1
|
Li S, Luo L, Hasan MZ, Shi N, Liu Q, Li D, Yue C, Zhang R, Sha S, Zhu J. Directional fabrication of an ultra-light and porous bacterial nanocellulose/MXene composite aerogel for efficient thermal management. Int J Biol Macromol 2025; 311:144054. [PMID: 40350113 DOI: 10.1016/j.ijbiomac.2025.144054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Global warming has intensified extreme weather events, necessitating advanced thermal management systems to protect human health. Due to its unique properties of increasing phonon scattering at interlayer interfaces and wide spectral absorption, MXene has great potential in thermal management. However, the self-stacking tendency of MXene caused by hydrogen bonding and van der Waals force limits its further application. Herein, we have successfully fabricated an ultra-light (0.011 g cm-3) three-dimensional (3D) bacterial nanocellulose (BNC)/MXene aerogel (BM) through directional freezing. The BNC serves as scaffolds, offering a porous structure with ultra-low thermal conductivity (0.038 W m-1 K-1), high porosity (99.33 %), and excellent insulation (ΔT of 164 at 200 °C). Additionally, the BM aerogel shows remarkable photo-thermal conversion efficiency (98 % solar absorption, 0.25-2.5 μm), quick thermal response (88 °C in 10 s), and thermal stability (89 °C sustained after 120 min). These multifunctional properties make the BM aerogel a potential candidate for advanced thermal management in response to global climate challenges.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lei Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Md Zahid Hasan
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Naman Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qimin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Daiqi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Sha Sha
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Institute of Design Innovation and Fiber Science, Wuhan Textile University, Wuhan 430073, China.
| | - Jiadeng Zhu
- Smart Devices, Brewer Science Inc., Springfield, MO 65806, USA.
| |
Collapse
|
2
|
Wang X, Chen X, Wang B, He Q, Cao J, Zhu Y, Su K, Yan H, Sun P, Li R, Zhang J, Shao J. Ultra-Bandwidth Microwave Absorption and Low Angle Sensitivity in Dual-Network Aerogels with Dual-Scale Pores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412744. [PMID: 39981847 DOI: 10.1002/smll.202412744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Aerogels with porous structures offer an attractive approach to modulating electromagnetic parameters and enhancing electromagnetic wave (EMW) absorption performance. However, conventional aerogels are limited by their single-scale pore size and fixed orientation, which constrain their EMW absorption capabilities. This study introduces aerogels with dual-scale pores and dual-network structure constructed via constant-temperature freezing and secondary-infusion freezing method. Multiscale aerogels with both micrometer- and submillimeter-scale pores are constructed when the Ti3C2Tx MXene and thermoplastic polyurethane solution is frozen and dried at a specific temperature, leading to an ultra-wide effective absorption bandwidth (EAB) reaching 10.41 GHz in the vertical direction. Furthermore, to address the poor EMW absorption in the parallel direction, a secondary infusion freezing method is applied to form an aerogel with a dual-network structure, which forms reflective interfaces perpendicular to the incident EMW in various directions. This adjustment enhances the EAB in the parallel direction from 1.58 to 5.93 GHz, marking a 275.32% enhancement, while the EAB in the vertical incident direction reaches 8.08 GHz. This design strategy overcomes the limitations of structural scale and arrangement direction, enriching the attenuation mechanisms of the absorber, while effectively reducing sensitivity to the direction of incoming EMW, offering new insights for designing efficient EMW absorbers.
Collapse
Affiliation(s)
- Xin Wang
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- XJTU-POLIMI Joint School of Design and Innovation, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baichuan Wang
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qingyuan He
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jincao Cao
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ye Zhu
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kewei Su
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiyi Yan
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pengsong Sun
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Runlang Li
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinyou Shao
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Zhou J, Sui Y, Wu N, Han M, Liu J, Liu W, Zeng Z, Liu J. Recent Advances in MXene-Based Aerogels for Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405968. [PMID: 39420842 DOI: 10.1002/smll.202405968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Developing lightweight, high-performance electromagnetic wave (EMW) absorbing materials those can absorb the adverse electromagnetic radiation or waves are of great significance. Transition metal carbides and/or nitrides (MXenes) are a novel type of 2D nanosheets associated with a large aspect ratio, abundant polar functional groups, adjustable conductivity, and remarkable mechanical properties. This contributes to the high-efficiency assembly of MXene-based aerogels possessing the ultra-low density, large specific surface area, tunable conductivity, and unique 3D porous microstructure, which is beneficial for promoting the EMW absorption. Therefore, MXene-based aerogels for EMW absorption have attracted widespread attention. This review provides an overview of the research progress on MXene-based aerogels for EMW absorption, focusing on the recent advances in component and structure design strategies, and summarizes the main strategies for constructing EMW absorbing MXene-based aerogels. In addition, based on EMW absorption mechanisms and structure regulation strategies, the preparation methods and properties of MXene-based aerogels with varieties of components and pore structures are detailed to advance understanding the relationships of composition-structure-performance. Furthermore, the future development and challenges faced by MXene-based aerogels for EMW absorption are summarized and prospected.
