1
|
Zhou Q, Xie D, Wang K, Wang F, Wang Q, Huang Y, Yu M, Huang J, Zhao Y. Evodiamine encapsulated by hyaluronic acid modified zeolitic imidazolate framework-8 for tumor targeted therapy. Drug Deliv Transl Res 2025; 15:978-991. [PMID: 38941037 DOI: 10.1007/s13346-024-01652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Evodiamine (EVO), a natural bioactive compound extracted from Evodia rutaecarpa, shows therapeutic ability against malignant melanoma. However, the poor solubility and bioavailability of EVO limit its clinical application. Metal-organic frameworks (MOFs) have shown excellent physical and chemical properties and are widely used as drug delivery systems. Among them, zeolitic imidazolate framework-8 (ZIF-8) is a research popular material because of its unique properties, such as hydrothermal stability, non-toxicity, biocompatibility, and pH sensitivity. In this study, in order to load EVO, a drug carrier that hyaluronic acid (HA) modified zeolitic imidazolate framework-8 (ZIF-8) is synthesized. This drug carrier has shown drug loading with 6.2 ± 0.6%, and the nano drugs (EVO@ZIF-8/HA) have good dispersibility. Owing to the decoration HA of EVO@ZIF-8, the potential of the nano drugs is reversed from the positive charge to the negative charge, which is beneficial to blood circulation in vivo. Furthermore, because the CD44-expressing in tumor cells is excessed, the endocytosis and accumulation of nano drugs in tumor cells are beneficial to improvement. Compared with free EVO, EVO@ZIF-8/HA has shown a significantly improved anti-tumor efficacy in vitro and in vivo. In summary, the drug carrier effectively addresses the challenges that are caused by the strong hydrophobicity and low bioavailability of EVO, thereby targeted tumor therapy of EVO can be achieved.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Kui Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Qiaoling Wang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yue Huang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Mengjun Yu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
| | - Yu Zhao
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Antwi-Baah R, Acquah MEE, Dapaah MF, Chen X, Walker J, Liu H. Juxtaposing the antibacterial activities of different ZIFs in photodynamic therapy and their oxidative stress approach. Colloids Surf B Biointerfaces 2025; 247:114397. [PMID: 39615429 DOI: 10.1016/j.colsurfb.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025]
Abstract
Instigating oxidative stress is a crucial aspect of antibacterial therapy. Yet, its behavior is poorly understood in the context of zeolitic imidazolate frameworks (ZIFs) - a group of highly promising antibacterial agents. To address this gap, a series of ZIF@Ce6 particles were synthesized to investigate the impact of particle shape, size, and metal ion type on oxidative stress and bactericidal activity. For the first time, the interplay between the physicochemical properties and antibacterial activities of different ZIF@Ce6 particles is demonstrated, while unearthing their oxidative stress strategy in photodynamic therapy. Notably, the incorporation of chlorin e6 (Ce6), combined with light irradiation, amplified the bactericidal effect of the ZIFs and achieved a rare minimum inhibition concentration (MIC) of 12.5 µgmL-1 for ZIF-8. We discovered that singlet oxygen (1O2) production varies with particle shape and size, while photodynamic activity reshuffles the antibacterial performance sequence from pristine to modified ZIF-8. Interestingly, reactive oxygen species (ROS) accumulation and glutathione depletion tests revealed that oxidative stress in pristine ZIF-8 is predominantly induced by ROS, whereas both ROS and glutathione contribute to the oxidative stress in ZIF@Ce6 and pristine ZIF-67. When bacteria are preincubated with the antioxidant N-acetyl cysteine, the bactericidal activity of ZIF@Ce6 increases while the activity of pristine ZIF-8 is reduced and that of ZIF-67 remains unchanged. This study deepens our understanding of the antibacterial properties of ZIFs and their oxidative stress paths, paving way for the fabrication of ZIF-based materials with enriched and targeted antibacterial properties.
Collapse
Affiliation(s)
- Ruth Antwi-Baah
- School of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Mirabel Ewura Esi Acquah
- Shanghai Key Laboratory of Orthopaedic Surgery of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Malcom Frimpong Dapaah
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Joojo Walker
- School of International Education, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Heyang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
3
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
4
|
Peng H, Jiang Q, Mao W, Hu Z, Wang Q, Yu Z, Zhang L, Wang X, Zhuang C, Mai J, Wang Z, Sun T. Fe-HCOF-PEG 2000 as a Hypoxia-Tolerant Photosensitizer to Trigger Ferroptosis and Enhance ROS-Based Cancer Therapy. Int J Nanomedicine 2024; 19:10165-10183. [PMID: 39399828 PMCID: PMC11468433 DOI: 10.2147/ijn.s479848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
Background The hypoxic tumor microenvironment and single mechanisms severely limit the photodynamic therapy (PDT) efficiency of covalent organic framework (COF) nanoparticles in cancer treatment. Purpose Here, we propose an iron-loaded, hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000)-modified hollow covalent organic framework (HCOF), Fe-HCOF-PEG2000, for use in hypoxic PDT and ferroptosis therapy owing to its type I and II photodynamic ability and iron nanoparticle loading property. Results Fe-HCOF-PEG2000 nanoparticles (Fe-HCOFs-PEG2000) with semiconducting polymers and microporous skeletons allow efficient photophysical properties. Moreover, the iron nanoparticles on Fe-HCOF-PEG2000 caused ferroptosis and further enhanced tumor elimination under normoxic and hypoxic conditions. DSPE-PEG2000 endowed Fe-HCOF-PEG2000 with hydrophilicity, allowing it to circulate and accumulate in organs rich in blood supply, especially tumors. 808 nm NIR activated Fe-HCOF-PEG2000 aggregated in tumors and significantly inhibited tumor growth under hypoxia. Conclusion To our knowledge, Fe-HCOF-PEG2000 is the leading combination of type I/II PDT and ferroptosis. The strong antitumor effects of this nanomaterial suggest prospects for clinical translation as a tumor nanotherapy drug.
Collapse
Affiliation(s)
- Hui Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping Wuhan Brain Hospital, Wuhan, Hubei, 430010, People’s Republic of China
| | - Qian Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Wenhao Mao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Zhonglan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Qi Wang
- Department of Pharmacy, Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, People’s Republic of China
| | - Zhuo Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Li Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xinyan Wang
- Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Chunbo Zhuang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| |
Collapse
|
5
|
Ren C, Tu Q, He J. Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1978-1998. [PMID: 38953298 DOI: 10.1080/09205063.2024.2364533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024]
Abstract
Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.
