as well as the number of layers self-assembled. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) spectra, water contact angle (WCA), and A Atomic force microscope (AFM) of PU and modified PU films were studied. Protein adsorption and bacterial adhesion as well as the cytotoxicity against L929 of the film on selected PU-(PHMG/HA)5/5-5 were estimated. The results showed that PU-(PHMG/HA)5/5-5 had the best hydrophilicity among all the prepared films, possessing the lowest level of protein adsorption. Meanwhile, this film showed efficient broad-spectrum antibacterial performance as well as significant resistance of bacterial adhesion of more than a 99.9% drop for the selected bacteria. Moreover, almost no influence on cell viability of L929 enhanced the biocompatibility of film. Therefore, the modified PU films with admirable protein absorption resistance, antimicrobial performance, and biocompatibility would have promising applications in biomedical aspect.
Collapse
|
26
|
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent Advances in Nanomicelles Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E70. [PMID: 33396938 PMCID: PMC7823398 DOI: 10.3390/nano11010070] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The efficient and selective delivery of therapeutic drugs to the target site remains the main obstacle in the development of new drugs and therapeutic interventions. Up until today, nanomicelles have shown their prospective as nanocarriers for drug delivery owing to their small size, good biocompatibility, and capacity to effectively entrap lipophilic drugs in their core. Nanomicelles are formed via self-assembly in aqueous media of amphiphilic molecules into well-organized supramolecular structures. Molecular weights and structure of the core and corona forming blocks are important properties that will determine the size of nanomicelles and their shape. Selective delivery is achieved via novel design of various stimuli-responsive nanomicelles that release drugs based on endogenous or exogenous stimulations such as pH, temperature, ultrasound, light, redox potential, and others. This review summarizes the emerging micellar nanocarriers developed with various designs, their outstanding properties, and underlying principles that grant targeted and continuous drug delivery. Finally, future perspectives, and challenges for nanomicelles are discussed based on the current achievements and remaining issues.
Collapse
Affiliation(s)
- Salah M. Tawfik
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Surfactant Laboratory, Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Shavkatjon Azizov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Laboratory of Polysaccharide Chemistry, Institute of Bioorganic Chemistry, Uzbekistan Academy of Science, Tashkent 100125, Uzbekistan
| | - Mohamed R. Elmasry
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Mirkomil Sharipov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| |
Collapse
|
27
|
Tsujinoue H, Kobayashi Y, Arai N. Effect of the Janus Amphiphilic Wall on the Viscosity Behavior of Aqueous Surfactant Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10690-10698. [PMID: 32804514 DOI: 10.1021/acs.langmuir.0c01359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of the chemical nature of an interface are one of the key parameters which can affect self-assembly and rheological behavior. To date, several studies have reported self-assembled structures and rheological behaviors in the development of various functional materials. In this study, we investigated the self-assembly and viscosity behavior of aqueous surfactant solutions confined in three types of Janus amphiphilic nanotubes (JANTs), which have two, four, and eight sequential domains, respectively, using molecular simulation. We found that the viscosity behavior depends on the surfactant concentration and the chemical nature of the wall surface. For instance, although the concentration levels of the surfactants are the same (c = 10%), completely different viscosity behaviors were observed in the two sequential domains (Newtonian-like) and the four and eight sequential domains (strong shear-thinning) of the JANTs. Our simulations demonstrated how the rheological properties of aqueous surfactant solutions, including viscosity and velocity profiles, can be controlled by the chemical nature of the JANT wall surface, effect of confinement, and their self-assembly structures. Considering the foregoing, we hope that our study offers new knowledge on nanofluid systems.
Collapse
Affiliation(s)
- Hiroaki Tsujinoue
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
28
|
Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-Based Drug Delivery System: A Patient-Friendly Chemotherapy for Oncology. Dose Response 2020; 18:1559325820936161. [PMID: 32699536 PMCID: PMC7357073 DOI: 10.1177/1559325820936161] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is widely used to treat cancer. The toxic effect of conventional chemotherapeutic drugs on healthy cells leads to serious toxic and side effects of conventional chemotherapy. The application of nanotechnology in tumor chemotherapy can increase the specificity of anticancer agents, increase the killing effect of tumors, and reduce toxic and side effects. Currently, a variety of formulations based on nanoparticles (NPs) for delivering chemotherapeutic drugs have been put into clinical use, and several others are in the stage of development or clinical trials. In this review, after briefly introducing current cancer chemotherapeutic methods and their limitations, we describe the clinical applications and advantages and disadvantages of several different types of NPs-based chemotherapeutic agents. We have summarized a lot of information in tables and figures related to the delivery of chemotherapeutic drugs based on NPs and the design of NPs with active targeting capabilities.
Collapse
Affiliation(s)
- Lina Yan
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Jingjing Shen
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang, China
| | - Jinqiao Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Xiaoyan Yang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Saijun Lu
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
29
|
Xie C, Zhan Y, Wang P, Zhang B, Zhang Y. Novel Surface Modification of ZnO QDs for Paclitaxel-Targeted Drug Delivery for Lung Cancer Treatment. Dose Response 2020; 18:1559325820926739. [PMID: 32499674 PMCID: PMC7243397 DOI: 10.1177/1559325820926739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
Adipic dihydrazide and heparin were attached to ZnO quantum dots surface, and the ZnO-adipic dihydrazide-heparin nanocomplex was used as a drug delivery system to deliver paclitaxel for chemotherapy. The surface modification and the loading of paclitaxel were confirmed by Fourier transform infrared spectrum, featured by characteristic peaks from functional groups of adipic dihydrazide, heparin, and paclitaxel. The impacts of pH on the drug release were investigated, and the cytotoxicity studies were conducted with A549 cells. The pharmacokinetic study was conducted with male Wistar rats. Both in vitro and in vivo study indicated that ZnO-adipic dihydrazide-heparin-paclitaxel nanocomplex could deliver paclitaxel in a more controllable way, and it has the potential to be a high-efficiency drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Chuan Xie
- Department of Thoracic Surgery, Taian City Central Hospital, Tai'an, Shandong, China
| | - Yan Zhan
- Department of Thoracic Surgery, Taian City Central Hospital, Tai'an, Shandong, China
| | - Peng Wang
- Department of Thoracic Surgery, Taian City Central Hospital, Tai'an, Shandong, China
| | - Bo Zhang
- Department of Thoracic Surgery, Taian City Central Hospital, Tai'an, Shandong, China
| | - Yukun Zhang
- Department of Thoracic Surgery, Taian City Central Hospital, Tai'an, Shandong, China
| |
Collapse
|
30
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|