Collapse
Affiliation(s)
- Jin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yiling Sui
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Na Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Mingrui Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Jishang Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
4
|
Habibpour S, Rahimi-Darestani Y, Salari M, Zarshenas K, Taromsari SM, Tan Z, Hamidinejad M, Park CB, Yu A. Synergistic Layered Design of Aerogel Nanocomposite of Graphene Nanoribbon/MXene with Tunable Absorption Dominated Electromagnetic Interference Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404876. [PMID: 39072882 DOI: 10.1002/smll.202404876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Electromagnetic pollution presents growing challenges due to the rapid expansion of portable electronic and communication systems, necessitating lightweight materials with superior shielding capabilities. While prior studies focused on enhancing electromagnetic interference (EMI) shielding effectiveness (SE), less attention is given to absorption-dominant shielding mechanisms, which mitigate secondary pollution. By leveraging material science and engineering design, a layered structure is developed comprising rGOnR/MXene-PDMS nanocomposite and a MXene film, demonstrating exceptional EMI shielding and ultra-high electromagnetic wave absorption. The 3D interconnected network of the nanocomposite, with lower conductivity (10-3-10-2 S/cm), facilitates a tuned impedance matching layer with effective dielectric permittivity, and high attenuation capability through conduction loss, polarization loss at heterogeneous interfaces, and multiple scattering and reflections. Additionally, the higher conductivity MXene layer exhibits superior SE, reflecting passed electromagnetic waves back to the nanocomposite for further attenuation due to a π/2 phase shift between incident and back-surface reflected electromagnetic waves. The synergistic effect of the layered structures markedly enhances total SE to 54.1 dB over the Ku-band at a 2.5 mm thickness. Furthermore, the study investigates the impact of hybridized layered structure on reducing the minimum required thickness to achieve a peak absorption (A) power of 0.88 at a 2.5 mm thickness.
Collapse
Affiliation(s)
- Saeed Habibpour
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Yasaman Rahimi-Darestani
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
| | - Meysam Salari
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Kiyoumars Zarshenas
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
| | - Sara Mohseni Taromsari
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Zhongchao Tan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Mahdi Hamidinejad
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, T6G 2H5, Canada
| | - Chul B Park
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
| |
Collapse
|
5
|
Wang X, Chen X, He Q, Hui Y, Xu C, Wang B, Shan F, Zhang J, Shao J. Bidirectional, Multilayer MXene/Polyimide Aerogels for Ultra-Broadband Microwave Absorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401733. [PMID: 39039743 DOI: 10.1002/adma.202401733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/10/2024] [Indexed: 07/24/2024]
Abstract
To obtain high-performance electromagnetic microwave (EM) absorption materials with broad effective absorption bandwidth (EAB) and reduced thickness, designing structures has proved to be a promising way. Herein, ultra-broadband multilayer bidirectional MXene/polyimide EM absorption aerogels containing multi-structures on scales ranging from the micro- to the macroscale are produced with the aid of electric and temperature fields. On the microscale, under the action of electric force and temperature gradient, the ordered structures made of aligned Ti3C2Tx MXene nanosheets and the microscale layered aerogel walls enable the bidirectional aerogel to achieve a wide EAB of 8.58 GHz at a thickness of 2.1 mm. This is ascribed to the numerous aligned nanosheets and layered aerogel walls perpendicular to the incident EMs, facilitating the conversion of electromagnetic energy into electrical energy. Furthermore, on the macroscale, the multilayer bidirectional aerogel with non-gradient structures effectively resolves the conflict between impedance matching and energy loss, resulting in an ultrawide EAB of 9.41 GHz at a thickness of 3 mm. This innovative design of electric-field-assisted multilayer bidirectional aerogels with multiscale structural coupling may provide feasible and effective pathways for the development of advanced EM absorption materials.
Collapse
Affiliation(s)
- Xin Wang
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- XJTU-POLIMI Joint School of Design and Innovation, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qingyuan He
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaozu Hui
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chaofan Xu
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baichuan Wang
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feihu Shan
- Key Laboratory of High Energy Beam Processing Technology, Beijing, 100024, China
| | - Jie Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinyou Shao
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Shan B, Wang Y, Ji X, Huang Y. Enhancing Low-Frequency Microwave Absorption Through Structural Polarization Modulation of MXenes. NANO-MICRO LETTERS 2024; 16:212. [PMID: 38861180 PMCID: PMC11166627 DOI: 10.1007/s40820-024-01437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid- and high-frequency ranges, but face challenges in low-frequency absorption due to limited control over polarization response mechanisms and ambiguous resonance behavior. In this study, we propose a novel approach to enhance absorption efficiency in aligned three-dimensional (3D) MXene/CNF (cellulose nanofibers) cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture. This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band, leading to a remarkable reflection loss value of - 47.9 dB in the low-frequency range. Furthermore, our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties. The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation, while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
Collapse
Affiliation(s)
- Bo Shan
- College of Light Industry Science and Engineering, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Yang Wang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Xinyi Ji
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Yi Huang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
7
|
Shrestha S, Barvenik KJ, Chen T, Yang H, Li Y, Kesavan MM, Little JM, Whitley HC, Teng Z, Luo Y, Tubaldi E, Chen PY. Machine intelligence accelerated design of conductive MXene aerogels with programmable properties. Nat Commun 2024; 15:4685. [PMID: 38824129 PMCID: PMC11144242 DOI: 10.1038/s41467-024-49011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Collapse
Affiliation(s)
- Snehi Shrestha
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kieran James Barvenik
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Tianle Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Haochen Yang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yang Li
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Meera Muthachi Kesavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Little
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Hayden C Whitley
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zi Teng
- US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20725, USA
| | - Yaguang Luo
- US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20725, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Robotics Center, College Park, MD, 20742, USA.