Collapse
Affiliation(s)
- Chongwen Ren
- Department of Neurosurgery, Dongying People's Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying, China
| | - Qingqing Tu
- Department of Emergency, Dongying People's Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying, China
| | - Jinchao He
- Department of Neurosurgery, Dongying People's Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying, China
| |
Collapse
|
6
|
Dutta B, Datta S, Mir MH. Photoresponsive metal-organic framework materials for advance applications. Chem Commun (Camb) 2024; 60:9149-9162. [PMID: 39104303 DOI: 10.1039/d4cc02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The interaction between light and materials produces a range of phenomena within molecular systems, leading to advanced applications in the field of materials science. In this regard, metal-organic framework (MOF) materials have become superior candidates to others because of their easy tailor-made synthetic methods via incorporation of photoactive moieties into their structural assembly. Photoresponsive MOFs exhibit a massive variety of exciting properties, including photochromism, photomagnetism, photoluminescence, photon up or down conversion, photoconductivity, nonlinear optical properties, photosalient effects and photoinduced switching of conformations. These photoresponsive properties of MOFs regulate different potential applications, such as on-demand gas sorption and separation, optical sensing, fabrication of photoactuators and photosensing electronic devices, dye degradation, catalysis, cargo delivery, ink-free erasable printing, bio-imaging and drug delivery in biological systems. Therefore, judicious crystal engineering along with an understanding of their structure-property relationship will lead to the fabrication of desired photosensitive MOFs. Herein, we attempted to incorporate categorical descriptions based on advanced applications of photoresponsive MOFs considering a wide range of recent publications.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Sourav Datta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | | |
Collapse
|
7
|
Sun L, Li Z, Lan J, Wu Y, Zhang T, Ding Y. Better together: nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Front Pharmacol 2024; 15:1389922. [PMID: 38831883 PMCID: PMC11144913 DOI: 10.3389/fphar.2024.1389922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Combination therapies can enhance the sensitivity of cancer to drugs, lower drug doses, and reduce side effects in cancer treatment. However, differences in the physicochemical properties and pharmacokinetics of different therapeutic agents limit their application. To avoid the above dilemma and achieve accurate control of the synergetic ratio, a nanoscale co-delivery system (NCDS) has emerged as a prospective tool for combined therapy in cancer treatment, which is increasingly being used to co-load different therapeutic agents. In this study, we have summarized the mechanisms of therapeutic agents in combination for cancer therapy, nanoscale carriers for co-delivery, drug-loading strategies, and controlled/targeted co-delivery systems, aiming to give a general picture of these powerful approaches for future NCDS research studies.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Ai S, Zhao P, Fang K, Cheng H, Cheng S, Liu Z, Wang C. Charge Conversional Biomimetic Nanosystem for Synergistic Photodynamic/Protein Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307193. [PMID: 38054765 DOI: 10.1002/smll.202307193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Cytochrome C (Cytc) has received considerable attention due to its ability to induce tumor apoptosis and generate oxygen to improve photodynamic therapy (PDT) efficiency. However, the damage to normal tissues caused by nonspecific accumulation of Cytc limits its application. Herein, in order to reduce its toxicity to normal tissues while retaining its activity, a charge conversional biomimetic nanosystem (CA/Ce6@MSN-4T1) is proposed to improve the tumor targeting ability and realize controlled release of Cytc in the tumor microenvironment. This nanosystem is constructed by coating tumor cell membrane on mesoporous silica nanoparticles coloaded with a photosensitizer (chlorin e6, Ce6) and the citraconic anhydride conjugated Cytc (CA) for synergistic photodynamic/protein therapy. The coating of the tumor cell membrane endows the nanoparticles with homologous targeting ability to the same cancer cells as well as immune escaping capability. CA undergoes charge conversion in the acidic environment of the tumor to achieve a controlled release of Cytc. The released Cytc can relieve cellular hypoxia to improve the PDT efficiency of Ce6 and can induce programmed cell death. Both in vitro and in vivo studies demonstrated that CA/Ce6@MSN-4T1 can efficiently inhibit the growth of tumors through synergistic photodynamic/protein therapy, and meanwhile show reduced side effects on normal tissues.
Collapse
Affiliation(s)
- Shulun Ai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Peisen Zhao
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Kaixuan Fang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Hemei Cheng
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Sixue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhihong Liu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Caixia Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
9
|
Jiang Z, Li J, Wang J, Pan Y, Liang S, Hu Y, Wang L. Multifunctional fucoidan-loaded Zn-MOF-encapsulated microneedles for MRSA-infected wound healing. J Nanobiotechnology 2024; 22:152. [PMID: 38575979 PMCID: PMC10996189 DOI: 10.1186/s12951-024-02398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Wang D, Wu Q, Ren X, Niu M, Ren J, Meng X. Tunable Zeolitic Imidazolate Framework-8 Nanoparticles for Biomedical Applications. SMALL METHODS 2024; 8:e2301270. [PMID: 37997211 DOI: 10.1002/smtd.202301270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Zeolite imidazole framework-8 (ZIF-8) is the most prestigious one among zeolitic imidazolate framework (ZIF) with tunable dimensions and unique morphological features. Utilizing its synthetic adjustability and structural regularity, ZIF-8 exhibits enhanced flexibility, allowing for a wide range of functionalities, such as loading of nanoparticle components while preserving biomolecules activity. Extensive efforts are made from investigating synthesis techniques to develop novel applications over decades. In this review, the development and recent progress of various synthesis approaches are briefly summarized. In addition, its interesting properties such as adjustable porosity, excellent thermal, and chemical stabilities are introduced. Further, five representative biomedical applications are highlighted based on above physicochemical properties. Finally, the remaining challenges and offered insights into the future outlook are also discussed. This review aims to understand the co-relationships between structures and biomedical functionalities, offering the opportunity to construct attractive materials with promising characteristics.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
12
|
Lv L, Fu Z, You Q, Xiao W, Wang H, Wang C, Yang Y. Enhanced photodynamic therapy through multienzyme-like MOF for cancer treatment. Front Bioeng Biotechnol 2024; 11:1338257. [PMID: 38312507 PMCID: PMC10834778 DOI: 10.3389/fbioe.2023.1338257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 02/06/2024] Open
Abstract
Overcoming resistance to apoptosis is a major challenge in cancer therapy. Recent research has shown that manipulating mitochondria, the organelles critical for energy metabolism in tumor cells, can increase the effectiveness of photodynamic therapy and trigger apoptosis in tumor cells. However, there is currently insufficient research and effective methods to exploit mitochondrial damage to induce apoptosis in tumor cells and improve the effectiveness of photodynamic therapy. In this study, we present a novel nanomedicine delivery and therapeutic system called PyroFPSH, which utilizes a nanozymes-modified metal-organic framework as a carrier. PyroFPSH exhibits remarkable multienzyme-like activities, including glutathione peroxidase (GPx) and catalase (CAT) mimicry, allowing it to overcome apoptosis resistance, reduce endogenous glutathione levels, and continuously generate reactive oxygen species (ROS). In addition, PyroFPSH can serve as a carrier for the targeted delivery of sulfasalazine, a drug that can induce mitochondrial depolarization in tumor cells, thereby reducing oxygen consumption and energy supply in the mitochondria of tumor cells and weakening resistance to other synergistic treatment approaches. Our experimental results highlight the potential of PyroFPSH as a versatile nanoplatform in cancer treatment. This study expands the biomedical applications of nanomaterials as platforms and enables the integration of various novel therapeutic strategies to synergistically improve tumor therapy. It deepens our understanding of multienzyme-mimicking active nanocarriers and mitochondrial damage through photodynamic therapy. Future research can further explore the potential of PyroFPSH in clinical cancer treatment and improve its drug loading capacity, biocompatibility and targeting specificity. In summary, PyroFPSH represents a promising therapeutic approach that can provide new insights and possibilities for cancer treatment.
Collapse
Affiliation(s)
- Letian Lv
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Fu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Wei Xiao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Wang R, Pan Q, Li F, Guo J, Huo Y, Xu C, Xiong M, Cheng Z, Liu M, Lin J. Oxygen-carrying acid-responsive Cu/ZIF-8 for photodynamic antibacterial therapy against cariogenic Streptococcus mutans infection. Dalton Trans 2023; 52:16189-16196. [PMID: 37872796 DOI: 10.1039/d3dt02816j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Caries as a result of acid demineralization is the most common oral microbial infectious disease. Due to the small and complex intraoral operating space, it is challenging to completely remove Streptococcus mutans (S. mutans) and other cariogenic bacteria. As an intelligent acid-responsive photosensitive nanomaterial, O2-Cu/ZIF-8@Ce6/ZIF-8@HA (OCZCH) was chosen to adapt to the anaerobic and acidic microenvironment for inactivating S. mutans. In this work, OCZCH not only exhibits a regular nanomorphology in SEM and TEM images but also shows intelligent acid responsiveness as evidenced by the release of Ce6 and oxygen. When excited by near-infrared light at 650 nm, Ce6 releases reactive oxygen species (ROS) that act synergistically with internal oxygen to significantly enhance the antimicrobial therapeutic effect of photodynamic therapy (PDT). In vitro antimicrobial experiments showed that OCZCH could achieve an impressive sterilization effect against S. mutans and biofilm. Notably, the acid-producing ability of the bacteria was also significantly inhibited. With its oxygen-carrying photosensitizing properties, excellent responsiveness to acidic environments, and antimicrobial capacity under anaerobic conditions, OCZCH is considered an innovative candidate for clinical application in treating dental caries.
Collapse
Affiliation(s)
- Ruifeng Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
- Weihai Stomatological Hospital, Weihai 264200, China
| | - Qiyuan Pan
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Fang Li
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Jingying Guo
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yaru Huo
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Chao Xu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Manwen Xiong
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Min Liu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
14
|
Li M, Cheng Z, Liu H, Dou K, Xiao H, Zhao L, Yu F. Multifunctional protein-based self-assembled nanoplatform: overcoming hypoxic tumor microenvironment for enhanced imaging-guided photodynamic therapy. Biomater Sci 2023; 11:6881-6893. [PMID: 37647018 DOI: 10.1039/d3bm01130e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for cancer treatment, but its efficacy is often limited by tumour hypoxia. Here, we report the development of a novel protein-based, self-assembled nanoplatform, CAT-I-BODIPY NPs (CIB NPs), to address this limitation. We first design and synthesize an I-BODIPY photosensitizer based on the heavy atom effect and modification of the electron-donating group, which exhibits excellent capabilities in generating reactive oxygen species and enabling near-infrared (NIR) fluorescence imaging. The incorporation of an oxygen-producing enzyme, catalase (CAT), within these nanoassemblies enables in situ oxygen generation to counteract hypoxic constraints. Controllable self-assembly by multiple supramolecular interactions into highly ordered architecture not only guarantees CAT's catalytic activity but also leads to excellent NIR fluorescence imaging ability and enhanced PDT efficacy. Notably, the visualization of optimal accumulation of CIB NPs within tumour sites 18 h post-injection offers precise PDT application guidance. Both in vitro and in vivo studies corroborate the remarkable anti-tumour efficacy of CIB NPs under NIR illumination, providing a significant advancement in PDT. The favourable biosafety profile of CIB NPs further emphasizes their potential for clinical application in hypoxic tumour therapy.
Collapse
Affiliation(s)
- Min Li
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kun Dou
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Huan Xiao
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Linlu Zhao
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
15
|
Keum C, Hirschbiegel CM, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical applications. NANO CONVERGENCE 2023; 10:42. [PMID: 37695365 PMCID: PMC10495311 DOI: 10.1186/s40580-023-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.
Collapse
Affiliation(s)
- Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soham Chakraborty
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
16
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
17
|
Ding L, Zhang X, Yu P, Peng F, Sun Y, Wu Y, Luo Z, Li H, Zeng Y, Wu M, Liu X. Genetically engineered nanovesicles mobilize synergistic antitumor immunity by ADAR1 silence and PDL1 blockade. Mol Ther 2023; 31:2489-2506. [PMID: 37087570 PMCID: PMC10422002 DOI: 10.1016/j.ymthe.2023.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023] Open
Abstract
Growing evidence has proved that RNA editing enzyme ADAR1, responsible for detecting endogenous RNA species, was significantly associated with poor response or resistance to immune checkpoint blockade (ICB) therapy. Here, a genetically engineered nanovesicle (siAdar1-LNP@mPD1) was developed as an RNA interference nano-tool to overcome tumor resistance to ICB therapies. Small interfering RNA against ADAR1 (siAdar1) was packaged into a lipid nanoparticle (LNP), which was further coated with plasma membrane extracted from the genetically engineered cells overexpressing PD1. siAdar1-LNP@mPD1 could block the PD1/PDL1 immune inhibitory axis by presenting the PD1 protein on the coating membranes. Furthermore, siAdar1 could be effectively delivered into cancer cells by the designed nanovesicle to silence ADAR1 expression, resulting in an increased type I/II interferon (IFN-β/γ) production and making the cancer cells more sensitive to secreted effector cytokines such as IFN-γ with significant cell growth arrest. These integrated functions confer siAdar1-LNP@mPD1 with robust and comprehensive antitumor immunity, as evidenced by significant tumor growth regression, abscopal tumor prevention, and effective suppression of lung metastasis, through a global remodeling of the tumor immune microenvironment. Overall, we provided a promising translatable strategy to simultaneously silence ADAR1 and block PDL1 immune checkpoint to boost robust antitumor immunity.
Collapse
Affiliation(s)
- Lei Ding
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P.R. China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Peiwen Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Fang Peng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Yanni Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Zijin Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Hongsheng Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P.R. China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, P.R. China.
| |
Collapse
|
18
|
Zhao Q, Chen J, Zhang Z, Xiao C, Zeng H, Xu C, Yang X, Li Z. Modulating tumor mechanics with nanomedicine for cancer therapy. Biomater Sci 2023; 11:4471-4489. [PMID: 37221958 DOI: 10.1039/d3bm00363a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the past several decades, the importance of the tumor mechanical microenvironment (TMME) in cancer progression or cancer therapy has been recognized by researchers worldwide. The abnormal mechanical properties of tumor tissues include high mechanical stiffness, high solid stress, and high interstitial fluid pressure (IFP), which form physical barriers resulting in suboptimal treatment efficacy and resistance to different types of therapy by preventing drugs infiltrating the tumor parenchyma. Therefore, preventing or reversing the establishment of the abnormal TMME is critical for cancer therapy. Nanomedicines can enhance drug delivery by exploiting the enhanced permeability and retention (EPR) effect, so nanomedicines that target and modulate the TMME can further boost antitumor efficacy. Herein, we mainly discuss the nanomedicines that can regulate mechanical stiffness, solid stress, and IFP, with a focus on how nanomedicines change abnormal mechanical properties and facilitate drug delivery. We first introduce the formation, characterizing methods and biological effects of tumor mechanical properties. Conventional TMME modulation strategies will be briefly summarized. Then, we highlight representative nanomedicines capable of modulating the TMME for augmented cancer therapy. Finally, current challenges and future opportunities for regulating the TMME with nanomedicines will be provided.
Collapse
Affiliation(s)
- Qingfu Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
19
|
Zhang S, Li J, Yan L, You Y, Zhao F, Cheng J, Yang L, Sun Y, Chang Q, Liu R, Li Y. Zeolitic Imidazolate Framework-8 (ZIF-8) as a Drug Delivery Vehicle for the Transport and Release of Telomerase Inhibitor BIBR 1532. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111779. [PMID: 37299682 DOI: 10.3390/nano13111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Telomerase is constitutively overexpressed in the majority of human cancers and telomerase inhibition provides a promising broad-spectrum anticancer therapeutic strategy. BIBR 1532 is a well-known synthetic telomerase inhibitor that blocks the enzymatic activity of hTERT, the catalytic subunit of telomerase. However, water insolubility of BIBR 1532 leads to low cellular uptake and inadequate delivery and thus, limits its anti-tumor effects. Zeolitic imidazolate framework-8 (ZIF-8) is considered as an attractive drug delivery vehicle for improved transport, release and anti-tumor effects of BIBR 1532. Herein, ZIF-8 and BIBR 1532@ZIF-8 were synthesized, respectively, and the physicochemical characterizations confirmed the successful encapsulation of BIBR 1532 in ZIF-8 coupled with an improved stability of BIBR 1532. ZIF-8 could alter the permeability of lysosomal membrane probably by the imidazole ring-dependent protonation. Moreover, ZIF-8 encapsulation facilitated the cellular uptake and release of BIBR 1532 with more accumulation in the nucleus. BIBR 1532 encapsulation with ZIF-8 triggered a more obvious growth inhibition of cancer cells as compared with free BIBR 1532. A more potent inhibition on hTERT mRNA expression, aggravated G0/G1 arrest accompanied with an increased cellular senescence were detected in BIBR 1532@ZIF-8-treated cancer cells. Our work has provided preliminary information on improving the transport, release and efficacy of water-insoluble small molecule drugs by using ZIF-8 as a delivery vehicle.
Collapse
Affiliation(s)
- Shunyu Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxia Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yue You
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jixing Cheng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China
| | - Limin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqi Sun
- Department of Prevention and Health Care, Rizhao 276800, China
| | - Qingchao Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China
| |
Collapse
|
20
|
Liang J, Huang Z, Wang K, Zhang L, Wan Y, Yang T, Zeng H. Ultrasensitive visual detection of the food-borne pathogen via MOF encapsulated enzyme. Talanta 2023; 259:124503. [PMID: 37027932 DOI: 10.1016/j.talanta.2023.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Various methods have been made to achieve sensitive detection (10 CFU/mL) of Escherichia coli O157:H7 (E. coli) in real samples, however, they are complex, time-consuming, or instrument-dependent. Enzyme-catalyzed reactions are one of the most efficient methods to amplify signals for sensitive detection. ZIF-8 owning stability, porosity, and high specific area are suitable for embedding enzymes which can effectively protect enzyme activity and thus improve detection sensitivity. Herein, a simple visual assay of E. coli with the limits of detection of 1 CFU/mL was developed based on this stable enzyme-catalyzed amplified system. A microbial safety test of milk, orange juice, seawater, cosmetic, and hydrolyzed yeast protein, was successfully performed with the limits of detection of 10 CFU/mL by the naked eye. And this bioassay possessed high selectivity and stability making the developed detection method practically promising.