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Robotics Center, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Isari AA, Ghaffarkhah A, Hashemi SA, Wuttke S, Arjmand M. Structural Design for EMI Shielding: From Underlying Mechanisms to Common Pitfalls. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310683. [PMID: 38467559 DOI: 10.1002/adma.202310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/11/2024] [Indexed: 03/13/2024]
Abstract
Modern human civilization deeply relies on the rapid advancement of cutting-edge electronic systems that have revolutionized communication, education, aviation, and entertainment. However, the electromagnetic interference (EMI) generated by digital systems poses a significant threat to the society, potentially leading to a future crisis. While numerous efforts are made to develop nanotechnological shielding systems to mitigate the detrimental effects of EMI, there is limited focus on creating absorption-dominant shielding solutions. Achieving absorption-dominant EMI shields requires careful structural design engineering, starting from the smallest components and considering the most effective electromagnetic wave attenuating factors. This review offers a comprehensive overview of shielding structures, emphasizing the critical elements of absorption-dominant shielding design, shielding mechanisms, limitations of both traditional and nanotechnological EMI shields, and common misconceptions about the foundational principles of EMI shielding science. This systematic review serves as a scientific guide for designing shielding structures that prioritize absorption, highlighting an often-overlooked aspect of shielding science.
Collapse
Affiliation(s)
- Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Stefan Wuttke
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
9
|
Rahmati R, Salari M, Ashouri-Sanjani M, Salehi A, Hamidinejad M, Park CB. Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308320. [PMID: 38105422 DOI: 10.1002/smll.202308320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Indexed: 12/19/2023]
Abstract
The urgent need for the development of micro-thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm-thick MXene films, gaseous transformations of oxygen-containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat-treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high-performance, non-metallic EMI shielding materials.
Collapse
Affiliation(s)
- Reza Rahmati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Meysam Salari
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Mehran Ashouri-Sanjani
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Amirmehdi Salehi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Mahdi Hamidinejad
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G1H9, Canada
| | - Chul B Park
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| |
Collapse
|
10
|
Li M, Dai X, Wang M, Bai H. Bioinspired Macroporous Materials of MXene Nanosheets: Ice-Templated Assembly and Multifunctional Applications. SMALL METHODS 2024; 8:e2300213. [PMID: 37381683 DOI: 10.1002/smtd.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Biological macroporous materials, such as stems of the plants and bone of the animals, possess outstanding properties for powerful guarantee of creatures' survival through the well-aligned architecture constructed from limited components. Transition metal carbides or nitrides (MXenes), as novel 2D assemblies, have attracted numerous attentions in various applications due to their unique properties. Therefore, mimicking the bioinspired architecture with MXenes will boost the development of human-made materials with unparalleled properties. Freeze casting has been widely applied to fabricate bioinspired MXene-based materials and achieve the assembly of MXene nanosheets into 3D forms. This process solves the inherent restacking problems of MXenes, simultaneously preserving the unique properties of MXenes with a physical process. Here, the ice-templated assembly of MXene in terms of the freezing processes and their potential mechanisms is summarized. In addition, applications of MXene-based materials in electromagnetic interference shielding and absorption, energy storage and conversion, as well as piezoresistive pressure sensors are also reviewed. Finally, the current challenges and bottlenecks of ice-templated assembly of MXene are further discussed to guide the development of bioinspired MXene-based materials.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| | - Xuangeng Dai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengning Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
11
|
Wang H, Feng S, Sun M, Li X, Wang C, Lin Z, Ma M, Li T, Ma Y. Fabrication of hollow core-shell NiCo 2O 4@polypyrrole nanofibers/reduced graphene oxide ternary composites with excellent microwave absorption performances. J Colloid Interface Sci 2024; 658:889-902. [PMID: 38157613 DOI: 10.1016/j.jcis.2023.12.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
In contemporary times, electromagnetic radiation poses a significant threat to both human health and the normal functioning of electronic devices. Developing composites as adsorption materials possess exceptional electromagnetic wave absorption performances can efficient address this critical issue. Herein, hollow core-shell NiCo2O4@polypyrrole nanofibers/reduced graphene oxide (NiCo-HFPR) composites are fabricated by the combination of electrostatic spinning, air calcination, in-situ polymerization, freeze-drying and hydrazine vapor reduction. As anticipated, NiCo-HFPR-0.2 exhibits noteworthy properties, with the minimum reflection loss (RLmin) of -61.20 dB at 14.26 GHz and 1.56 mm, as well as the effective absorption bandwidth (EAB) of 4.90 GHz at 1.57 mm. Additionally, the simulation procedure is employed to determine the radar cross-section (RCS) attenuation. In comparison to a singular perfect electrically conductive (PEC) layer, the PEC layer coated with NiCo-HFPR-0.2 consistently yields an RCS value below -10 dB m2 within the range of -60° < θ < 60°. The RCS attenuation value of the NiCo-HFPR-0.2 coating achieves an outstanding 31.0 dB m2 at θ = 0°, strongly affirming the ability to effectively attenuate electromagnetic wave in real-world applications. The employed experimental methodology, the meticulously crafted composite, and the simulation outcomes presented in this study bear great promise for the progressive advancement of both theoretical investigations and practical applications within the domain of electromagnetic wave absorption.