Collapse
|
21
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
22
|
Wang Q, Li M, Sun X, Chen N, Yao S, Feng X, Chen Y. ZIF-8 integrated with polydopamine coating as a novel nano-platform for skin-specific drug delivery. J Mater Chem B 2023; 11:1782-1797. [PMID: 36727421 DOI: 10.1039/d2tb02361j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metal-organic frameworks (MOFs) are highly promising as a novel class of drug delivery carriers; however, there are few reports about their application in nanoparticle-based formulations for dermal administration. In this work, we developed a novel kind of nanoparticular system based on zeolitic imidazolate framework-8 (ZIF-8) and polydopamine (PDA) modification for improving the dermal delivery of 5-fluorouracil (5-FU). The structures and properties of the prepared nanoparticles were characterized using a variety of analytical methods. Their ex vivo delivery performance in the skin was investigated using Franz cells, and the underlying mechanisms were studied via confocal laser scanning microscopy (CLSM) and hematoxylin-eosin (HE) experiments which were employed to probe the penetration pathway and the interaction between nanoparticles and the skin. The results revealed that both 5-FU@ZIF-8 and ZIF-8@5-FU@PDA had an enhancement effect on the deposition of 5-FU in the skin, and the surface coating of PDA could further reduce drug permeation across the skin, especially in the case of impaired skin, in comparison with the drug solution. The CLSM study using rhodamine 6G as the fluorescent probe to mimic 5-FU indicated that ZIF-8 and ZIF-8@PDA could deliver their payloads into the skin via two pathways, i.e., intercellular and follicular ones, and the follicular route was shown to be particularly important for ZIF-8@PDA, in which the drug and carrier were co-delivered into the skin as an intact particle. This study provides evidence for using ZIF-8 and PDA modification for skin-specific drug delivery and offers an effective avenue to develop novel nanoplatforms for dermal application to treat skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No. 146 Yellow River North Street, Shenyang, 110034, China
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
23
|
Liu X, Qian B, Zhang D, Yu M, Chang Z, Bu X. Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Zhou T, Yuan S, Qian P, Wu Y. Enzymes in Nanomedicine for Anti-tumor Therapy. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Wu M, Ling W, Wei J, Liao R, Sun H, Li D, Zhao Y, Zhao L. Biomimetic photosensitizer nanocrystals trigger enhanced ferroptosis for improving cancer treatment. J Control Release 2022; 352:1116-1133. [PMID: 36402233 DOI: 10.1016/j.jconrel.2022.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022]
Abstract
As a novel non-apoptotic cell death pathway, ferroptosis can effectively enhance the antitumor effects of photodynamic therapy (PDT) by disrupting intracellular redox homeostasis. However, the reported nanocomposites that combined the PDT and ferroptosis are cumbersome to prepare, and the unfavorable tumor microenvironment also severely interferes with their tumor suppressive effects. To address this inherent barrier, this study attempted to explore photosensitizers that could activate ferroptosis pathway and found that the photosensitizer aloe-emodin (AE) could induce cellular ferroptosis based on its specific inhibiting activity to Glutathione S-transferase P1(GSTP1), a key protein for ferroptosis. Herein, we prepared AE@RBC/Fe nanocrystals (NCs) with synergistic PDT and ferroptosis therapeutic effects by one-step emulsification to obtain AE NCs cores and further modification of red blood cells (RBC) membranes and ferritin. Benefiting from the involvement of ferritin, the prepared AE@RBC/Fe NCs provide not only sufficient oxygen for oxygen-dependent PDT, but also Fe3+ for iron-dependent ferroptosis in tumor cells. Furthermore, the biomimetic surface functionalization facilitated the prolonged circulation and cancer targeting of AE@RBC/Fe NCs in vivo. The in vitro and in vivo results demonstrate that AE@RBC/Fe NCs exhibit significantly enhanced therapeutic effects for the combined two antitumor mechanisms and provide a promising prospect for achieving PDT/ferroptosis synergistic therapy.
Collapse
Affiliation(s)
- Mingbo Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China; School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
| | - Wenwu Ling
- Department of Ultrasoundx, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jiaojun Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
| | - Ran Liao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, PR China
| | - Haiyue Sun
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
| | - Dongqiu Li
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
| | - Ye Zhao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China.
| | - Long Zhao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, PR China.
| |
Collapse
|
26
|
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-Jolandan S, Ghorbani-Bidkorpeh F, Asadian E, Shahbazi MA. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. APPLIED MATERIALS TODAY 2022; 29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Metal-organic frameworks (MOFs) as biomolecules drug delivery systems for anticancer purposes. Eur J Med Chem 2022; 244:114801. [DOI: 10.1016/j.ejmech.2022.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 12/07/2022]
|
28
|
He P, Yang G, Zhu D, Kong H, Corrales-Ureña YR, Colombi Ciacchi L, Wei G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J Nanobiotechnology 2022; 20:483. [PMID: 36384717 PMCID: PMC9670580 DOI: 10.1186/s12951-022-01691-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nanomaterial-based phototherapy has become an important research direction for cancer therapy, but it still to face some obstacles, such as the toxic side effects and low target specificity. The biomimetic synthesis of nanomaterials using biomolecules is a potential strategy to improve photothermal therapy (PTT) and photodynamic therapy (PDT) techniques due to their endowed biocompatibility, degradability, low toxicity, and specific targeting. This review presents recent advances in the biomolecule-mimetic synthesis of functional nanomaterials for PTT and PDT of cancers. First, we introduce four biomimetic synthesis methods via some case studies and discuss the advantages of each method. Then, we introduce the synthesis of nanomaterials using some biomolecules such as DNA, RNA, protein, peptide, polydopamine, and others, and discuss in detail how to regulate the structure and functions of the obtained biomimetic nanomaterials. Finally, potential applications of biomimetic nanomaterials for both PTT and PDT of cancers are demonstrated and discussed. We believe that this work is valuable for readers to understand the mechanisms of biomimetic synthesis and nanomaterial-based phototherapy techniques, and will contribute to bridging nanotechnology and biomedicine to realize novel highly effective cancer therapies.
Collapse
Affiliation(s)
- Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yendry Regina Corrales-Ureña
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany.
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
29
|
Wu Y, Ding L, Zheng C, Li H, Wu M, Sun Y, Liu X, Zhang X, Zeng Y. Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors. Acta Biomater 2022; 153:419-430. [PMID: 36115655 DOI: 10.1016/j.actbio.2022.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment modality with advantages of minimal invasiveness, repeatable therapy, and mild systemic toxicity. However, the limited bioavailability of photosensitizer (PS), tumor hypoxia, and the presence of antiapoptotic proteins in cancer cells, has hampered the efficiency of PDT. To address these limitations, herein, we developed a hyaluronic acid (HA) based nanosystem (HA-Ce6-Hemin@DNA-Protamine NPs, HCH@DP) loaded with chlorin e6 (Ce6, as PS), hemin (as mimetic catalase) and antisense oligonucleotide (ASO) of B-cell lymphoma 2 (Bcl-2) anti-apoptosis protein via a simple electrostatic self-assembly method for enhanced PDT of hypoxic solid tumors. The HCH@DP can target deliver the PS and ASO to tumor cells via cancer cell overexpressed HA receptors (i.e., CD44 or RHAMM). The Ce6 was released from HA-ss-Ce6 (HSC conjugates) after the reaction of cleavable disulfide bond with glutathione (GSH), which recovered the fluorescence and phototoxicity of Ce6 upon laser irradiation. Meanwhile, the catalase-mimicking hemin (degradation of HA-eda-hemin by hyaluronidase) decomposed the tumor overdressed endogenous H2O2 to oxygen, which relieved tumor hypoxia and further overcome hypoxia-associated resistance of PDT. Furthermore, the inhibition of Bcl-2 expression by Bcl-2 ASO also greatly improved the cellular sensitivity to PDT. Both in vitro and in vivo results showed the tumor cell targeting ability, hypoxia relief and significantly enhanced antitumor PDT efficacy of HCH@DP for hypoxic tumor cells upon laser irradiation. Thus, by improving the target delivery of PS and ASO, relieving tumor hypoxia, and down-regulation of anti-apoptotic proteins, this HCH@DP nanosystem achieved enhanced PDT efficiency against hypoxic tumors. In general, our work provided a promising strategy to increase the utilization of key components (PS and oxygen) of PDT and the cell sensitivity to PDT by targeting co-delivery PS and oligonucleotides to tumor cells via a biocompatible HA based carrier, thereby achieving efficiently PDT treatment of hypoxic solid tumors with potential translation possibility. STATEMENT OF SIGNIFICANCE: The efficiency of PDT against solid tumor is severely restricted by the limited bioavailability of photosensitizer, tumor hypoxia, and the presence of antiapoptotic proteins in cancer cells. Herein, we have developed an activatable hyaluronic acid (HA) based nanosystem (HA-Ce6-Hemin@DNA-Protamine NPs, HCH@DP) via a simple electrostatic self-assembly method for PDT treatment of hypoxic solid tumors. The HCH@DP enabled to target co-delivery of photosensitizer and antisense oligonucleotide to tumor cells, overcoming tumor hypoxia through in situ oxygen production and improving cellular sensitivity by efficiently reducing anti-apoptosis effect of cancer cells for synergistically enhancing PDT efficiency. This work suggests a promising strategy to develop small molecule drug and oligonucleotides co-delivery nanoplatforms for efficiently PDT treatment of hypoxic solid tumor.