Collapse
Affiliation(s)
- Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Maoqin Sun
- Bodo Plastics Co., Ltd, Zibo 256100, PR China
| | - Xue Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chuanjin Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Zhongtai Lin
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
12
|
Ge Y, Guo W, Huang Q, Tao S, Ji H, Ren Q, Chen Y, Chen J, Jia X, Ding Y. MnFe2O4/polyaniline/diatomite composite with multiple loss mechanisms towards broadband absorption. J Chem Phys 2023; 159:214708. [PMID: 38047515 DOI: 10.1063/5.0174137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The research and development of absorbing materials with high absorbing capacity, wide effective absorption bandwidth, and lightweight has always been interesting. In this research, a facile hydrothermal method was used to prepare MnFe2O4, and the grain size of MnFe2O4 decreased with increasing hydrothermal temperature. When the size of MnFe2O4 nanoparticles is less than 10 nm, its quantum size effect and surface effect make its electromagnetic microwave absorption performance greatly optimized. When the thickness of MnFe2O4-110 °C is 2.57 mm, the minimum reflection loss (RLmin) is -35.28 dB. Based on this, light porous diatomite and a three-dimensional polyaniline network are introduced. Diatomite is used as the base material to effectively reduce the agglomeration of MnFe2O4 quantum dots. The relatively high surface area introduced by a three-dimensional network of polyaniline promotes the orientation, interfacial polarization, multiple relaxation, and impedance matching, thereby generating further dielectric loss. Additionally, the magnetic properties of manganese ferrite and the strong electrical conductivity of polyaniline play an appropriate complementary role in electromagnetic wave absorption. The RLmin of MnFe2O4/PANI/diatomite is -56.70 dB at 11.12 GHz with an absorber layer thickness of 2.57 mm. The effective frequency bandwidth (RL < -10 dB) ranges from 9.21 to 18.00 GHz. The absorption mechanism indicates that the high absorption intensity is the result of the synergistic effect of impedance matching, conduction losses, polarization losses, and magnetic losses.
Collapse
Affiliation(s)
- Yao Ge
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Wanmi Guo
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Qinglin Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Shanjun Tao
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Haixia Ji
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Qifang Ren
- Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Yue'e Chen
- Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Jing Chen
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Xinyu Jia
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Yi Ding
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
- Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| |
Collapse
|
13
|
Bashir T, Zhou S, Yang S, Ismail SA, Ali T, Wang H, Zhao J, Gao L. Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Yan Y, Jin B, Peng R. Gelatin-modified Mxene carbon aerogels for ammonium-perchlorate-catalyzed thermal decomposition. Dalton Trans 2023. [PMID: 38009072 DOI: 10.1039/d3dt00571b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The assembly of 2D Ti3C2Tx nanosheets into 3D structures with orderable structure has great importance for their use as catalyst carriers. However, Ti3C2Tx nanosheets are prone to accumulate in aqueous solutions owing to the strong van der Waals forces between Ti3C2Tx nanosheet layers, degrading their chemical properties. Carbon aerogel (Ti3C2Tx/G/Co) with a 3D porous structure and cobalt as the active site was prepared by a simple co-assembly-freeze-drying-high-temperature carbonization method for application in catalysis of ammonium perchlorate.
Collapse
Affiliation(s)
- Yujie Yan
- State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Bo Jin
- State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Rufang Peng
- State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
15
|
Chiew C, Malakooti MH. Are MXenes suitable for soft multifunctional composites? MATERIALS HORIZONS 2023; 10:5110-5125. [PMID: 37694738 DOI: 10.1039/d3mh00916e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
MXenes are a family of two-dimensional (2D) nanomaterials known for their high electrical and thermal conductivity, as well as high aspect ratios. Recent research has focused on dispersing MXenes within compliant polymer matrices, aiming to create flexible and stretchable composites that harness MXenes' exceptional conductivity and aspect ratios. Experimental findings demonstrate the potential of MXene polymer composites (MXPCs) as flexible electrical, thermal conductors, and high dielectric materials, with promising applications in soft matter engineered systems. However, the 2D structure of MXene inclusions and their relatively large elastic modulus can impart increased stiffness to the polymer matrix, posing limitations on the mechanical flexibility of these functional materials. Here, we introduce a modeling platform to predict the mechanics and functionality of MXene elastomer composites and assess their suitability as soft multifunctional materials. Our investigation primarily focuses on understanding the influence of MXenes' size, layered structure, and percolation arrangements on the effective properties of the resulting composites. Through our model, we successfully determined the elastic modulus, thermal conductivity, and dielectric constant of MXene elastomer composites, and our results exhibit strong agreement with those obtained through finite element analysis. By utilizing this framework, we can theoretically identify the necessary microstructures of MXenes and guide the experiments, enabling the creation of MXPCs with the desired synergistic mechanical and functional properties.