Collapse
Affiliation(s)
- Yanni Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Lei Ding
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, PR China
| | - Cheng Zheng
- College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Hongsheng Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China.
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China.
| |
Collapse
|
30
|
Cheng R, Jiang L, Gao H, Liu Z, Mäkilä E, Wang S, Saiding Q, Xiang L, Tang X, Shi M, Liu J, Pang L, Salonen J, Hirvonen J, Zhang H, Cui W, Shen B, Santos HA. A pH-Responsive Cluster Metal-Organic Framework Nanoparticle for Enhanced Tumor Accumulation and Antitumor Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203915. [PMID: 35985348 DOI: 10.1002/adma.202203915] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
As a result of the deficient tumor-specific antigens, potential off-target effect, and influence of protein corona, metal-organic framework nanoparticles have inadequate accumulation in tumor tissues, limiting their therapeutic effects. In this work, a pH-responsive linker (L) is prepared by covalently modifying oleylamine (OA) with 3-(bromomethyl)-4-methyl-2,5-furandione (MMfu) and poly(ethylene glycol) (PEG). Then, the L is embedded into a solid lipid nanoshell to coat apilimod (Ap)-loaded zeolitic imidazolate framework (Ap-ZIF) to form Ap-ZIF@SLN#L. Under the tumor microenvironment, the hydrophilic PEG and MMfu are removed, exposing the hydrophobic OA on Ap-ZIF@SLN#L, increasing their uptake in cancer cells and accumulation in the tumor. The ZIF@SLN#L nanoparticle induces reactive oxygen species (ROS). Ap released from Ap-ZIF@SLN#L significantly promotes intracellular ROS and lactate dehydrogenase generation. Ap-ZIF@SLN#L inhibits tumor growth, increases the survival rate in mice, activates the tumor microenvironment, and improves the infiltration of macrophages and T cells in the tumor, as demonstrated in two different tumor-bearing mice after injections with Ap-ZIF@SLN#TL. Furthermore, mice show normal tissue structure of the main organs and the normal serum level in alanine aminotransferase and aspartate aminotransferase after treatment with the nanoparticles. Overall, this pH-responsive targeting strategy improves nanoparticle accumulation in tumors with enhanced therapeutic effects.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
- Department of Biomedical Engineering, W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Groningen, 9713 AV, The Netherlands
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Han Gao
- Department of Biomedical Engineering, W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku, Turku, FI-20014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Libin Pang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku, Turku, FI-20014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-20520, Finland
- Turku Biosciences Center, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Groningen, 9713 AV, The Netherlands
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
31
|
Liu H, Lei D, Li J, Xin J, Zhang L, Fu L, Wang J, Zeng W, Yao C, Zhang Z, Wang S. MMP-2 Inhibitor-Mediated Tumor Microenvironment Regulation Using a Sequentially Released Bio-Nanosystem for Enhanced Cancer Photo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41834-41850. [PMID: 36073504 DOI: 10.1021/acsami.2c14781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combining photodynamic therapy (PDT) with natural killer (NK) cell-based immunotherapy has shown great potential against cancers, but the shedding of NK group 2, member D ligands (NKG2DLs) on tumor cells inhibited NK cell activation in the tumor microenvironment. Herein, we assembled microenvironment-/light-responsive bio-nanosystems (MLRNs) consisting of SB-3CT-containing β-cyclodextrins (β-CDs) and photosensitizer-loaded liposomes, in which SB-3CT was considered to remodel the tumor microenvironment. β-CDs and liposomes were linked by metalloproteinase 2 (MMP-2) responsive peptides, enabling sequential release of SB-3CT and chlorin e6 triggered by the MMP-2-abundant tumor microenvironment and 660 nm laser irradiation, respectively. Released SB-3CT blocked tumor immune escape by antagonizing MMP-2 and promoting the NKG2D/NKG2DL pathway, while liposomes were taken up by tumor cells for PDT. MLRN-mediated photo-immunotherapy significantly induced melanoma cell cytotoxicity (83.31%), inhibited tumor growth (relative tumor proliferation rate: 1.13% of that of normal saline) in the xenografted tumor model, and enhanced tumor-infiltrating NK cell (148 times) and NKG2DL expression (9.55 and 16.52 times for MICA and ULBP-1, respectively), achieving a synergistic effect. This study not only provided a simple insight into the development of new nanomedicine for programed release of antitumor drugs and better integration of PDT and immunotherapy but also a novel modality for clinical NK cell-mediated immunotherapy against melanoma.
Collapse
Affiliation(s)
- Huifang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jiong Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Lei Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Weihui Zeng
- Department of Dermatology, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| |
Collapse
|
32
|
Zhao B, Li X, Kong Y, Wang W, Wen T, Zhang Y, Deng Z, Chen Y, Zheng X. Recent advances in nano-drug delivery systems for synergistic antitumor immunotherapy. Front Bioeng Biotechnol 2022; 10:1010724. [PMID: 36159668 PMCID: PMC9497653 DOI: 10.3389/fbioe.2022.1010724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has demonstrated great clinical success in the field of oncology in comparison with conventional cancer therapy. However, cancer immunotherapy still encounters major challenges that limit its efficacy against different types of cancers and the patients show minimal immune response to the immunotherapy. To overcome these limitations, combinatorial approaches with other therapeutics have been applied in the clinic. Simultaneously, nano-drug delivery system has played an important role in increasing the antitumor efficacy of various treatments and has been increasingly utilized for synergistic immunotherapy to further enhance the immunogenicity of the tumors. Specifically, they can promote the infiltration of immune cells within the tumors and create an environment that is more sensitive to immunotherapy, particularly in solid tumors, by accelerating tumor accumulation and permeability. Herein, this progress report provides a brief overview of the development of nano-drug delivery systems, classification of combinatory cancer immunotherapy and recent progress in tumor immune synergistic therapy in the application of nano-drug delivery systems.
Collapse
Affiliation(s)
- Bonan Zhao
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Xiang Li
- Department of Central Laboratory and Precision Medicine Center, Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Ying Kong
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenbo Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Tingting Wen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yanru Zhang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Zhiyong Deng
- Department of Pathology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Xian Zheng, ; Yafang Chen, ; Zhiyong Deng,
| | - Yafang Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Xian Zheng, ; Yafang Chen, ; Zhiyong Deng,
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Xian Zheng, ; Yafang Chen, ; Zhiyong Deng,
| |
Collapse
|
33
|
Cheng Z, Li Y, Zhao D, Zhao W, Wu M, Zhang W, Cui Y, Zhang P, Zhang Z. Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy. Front Bioeng Biotechnol 2022; 10:994655. [PMID: 36147526 PMCID: PMC9485877 DOI: 10.3389/fbioe.2022.994655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In the past few decades, the combination of proteins and small-molecule drugs has made tremendous progress in cancer treatment, but it is still not satisfactory. Because there are great differences in molecular weight, water solubility, stability, pharmacokinetics, biodistribution, and the ways of release and action between macromolecular proteins and small-molecule drugs. To improve the efficacy and safety of tumor treatment, people are committed to developing protein and drug co-delivery systems. Currently, intracellular co-delivery systems have been developed that integrate proteins and small-molecule drugs into one nanocarrier via various loading strategies. These systems significantly improve the blood stability, half-life, and biodistribution of proteins and small-molecule drugs, thus increasing their concentration in tumors. Furthermore, proteins and small-molecule drugs within these systems can be specifically targeted to tumor cells, and are released to perform functions after entering tumor cells simultaneously, resulting in improved effectiveness and safety of tumor treatment. This review summarizes the latest progress in protein and small-molecule drug intracellular co-delivery systems, with emphasis on the composition of nanocarriers, as well as on the loading methods of proteins and small-molecule drugs that play a role in cells into the systems, which have not been summarized by others so far.