Collapse
Affiliation(s)
- Cerwyn Chiew
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Mohammad H Malakooti
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Bi B, Guan Y, Qiao D, Chen X, Bao M, Wang Z, Li Y. MXene/Graphene modified cellulose aerogel for photo-electro-assisted all-weather cleanup of high-viscous crude oil from spill. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132353. [PMID: 37657327 DOI: 10.1016/j.jhazmat.2023.132353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
The frequent occurrence of oil spills has led to serious environmental pollution and ecological issues. Given the high-viscosity of crude oil, it is essential to develop sorbents with efficient viscosity reduction and sorption capacity in various environmental conditions. Herein, a superhydrophobic carboxymethyl cellulose (CMC) aerogel co-modified by MXene and graphene jointly (M-Mxene/Gr CA) with aligned channels structure was prepared. The aligned channels structure can effectively improve the longitudinal thermal conductivity and reduce the sorption resistance. Through the modification of MXene and graphene, the aerogel realized efficient photo/electro-thermal conversion, thus ensuring its adaption to various working environments. The rapid heat generation can significantly reduce the viscosity of crude oil, achieving rapid recovery. Under one sun illumination (1.0 kW/m2), the surface temperature of M-Mxene/Gr CA can reach 72.6 °C and its sorption capability for high-viscous crude oil reaches 18 g/g. Combining photo-thermal and electro-thermal (0.5 kW/m2 and 23 V), the average sorption rate of crude oil can reach 1.3 × 107 g m-3 s-1. Finally, we present a continuous sorption system to recover offshore oil spills under the assistance of a pump. This work provides a new option for tackling high-viscous offshore oil spills due to its environmental friendliness and fast sorption capacity.
Collapse
Affiliation(s)
- Bingqian Bi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Di Qiao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
17
|
Ustad RE, Kundale SS, Rokade KA, Patil SL, Chavan VD, Kadam KD, Patil HS, Patil SP, Kamat RK, Kim DK, Dongale TD. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. NANOSCALE 2023; 15:9891-9926. [PMID: 37097309 DOI: 10.1039/d2nr06162g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications. Given this, in the present review, we have tried to cover the multidisciplinary aspects of MXene including its structures, synthesis methods, and electronic, mechanical, optoelectronic, and magnetic properties. From an application point of view, we explore MXene-based supercapacitors, gas sensors, strain sensors, biosensors, electromagnetic interference shielding, microwave absorption, memristors, and artificial synaptic devices. Also, the impact of MXene-based materials on the characteristics of respective applications is systematically explored. This review provides the current status of MXene nanomaterials for various applications and possible future developments in this field.
Collapse
Affiliation(s)
- Ruhan E Ustad
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Somnath S Kundale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Kalyani D Kadam
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Harshada S Patil
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Sarita P Patil
- School of Physical Science, Sanjay Ghodawat University, Atigre, Kolhapur-416118, MH, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur-416004, India
- Dr Homi Bhabha State University, 15, Madam Cama Road, Mumbai-400032, India
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| |
Collapse
|
18
|
Yang F, Yao J, Du W, Huyan W, Peng G, Zhou J, Yao Z. Ice-templated assembly strategy to construct oriented porous Ti3SiC2 ceramics for thermal management and electromagnetic interference shielding in harsh thermal environments. Ann Ital Chir 2023. [DOI: 10.1016/j.jeurceramsoc.2023.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Zhang Z, Wang J, Shang J, Xu Y, Wan YJ, Lin Z, Sun R, Hu Y. A Through-Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205716. [PMID: 36437045 DOI: 10.1002/smll.202205716] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Multifunctional thermal management materials with highly efficient electromagnetic wave (EMW) absorption performance are urgently required to tackle the heat dissipation and electromagnetic interference issues of high integrated electronics. However, the high thermal conductivity (λ) and outstanding EMW absorption performance are often incompatible with each other in a single material. Herein, a through-thickness arrayed NiCo2 O4 /graphene oxide/carbon fibers (NiCO@CFs) elastomer with integrated functionalities of high thermal conductivity, highly efficient EMW absorption, and excellent compressibility is reported. The NiCO@CFs elastomer realizes a high out-of-plane thermal conductivity of 15.55 W m-1 K-1 , due to the through-thickness vertically aligned CFs framework. Moreover, the unique horizontal segregated magnetic network effectively reduces the electrical contact between the CFs, which significantly enhances impedance matching of NiCO@CFs elastomer. As a result, the vertically arrayed NiCO@CFs elastomer synchronously exhibits ultrabroad effective absorption bandwidth of 8.25 GHz (9.75-18 GHz) at a thickness of 2.4 mm, good impedance matching, and a minimum reflection loss (RLmin ) of -55.15 dB. Given these outstanding findings, the multifunctional arrayed NiCO@CFs elastomer opens an avenue for applications in EMW absorption and thermal management. This strategy of constructing thermal/electrical/mechanical pathways provides a promising way for the high-performance multifunctional materials in electronic devices.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianda Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jian Shang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yadong Xu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan-Jun Wan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiqiang Lin
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yougen Hu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
20
|
Yang Y, Li K, Wang Y, Wu Z, Russell TP, Shi S. MXene-Based Porous Monoliths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3792. [PMID: 36364567 PMCID: PMC9654234 DOI: 10.3390/nano12213792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides (MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties, structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths offers an exciting and powerful platform for translating their fundamental advantages into practical applications. Introducing internal pores, such as isotropic pores and aligned channels, within the monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in some cases, unique structural merits to advance the utility of the MXene-based materials. Here, a brief overview of the development of MXene-based porous monoliths, in terms of the types of microstructures, is provided, focusing on the pore design and how the porous microstructure affects the application performance.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Zhou X, Wen J, Ma X, Wu H. Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption. J Colloid Interface Sci 2022; 624:505-514. [PMID: 35679638 DOI: 10.1016/j.jcis.2022.05.166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 01/17/2023]
Abstract
MXene aerogels with 3D network structure have gained much attention as lightweight electromagnetic wave (EMW) absorbers. It is still challenging to construct MXene aerogel monoliths with excellent EMW absorption capability in a simple way. Herein, the assembly of MXene aerogels was realized by gelation initiated by various metal ions in an aqueous dispersion, where metal ions link the MXene sheets together by bonding with OH groups on the MXene surface. It is found that metal ions have a great influence on the assembly microstructures of MXene aerogels, which are closely related with the complex permittivity of MXene aerogel absorbers. Versus divalent metal ions, MXene aerogels assembled with trivalent metal ions possess relative lower complex permittivity and deliver superior EMW absorption performance. Typically, a broadest EAB of 7.12 GHz can be achieved by MX-Fe3+, ascribing to its good impedance matching and multiple dissipation modes. Overall, this work provides an effective way to fabricate MXene-based aerogels to satisfy the lightweight requirement of future high-performance EMW absorption materials.
Collapse
Affiliation(s)
- Xuejiao Zhou
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China.
| | - Junwu Wen
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
| | - Xiaohua Ma
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China.
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical Universty, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
22
|
Shang X, Cui T, Xiao Z, Ren R, Song Z, Wang Z, Li C, Xu B, Qi F, Ikhlaq A, Kumirska J, Maria Siedlecka E, Oksana I. Electrochemical oxidation degradation of fungicide 5-chloro-2-methyl-4-isothiazoline-3-one (CMIT) in brine of reverse osmosis by a novel Ti/CB@MXene anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Xu Z, Ding X, Li S, Huang F, Wang B, Wang S, Zhang X, Liu F, Zhang H. Oxidation-Resistant MXene-Based Melamine Foam with Ultralow-Percolation Thresholds for Electromagnetic-Infrared Compatible Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40396-40407. [PMID: 35998377 DOI: 10.1021/acsami.2c05544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To effectively avoid the drawbacks of conventional metal-based electromagnetic interference (EMI) shielding materials such as high density and susceptibility to corrosion, a multifunctional melamine foam (MF) consisting of MXene/polydimethylsiloxane (PDMS) layers with ultralow percolation thresholds was designed through the electrostatic self-assembly and impregnation strategies. The prepared lightweight foams simultaneously show multifunctional properties including EMI shielding, infrared (IR) stealth, oxidation-resistance, and compression stability. Typically, this multifunctional foam exhibits an excellent EMI shielding efficiency (EMI SE) of 45.2 dB at X-band (8.2-12.4 GHz) with only 1.131 vol % MXene filler. Moreover, the temperature difference between the upper and lower surfaces of the foam can be maintained at 45 °C due to its unique three-dimensional (3D) porous structure and low infrared emissivity. The MF skeleton with MXene/PDMS (MFMXP) displays high hydrophobicity, which remains stable in EMI SE after 60 days of exposure to air. Additionally, it shows outstanding mechanical stability after 100 cycles of compression experiments. The lightweight stealth nanocomposite foams can operate stably in complex environments and show high potential for applications in high-tech fields such as wearable electronics, the military, and semiconductors, etc.
Collapse
Affiliation(s)
- Zijie Xu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Xin Ding
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Shikuo Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Baojun Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Shipeng Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Xian Zhang
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Fenghua Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China
| |
Collapse
|
24
|
Zhao P, Chen S, Liang Y, Chen Y, Lan P, Huo D, Hou C. Metalloporphyrin Hemin Modified Carbon Nanotube Decorated Titanium Carbide with Redox Catalytic Ability for Electrochemical Determination of Hydrogen Peroxide and Uric Acid. J Colloid Interface Sci 2022; 628:456-466. [DOI: 10.1016/j.jcis.2022.07.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
|
25
|
Ice-templated additive-free porous starches with tuned morphology and properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Lim GJH, Yang Z, Hou Y, Sugumaran PJ, Qiao Z, Ding J, Yan W, Yang Y. Direct Ink Writing for High-Efficiency Microwave Attenuation with Nanofibers Alignment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31267-31276. [PMID: 35767341 DOI: 10.1021/acsami.2c06567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One-dimensional (1D) fibers have been widely used in composites reinforcement for microwave attenuation due to their outstanding mechanical and electromagnetic properties, especially in the axial direction. However, the precise control of fiber alignment in a polymer matrix remains a challenge. In this work, we successfully demonstrated the well-controlled alignment of silicon carbide nanowires (SiCNW) in a silicone matrix by using direct ink writing (DIW)-based 3D printing. It is proven that the printed multilayer material with fiber alignment could show a dramatic improvement in both reflection loss (RL) and effective attenuation bandwidth (EAB, RL < -10 dB). In particular, a uniaxial in-plane orientation is found to be the optimal alignment among other planar and also out-of-plane orientations. Benefiting from the optimized alignment, the 3D-printed SiC composite could show an EAB (∼6.4 GHz)1.6 times broader than that of the randomly mixed composite at the same thickness without alignment, associated with a minimum RL of -48 dB at 14.3 GHz. In addition, it is demonstrated that DIW could print different materials, such as SiCNW and multiwall carbon nanotube (MWCNT), in alternating layers for multiple-frequency-band attenuation benefiting from the distinct property of each material. Considering the one-step control of fiber alignment and material selectivity, DIW could play an important role in materials design for high-efficiency microwave attenuation.