Collapse
Affiliation(s)
- Zhihong Cheng
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yongshuang Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Xu D, Wu L, Yao H, Zhao L. Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203400. [PMID: 35971168 DOI: 10.1002/smll.202203400] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The field of nanozymes has developed rapidly over the past decade. Among various oxidoreductases mimics, catalase (CAT)-like nanozyme, acting as an essential part of the regulation of reactive oxygen species (ROS), has attracted extensive research interest in recent years. However, CAT-like nanozymes are not as well discussed as other nanozymes such as peroxidase (POD)-like nanozymes, etc. Compared with natural catalase or artificial CAT enzymes, CAT-like nanozymes have unique properties of low cost, size-dependent properties, high catalytic activity and stability, and easy surface modification, etc., which make them widely used in various fields, especially in tumor therapy and disease treatment. Consequently, there is a great requirement to make a systematic discussion on CAT-like nanozymes. In this review, some key aspects of CAT-like nanozymes are deeply summarized as: 1) Typical CAT-like nanozymes classified by different nanomaterials; 2) The catalytic mechanisms proposed by experimental and theoretical studies; 3) Extensive applications in regard to tumor therapy, cytoprotection and sensing. Therefore, it is prospected that this review will contribute to the further design of CAT-like nanozymes and optimize their applications with much higher efficiency than before.
Collapse
Affiliation(s)
- Deting Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liyuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Obaid EAMS, Wu S, Zhong Y, Yan M, Zhu L, Li B, Wang Y, Wu W, Wang G. pH-Responsive hyaluronic acid-enveloped ZIF-8 nanoparticles for anti-atherosclerosis therapy. Biomater Sci 2022; 10:4837-4847. [PMID: 35858474 DOI: 10.1039/d2bm00603k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicines represent new promising strategies for treating atherosclerosis (AS), because they enhance drug bioavailability and have lower side effects. Nevertheless, nanomedicines have several challenges with these advantages, including a limited circulation life, lack of precise targeting, and insufficient control of drug release. Accordingly, the development of drug delivery systems (DDSs) with abilities to enhance the payload delivery to the AS plaque lesion and to control drug release can boost the therapeutic efficacy and safety for AS treatment. Herein, we employed a one-step self-assembly approach for effectively encapsulating the anti-AS drug simvastatin (SIM) in zeolitic imidazolate framework-8 (ZIF-8) (SIM/ZIF-8), and then coated it with hyaluronic acid (HA) to fabricate the SIM/ZIF-8@HA nanoplatform. The resulting nanoplatform could efficiently accumulate in plaque regions through the specific recognition between HA and CD44. Meanwhile, the acid environment breaks down ZIF-8 to release SIM. The in vitro and in vivo experiments demonstrated that SIM/ZIF-8@HA could inhibit the proliferation of smooth muscle cells and have good biocompatibility. Moreover, SIM/ZIF-8@HA can effectively suppress the development of AS plaques without any considerable side effects in mice treatments. The findings revealed that SIM/ZIF-8@HA may be a promising nanomedicine for safe and efficient anti-AS applications.
Collapse
Affiliation(s)
- Essam Abdo Mohammed Saad Obaid
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Shuai Wu
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Yuan Zhong
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Meng Yan
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Li Zhu
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Bibo Li
- Department of Oncology, Chongqing People's Hospital, Chongqing 401147, China
| | - Yi Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China. .,College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wei Wu
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
36
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
37
|
Wang X, Lewis DA, Wang G, Meng T, Zhou S, Zhu Y, Hu D, Gao S, Zhang G. Covalent Organic Frameworks as a Biomacromolecule Immobilization Platform for Biomedical and Related Applications. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Damani A. Lewis
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Anhui Medical University Hefei 230022 China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Shengnan Zhou
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Yuheng Zhu
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Danyou Hu
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| |
Collapse
|
38
|
Kang W, Tian Y, Zhao Y, Yin X, Teng Z. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv 2022; 12:16927-16941. [PMID: 35754870 PMCID: PMC9178442 DOI: 10.1039/d2ra01102f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the limitations resulting from hypoxia and the self-aggregation of photosensitizers, photodynamic therapy (PDT) has not been applied clinically to treat most types of solid tumors. Zeolitic imidazolate framework-8 (ZIF-8) is a common metal-organic framework that has ultra-high porosity, an adjustable structure, good biocompatibility, and pH-induced biodegradability. In this review, we summarize the applications of ZIF-8 and its derivatives in PDT. This review is divided into two parts. In the first part, we summarize progress in the application of ZIF-8 to enhance PDT and realize theranostics. We discuss the use of ZIF-8 to avoid the self-aggregation of photosensitizers, alleviate hypoxia, increase the PDT penetration depth, and combine PDT with multi-modal imaging. In the second part, we summarize how ZIF-8 can achieve synergistic PDT with other anti-tumor therapies, including chemotherapy, photothermal therapy, chemodynamic therapy, starvation therapy, protein therapy, gene therapy, and immunotherapy. Finally, we highlight the challenges that must be overcome for ZIF-8 to be widely applied in PDT. To the best of our knowledge, this is the first review of ZIF-8-based nanoplatforms for PDT.
Collapse
Affiliation(s)
- Wen Kang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 P. R. China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications Nanjing 210046 P. R. China
| |
Collapse
|
39
|
Liu J, Chen H, Wang B, Luo Y, Yang G, Zhang S, Li S. Triarylboron-Based High Photosensitive Probes for Apoptosis Detection, Tumor-Targeted Imaging, and Selectively Inducing Apoptosis of Tumor Cells by Photodynamics. Anal Chem 2022; 94:8483-8488. [PMID: 35635074 DOI: 10.1021/acs.analchem.2c01364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a series of triarylboron-based fluorescent probes were developed for distinguishing apoptosis from living cells and even necrosis. They also demonstrate high photosensitivity because they can produce detectable reactive oxygen species (ROS) under an ultra-low light power density (1.5 mW/cm2). By changing the peripheral groups to regulate the performance, we identified a multifunctional probe, TAB-6-amyl, which can be used not only for selectively imaging apoptosis but also for the targeted imaging of SKOV-3 cells in vitro and in vivo. It could further specifically induce the apoptosis of SKOV-3 cells under light irradiation. During the study, we also found that TAB-6-amyl can cross the blood-brain barrier (BBB). Therefore, another probe based on this kind of structure, TAB-5-M-1-cRGD, was constructed for the targeted imaging of brain glioma cells and inducing their apoptosis. This study offers some promising tools for apoptosis detection and tumor photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Hongyu Chen
- Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Bing Wang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Yingping Luo
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Guoqiang Yang
- Institute of Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Shilu Zhang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Shayu Li
- College of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
40
|
Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci 2022; 621:440-463. [PMID: 35483177 DOI: 10.1016/j.jcis.2022.04.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are important semiconductor materials with interesting photo-responsive properties. During the past, ZnO-based NPs have received considerable attention for photodynamic therapy (PDT) due to their biocompatibility and excellent potential of generating tumor-killing reactive oxygen species (ROS) through gentle photodynamic activation. This article provides a comprehensive review of the recent developments and improvements in optical properties of ZnO NPs as photosensitizers for PDT. The optical properties of ZnO-based photosensitizers are significantly dependent on their charge separation, absorption potential, band gap engineering, and surface area, which can be adjusted/tuned by doping, compositing, and morphology control. Here, we first summarize the recent progress in the charge separation capability, absorption potential, band gap engineering, and surface area of nanosized ZnO-based photosensitizers. Then, morphology control that is closely related to their synthesis method is discussed. Following on, the state-of-art for the ZnO-based NPs in the treatment of hypoxic tumors is comprehensively reviewed. Finally, we provide some outlooks on common targeted therapy methods for more effective tumor killing, including the attachment of small molecules, antibodies, ligands molecules, and receptors to NPs which further improve their selective distribution and targeting, hence improving the therapeutic effectiveness. The current review may provide useful guidance for the researchers who are interested in this promising dynamic cancer treatment technology.