Collapse
Affiliation(s)
| | - Zeshi Yang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Yi Hou
- National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | | | - Zhi Qiao
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Wentao Yan
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Yong Yang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| |
Collapse
|
27
|
Pan F, Rao Y, Batalu D, Cai L, Dong Y, Zhu X, Shi Y, Shi Z, Liu Y, Lu W. Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness. NANO-MICRO LETTERS 2022; 14:140. [PMID: 35788830 PMCID: PMC9256896 DOI: 10.1007/s40820-022-00869-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 05/28/2023]
Abstract
Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric-magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanping Rao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Dan Batalu
- Materials Science and Engineering Faculty, Politehnica University of Bucharest, 060042, Bucharest, Romania
| | - Lei Cai
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanyan Dong
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaojie Zhu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yuyang Shi
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Zhong Shi
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yaowen Liu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
28
|
Yuan Y, Solin N. Protein-Based Flexible Conductive Aerogels for Piezoresistive Pressure Sensors. ACS APPLIED BIO MATERIALS 2022; 5:3360-3370. [PMID: 35694974 PMCID: PMC9297298 DOI: 10.1021/acsabm.2c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Gelatin is an excellent
gelling agent and is widely employed for
hydrogel formation. Because of the poor mechanical properties of gelatin
when dry, gelatin-aerogels are comparatively rare. Herein we demonstrate
that protein nanofibrils can be employed to improve the mechanical
properties of gelatin aerogels, and the materials can moreover be
functionalized with a an electrically conductive polyelectrolyte resulting
in formation of an elastic electrically conductive aerogel that can
be employed as a piezoresistive pressure sensor. The aerogel sensor
shows a good linear relationship in a wide pressure range (1.8–300
kPa) with a sensitivity of 1.8 kPa–1. This work
presents a convenient way to produce electrically conductive elastic
aerogels from low-cost protein precursors.
Collapse
Affiliation(s)
- Yusheng Yuan
- Department of Physics, Chemistry, and Biology, Biomolecular and Organic Electronics, Linköping University, 581 83 Linköping, Sweden
| | - Niclas Solin
- Department of Physics, Chemistry, and Biology, Biomolecular and Organic Electronics, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
29
|
Man S, Luo D, Sun Q, Yang H, Bao H, Xu K, Zeng X, He M, Yin Z, Wang L, Mo Z, Yang W, Li X. When MXene (Ti 3C 2T x) meet Ti/PbO 2: An improved electrocatalytic activity and stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128440. [PMID: 35158250 DOI: 10.1016/j.jhazmat.2022.128440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Stable electrode materials with high catalytic activity are urgently required for electrochemical degradation of refractory organic pollutants in wastewater treatment. Herein, high conductive MXene (Ti3C2Tx) was firstly fabricated by electrophoretic deposition (EPD) as an interlayer for preparing a novel PbO2 electrode. The well-conducted Ti3C2Tx interlayer significantly improved the electrochemical performance of the EPD-2.0/PbO2 (EPD time was 2.0 min) electrode with the charge transfer resistance decreased by 9.51 times, the inner active sites increased by 5.21 times and the ∙OH radicals generation ability enhanced by 4.07 times than the control EPD-0/PbO2 anode. Consequently, the EPD-2.0/PbO2 electrode achieved nearly 100% basic fuchsin (BF) and 86.78% COD removal efficiency after 3.0 h electrolysis. Therefore, this new PbO2 electrode presented a promising potential for electrochemical degradation of BF and the new Ti3C2Tx middle layer could also be used to fabricate other efficient and stable anodes, such as SnO2, MnO2, TiO2, etc.
Collapse
Affiliation(s)
- Shuaishuai Man
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dehui Luo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qing Sun
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Haifeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; Fundamental Studies department, Army logistics University of PLA, Chongqing 401311, PR China
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zehao Yin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Li Wang
- College of Power Engineering, Chongqing Electric Power College, Chongqing 400053, PR China
| | - Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
30
|
Lan X, Hou Y, Dong X, Yang Z, Thai BQ, Yang Y, Zhai W. All-Ceramic SiC Aerogel for Wide Temperature Range Electromagnetic Wave Attenuation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15360-15369. [PMID: 35315653 DOI: 10.1021/acsami.1c23087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel type of all-ceramic SiC aerogel was fabricated by freeze casting and carbothermal reduction reaction processes using graphene oxide (GO) doped SiC nanowires suspensions as starting materials. The effect of GO addition (0, 1, 2, and 4 mg/mL) on the porous morphologies, chemical composition, and the electromagnetic (EM) performance of the SiC aerogels were investigated. The optimum all-ceramic SiC aerogel exhibits effective whole X-band attenuation (>90%) at a fixed thickness of 3.3 mm from room temperature to 400 °C. It is ultralight with a density of 0.2 g/cm3 and possesses a low thermal conductivity of about 0.05 W/mK. The material composition remains stable at temperatures up to 800 °C. The lightweight, high thermal stability, low thermal conductivity, and excellent X-band attenuation performance at a fixed thin thickness make the all-ceramic SiC aerogels potential EM attenuation materials for many applications in harsh environments.