Collapse
|
41
|
Wang Y, Zhao Q, Zhao B, Zheng Y, Zhuang Q, Liao N, Wang P, Cai Z, Zhang D, Zeng Y, Liu X. Remodeling Tumor-Associated Neutrophils to Enhance Dendritic Cell-Based HCC Neoantigen Nano-Vaccine Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105631. [PMID: 35142445 PMCID: PMC9009112 DOI: 10.1002/advs.202105631] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Hepatocellular carcinoma (HCC) commonly emerges in an immunologically "cold" state, thereafter protects it away from cytolytic attack by tumor-infiltrating lymphocytes, resulting in poor response to immunotherapy. Herein, an acidic/photo-sensitive dendritic cell (DCs)-based neoantigen nano-vaccine has been explored to convert tumor immune "cold" state into "hot", and remodel tumor-associated neutrophils to potentiate anticancer immune response for enhancing immunotherapy efficiency. The nano-vaccine is constructed by SiPCCl2 -hybridized mesoporous silica with coordination of Fe(III)-captopril, and coating with exfoliated membrane of matured DCs by H22-specific neoantigen stimulation. The nano-vaccines actively target H22 tumors and induce immunological cell death to boost tumor-associated antigen release by the generation of excess 1 O2 through photodynamic therapy, which act as in situ tumor vaccination to strengthen antitumor T-cell response against primary H22 tumor growth. Interestingly, the nano-vaccines are also home to lymph nodes to directly induce the activation and proliferation of neoantigen-specific T cells to suppress the primary/distal tumor growth. Moreover, the acidic-triggered captopril release in tumor microenvironment can polarize the protumoral N2 phenotype neutrophils to antitumor N1 phenotype for improving the immune effects to achieve complete tumor regression (83%) in H22-bearing mice and prolong the survival time. This work provides an alternative approach for developing novel HCC immunotherapy strategies.
Collapse
Affiliation(s)
- Yunhao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Qingfu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Binyu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Liver Disease CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhou350005P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| |
Collapse
|
42
|
Jiang Z, Pan Y, Wang J, Li J, Yang H, Guo Q, Liang S, Chen S, Hu Y, Wang L. Bone-Targeted ICG/Cyt c@ZZF-8 Nanoparticles Based on the Zeolitic Imidazolate Framework-8: A New Synergistic Photodynamic and Protein Therapy for Bone Metastasis. Biomater Sci 2022; 10:2345-2357. [PMID: 35383343 DOI: 10.1039/d2bm00185c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone metastasis (BM) is a solid tumor confined to narrow bone marrow cavities with a relatively poor blood supply and hypoxic environment, making conventional anticancer treatments difficult. In our study,...
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haoze Yang
- Department of Cardiology, Second Xiangya Hospital, Central South University, China
| | - Qi Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, China
| | - Yihe Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Tian XX, Liu YT, Li Y, Qiu XY, Zhang WH, Young DJ, Chen Q. ZIF-8 with cationic defects toward efficient 125I2 uptake for in vitro radiotherapy of colon cancer. Chem Commun (Camb) 2022; 58:6942-6945. [DOI: 10.1039/d1cc07304d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing 2,3-dimethyl-1H-imidazol-3-ium iodide (Dmim) as a monodentate ligand during the preparation of ZIF-8 yields ZIF-8+(50) and ZIF-8+(38) with cationic ‘missing linker’ defects. ZIF-8+(38) adsorbs 125I2 and the resulting radioactive host-guest...
Collapse
|
44
|
Guo H, Liu L, Hu Q, Dou H. Monodisperse ZIF-8@dextran nanoparticles co-loaded with hydrophilic and hydrophobic functional cargos for combined near-infrared fluorescence imaging and photothermal therapy. Acta Biomater 2022; 137:290-304. [PMID: 34637934 DOI: 10.1016/j.actbio.2021.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
Impressive developments have been achieved with the use of zeolitic imidazolate framework-8 (ZIF-8) as nanocarriers for tumor theranostics in recent decades by incorporating imaging agents and therapeutic drugs within ZIF-8. However, the simultaneous immobilization of hydrophilic and hydrophobic functional molecules into ZIF-8 nanoparticles in water or organic solvents still presents a daunting challenge. Herein, we developed a new synthesis/encapsulation two-in-one (denoted as one-pot) approach to synthesize uniform dextran-modified Cy5.5&ICG@ZIF-8-Dex nanoparticles in DMSO/H2O solvent mixtures, which enabled the simultaneous encapsulation of hydrophilic indocyanine green (ICG) and hydrophobic cyanine-5.5 (Cy5.5) during the same step. It was confirmed that the one-pot approach in this mixed solvents facilitated the loading of ICG and Cy5.5 molecules. Moreover, the encapsulation of Cy5.5 and ICG within ZIF-8 nanoparticles endowed them with fluorescence imaging capability and photothermal conversion capacity, respectively. The in vivo near-infrared (NIR) fluorescent images of A549-bearing mice injected with Cy5.5&ICG@ZIF-8-Dex demonstrated sufficient accumulations of Cy5.5 at tumor sites due to the enhanced permeability and retention effect. Most impressively, the fluorescent intensity of Cy5.5&ICG@ZIF-8-Dex at tumor site was approximately 40-fold higher than that of free Cy5.5. Additionally, the results of in vivo infrared imaging and photothermal therapy of Cy5.5&ICG@ZIF-8-Dex showed enhanced therapeutic efficiency in comparison with free ICG, further confirming its tumor-targeting capability and photothermal capacity. Therefore, this multifunctional system based on ZIF-8 nanocarriers offered a potential nanoplatform for tumor-targeting theranostics, thus broadening the synthesis and applications of ZIF-8 composite nanoparticles for NIR fluorescence imaging and photothermal therapy in the biomedical field. STATEMENT OF SIGNIFICANCE: Simultaneous immobilization of hydrophilic and hydrophobic molecules into ZIF-8 nanoparticles still remains a daunting challenge. Therefore, we have developed a new synthesis/encapsulation two-in-one approach to synthesize uniform Cy5.5&ICG@ZIF-8-Dex composite nanoparticles in DMSO/H2O solvent mixtures, which enabled the simultaneous encapsulation of hydrophilic indocyanine green (ICG) and hydrophobic cyanine-5.5 (Cy5.5) functional molecules during a single step. The results showed that the co-loading of Cy5.5 and ICG within the ZIF-8 nanoparticles endowed them with a remarkable fluorescence imaging capability and photothermal conversion capacity. Based on their enhanced convenience and efficacy to simultaneously encapsulate hydrophilic and hydrophobic molecules, the multifunctional nanocarriers that were prepared in the DMSO/H2O mixed solvents provide a potential nanoplatform toward fluorescence imaging and photothermal therapy for tumor theranostics.
Collapse
Affiliation(s)
- Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Qiangqiang Hu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
45
|
Zhang S, Chen H, Zhao B, Liu R, Wang B, Zhang X, Deng G, Luo Y, Liu J. Molecular-engineered highly photosensitive triarylphosphine oxide compounds for apoptosis imaging and selectively inducing apoptosis of tumor cells by photodynamic therapy. Biomater Sci 2022; 10:3441-3446. [PMID: 35666470 DOI: 10.1039/d2bm00462c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although photodynamic therapy (PDT) has wide applications, tumor-targeting probes with high photosensitivity or apoptosis-monitoring capability are still scarce, which possess low phototoxicity and can be used for evaluating the therapeutic...
Collapse
Affiliation(s)
- Shilu Zhang
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Hongyu Chen
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Bo Zhao
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Ronglan Liu
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Bing Wang
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Xiaoming Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Yingping Luo
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| |
Collapse
|
46
|
Tong PH, Zhu L, Zang Y, Li J, He XP, James TD. Metal-organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chem Commun (Camb) 2021; 57:12098-12110. [PMID: 34714306 DOI: 10.1039/d1cc05157a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomacromolecular drugs have become an important class of therapeutic agents for the treatment of human diseases. Considering their high propensity for being degraded in the human body, the choice of an appropriate delivery system is key to ensure the therapeutic efficacy of biomacromolecular drugs in vivo. As an emerging class of supramolecular "host" materials, metal-organic frameworks (MOFs) exhibit advantages in terms of the tunability of pore size, encapsulation efficiency, controllable drug release, simplicity in surface functionalization and good biocompatibility. As a result, MOF-based host-guest systems have been extensively developed as a new class of flexible and powerful platform for the delivery of therapeutic biomacromolecules. In this review, we summarize current research progress in the synthesis of MOFs as delivery materials for a variety of biomacromolecules. Firstly, we briefly introduce the advances made in the use of biomacromolecular drugs for disease therapy and the types of commonly used clinical delivery systems. We then describe the advantages of using MOFs as delivery materials. Secondly, the strategies for the construction of MOF-encapsulated biomacromolecules (Biomacromolecules@MOFs) and the release mechanisms of the therapeutics are categorized. Thirdly, the application of MOFs to deliver different types of biomacromolecules (e.g., antigens/antibodies, enzymes, therapeutic proteins, DNA/RNA, polypeptides, and polysaccharides) for the treatment of various human diseases based on immunotherapy, gene therapy, starvation therapy and oxidation therapy is summarized. Finally, the remaining challenges and available opportunities for MOFs as drug delivery systems are outlined, which we anticipate will encourage additional research efforts directed towards developing Biomacromolecules@MOFs systems for biomedical applications.
Collapse
Affiliation(s)
- Pei-Hong Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Ling Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
47
|
Zhang H, Xu Z, Mao Y, Zhang Y, Li Y, Lao J, Wang L. Integrating Porphyrinic Metal-Organic Frameworks in Nanofibrous Carrier for Photodynamic Antimicrobial Application. Polymers (Basel) 2021; 13:polym13223942. [PMID: 34833240 PMCID: PMC8625335 DOI: 10.3390/polym13223942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023] Open
Abstract
The rise and spread of antimicrobial resistance is creating an ever greater challenge in wound management. Nanofibrous membranes (NFMs) incorporated with antibiotics have been widely used to remedy bacterial wound infections owing to their versatile features. However, misuse of antibiotics has resulted in drug resistance, and it remains a significant challenge to achieve both high antibacterial efficiency and without causing bacterial resistance. Here, the ‘MOF-first’ strategy was adopted, the porphyrinic metal-organic frameworks nanoparticles (PCN−224 NPs) were pre-synthesized first, and then the composite antibacterial PCN−224 NPs @ poly (ε-caprolactone) (PM) NFMs were fabricated via a facile co-electrospinning technology. This strategy allows large amounts of effective MOFs to be integrated into nanofibers to effectively eliminate bacteria without bacterial resistance and to realize a relatively fast production rate. Upon visible light (630 nm) irradiation for 30 min, the PM−25 NFMs have the best 1O2 generation performance, triggering remarkable photodynamic antibacterial effects against both S. aureus, MRSA, and E. coli bacteria with survival rates of 0.13%, 1.91%, and 2.06% respectively. Considering the photodynamic antibacterial performance of the composite nanofibrous membranes functionalized by porphyrinic MOFs, this simple approach may provide a feasible way to use MOF materials and biological materials to construct wound dressing with the versatility to serve as an antibacterial strategy in order to prevent bacterial resistance.
Collapse
Affiliation(s)
- Huiru Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Zhihao Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Ying Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yingjie Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
- Correspondence: ; Tel.: +86-21-6779-2634
| | - Jihong Lao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
48
|
Ding L, Wu Y, Wu M, Zhao Q, Li H, Liu J, Liu X, Zhang X, Zeng Y. Engineered Red Blood Cell Biomimetic Nanovesicle with Oxygen Self-Supply for Near-Infrared-II Fluorescence-Guided Synergetic Chemo-Photodynamic Therapy against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52435-52449. [PMID: 34705421 DOI: 10.1021/acsami.1c19096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The low bioavailability of photosensitizers (PSs) and the hypoxia nature of tumors often limit the efficacy of current photodynamic therapy (PDT). Therefore, improving the utilization of three essential components (PS, light, and O2) in tumors will enhance PDT efficacy substantially. Herein, we have developed a red blood cell (RBC) biomimetic theranostic nanovesicle (named SPN-Hb@RBCM) with improved photostability, accumulation of PSs, and oxygen self-supply ability to enhance PDT efficacy upon near-infrared (NIR) laser irradiation. Such a biomimetic nanovesicle was prepared by a red blood cell membrane (RBCM)-camouflaged hemoglobin (Hb)-linked semiconducting polymer nanoparticle (SPN-Hb). The RBCM coating enables the long-term circulation of SPN-Hb due to the membrane-mediated immune evasion, allowing for more effective PS accumulation in tumors. Under 808 nm laser irradiation, the photostable SPN can serve as both a photodynamic and a second-near-infrared-window (NIR-II) fluorescence imaging agent; meanwhile, the conjugated Hb can be used as an oxygen carrier to relieve tumor hypoxia for enhancing PDT efficacy. In addition, Hb can also react with the tumor microenvironment overproduced H2O2 to generate cytotoxic hydroxyl radicals (•OHs) for chemodynamic therapy (CDT), which further achieve synergistic effects for PDT. Thus, this study proposed a promising biomimetic theranostic nanoagent for enhancing tumor oxygenation and NIR-II fluorescence-guided synergetic CDT/PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Lei Ding
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- School of Rare Earths, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Yanni Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Qingfu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Hongsheng Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- School of Rare Earths, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| |
Collapse
|
49
|
Zhang J, Fu H, Chu X. Metal-Organic Framework Nanoparticles Power DNAzyme Logic Circuits for Aberrant MicroRNA Imaging. Anal Chem 2021; 93:14675-14684. [PMID: 34696580 DOI: 10.1021/acs.analchem.1c02878] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At the molecular level, a large number of studies exist on the use of dynamic DNA molecular circuits for disease diagnosis and biomedicine. However, how to design programmable molecular circuit devices to autonomously and accurately diagnose multiple low-abundance biomolecules in complex cellular environments remains a challenge. Here, we constructed DNAzyme logic circuits for the analysis and imaging of multiple microRNAs in living cells using Cu/ZIF-8 NPs as a nanocarrier of the logic gate modules and the Cu2+ cofactor of the Cu2+-dependent DNAzyme. The logic gate modules of the logic operation system were adsorbed on the surface of Cu/ZIF-8 NPs via electrostatic interaction. After internalization, pH-responsive Cu/ZIF-8 NPs could efficiently release the logic gate modules and Cu2+, which allowed us to realize multiple logic computations initiated by endogenous miRNA, including one YES logic gate and two binary logic gates (OR and AND) in different living cells. Cu2+-DNAzyme logic circuits could quickly respond to multiple endogenous miRNAs in the complex cell environment, which also provided a new research method for the application of DNA biocomputing circuits in living cells.
Collapse
Affiliation(s)
- Juan Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, P. R. China.,State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
50
|
Zhang Y, Yang Y, Shi J, Wang L. A multimodal strategy of Fe 3O 4@ZIF-8/GOx@MnO 2 hybrid nanozyme via TME modulation for tumor therapy. NANOSCALE 2021; 13:16571-16588. [PMID: 34585187 DOI: 10.1039/d1nr04196g] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Weak acidity (6.5-6.9) and limited H2O2 level in the tumor microenvironment (TME) usually impact the therapeutic effect of chemodynamic therapy (CDT) for cancer. A Specific TME promotes the formation of an immunosuppressive microenvironment and results in high rate of recurrence and metastasis of cancer. Fe3O4@ZIF-8/GOx@MnO2 multi-layer core shell nanostructure was constructed as a hybrid nanozyme. After magnetic targeting of the tumor site, the outermost MnO2 shell catalyzed H2O2 in TME to produce O2 and was broken due to the reaction with glutathione. Due to the acid response, the ZIF-8 layer would crack and release glucose oxidase (GOx) and Fe3O4. The generated O2 was utilized by GOx in starvation therapy to consume glucose and produce H2O2 and gluconic acid. The Fenton reaction efficiency of Fe(II) was improved by the increased H2O2 concentration and the enhanced acidity in TME. At the same time, the intrinsic photothermal effect of Fe3O4 upon 808 nm laser irradiation promoted the activity of MnO2 and GOx as oxidase, and Fe(II) as catalase-like, and ablated the primary tumor. Moreover, the hybrid nanozyme can facilitate the transformation of M2-type macrophages to M1-type, and strong systemic antitumor immune effect was induced. A synergy of multiple therapeutic modes including starvation therapy, CDT, photothermal therapy (PTT), and immunotherapy can be realized in the hybrid nanozyme for tumor therapy.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, China
| | - Yifeng Yang
- Department of Thyroid and Breast Surgery, The Qingdao Affiliate Hospital of Shandong First Medical University, China
| | - Jinsheng Shi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, China
| | - Lili Wang
- Science and Information College, Qingdao Agricultural University, China.
| |
Collapse
|