Collapse
Affiliation(s)
- Xiaolin Lan
- National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Yi Hou
- National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Xinyu Dong
- National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Zhihong Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, 138634, Singapore
| | - Ba Quoc Thai
- National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Yong Yang
- National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Wei Zhai
- National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| |
Collapse
|
31
|
Qin M, Zhang L, Wu H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105553. [PMID: 35128836 PMCID: PMC8981909 DOI: 10.1002/advs.202105553] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Indexed: 05/19/2023]
Abstract
Electromagnetic (EM) wave absorbing materials play an increasingly important role in modern society for their multi-functional in military stealth and incoming 5G smart era. Dielectric loss EM wave absorbers and underlying loss mechanism investigation are of great significance to unveil EM wave attenuation behaviors of materials and guide novel dielectric loss materials design. However, current researches focus more on materials synthesis rather than in-depth mechanism study. Herein, comprehensive views toward dielectric loss mechanisms including interfacial polarization, dipolar polarization, conductive loss, and defect-induced polarization are provided. Particularly, some misunderstandings and ambiguous concepts for each mechanism are highlighted. Besides, in-depth dielectric loss study and novel dielectric loss mechanisms are emphasized. Moreover, new dielectric loss mechanism regulation strategies instead of regular components compositing are summarized to provide inspiring thoughts toward simple and effective EM wave attenuation behavior modulation.
Collapse
Affiliation(s)
- Ming Qin
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
32
|
Pan F, Cai L, Shi Y, Dong Y, Zhu X, Cheng J, Jiang H, Wang X, Jiang Y, Lu W. Heterointerface Engineering of β-Chitin/Carbon Nano-Onions/Ni-P Composites with Boosted Maxwell-Wagner-Sillars Effect for Highly Efficient Electromagnetic Wave Response and Thermal Management. NANO-MICRO LETTERS 2022; 14:85. [PMID: 35352181 PMCID: PMC8964898 DOI: 10.1007/s40820-022-00804-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 05/11/2023]
Abstract
The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect (MWSE) is still a challenging direction for reinforcing electromagnetic wave (EMW) absorption performance, and the related EMW attenuation mechanism has rarely been elucidated. Herein, MWSE boosted β-chitin/carbon nano-onions/Ni-P composites is prepared according to the heterointerface engineering strategy via facile layer-by-layer electrostatic assembly and electroless plating techniques. The heterogeneous interface is reinforced from the aspect of porous skeleton, nanomaterials and multilayer construction. The composites exhibit competitive EMW response mechanism between the conductive loss and the polarization/magnetic loss, as describing like the story of "The Hare and the Tortoise". As a result, the composites not only achieve a minimum reflection loss (RLmin) of - 50.83 dB and an effective bandwidth of 6.8 GHz, but also present remarkable EMW interference shielding effectiveness of 66.66 dB. In addition, diverse functions such as good thermal insulation, infrared shielding and photothermal performance were also achieved in the hybrid composites as a result of intrinsic morphology and chemicophysics properties. Therefore, we believe that the boosted MWSE open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Lei Cai
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yuyang Shi
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanyan Dong
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaojie Zhu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Jie Cheng
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Haojie Jiang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiao Wang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yifeng Jiang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Wei Lu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
33
|
Wang YQ, Zhao HB, Cheng JB, Liu BW, Fu Q, Wang YZ. Hierarchical Ti 3C 2T x@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins. NANO-MICRO LETTERS 2022; 14:76. [PMID: 35312846 PMCID: PMC8938554 DOI: 10.1007/s40820-022-00817-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 05/19/2023]
Abstract
Ingenious microstructure design and rational composition selection are effective approaches to realize high-performance microwave absorbers, and the advancement of biomimetic manufacturing provides a new strategy. In nature, urchins are the animals without eyes but can "see", because their special structure composed of regular spines and spherical photosensitive bodies "amplifies" the light-receiving ability. Herein, inspired by the above phenomenon, the biomimetic urchin-like Ti3C2Tx@ZnO hollow microspheres are rationally designed and fabricated, in which ZnO nanoarrays (length: ~ 2.3 μm, diameter: ~ 100 nm) as the urchin spines are evenly grafted onto the surface of the Ti3C2Tx hollow spheres (diameter: ~ 4.2 μm) as the urchin spherical photosensitive bodies. The construction of gradient impedance and hierarchical heterostructures enhance the attenuation of incident electromagnetic waves. And the EMW loss behavior is further revealed by limited integral simulation calculations, which fully highlights the advantages of the urchin-like architecture. As a result, the Ti3C2Tx@ZnO hollow spheres deliver a strong reflection loss of - 57.4 dB and broad effective absorption bandwidth of 6.56 GHz, superior to similar absorbents. This work provides a new biomimetic strategy for the design and manufacturing of advanced microwave absorbers.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Jin-Bo Cheng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
34
|
Yang J, Wang J, Li H, Wu Z, Xing Y, Chen Y, Liu L. MoS 2 /MXene Aerogel with Conformal Heterogeneous Interfaces Tailored by Atomic Layer Deposition for Tunable Microwave Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101988. [PMID: 35068057 PMCID: PMC8895119 DOI: 10.1002/advs.202101988] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/01/2021] [Indexed: 05/02/2023]
Abstract
In the design of electromagnetic (EM) wave absorbing materials, it is still a great challenge to optimize the relationship between the attenuation capability and impedance matching synergistically. Herein, a 3D porous MoS2 /MXene hybrid aerogel architecture with conformal heterogeneous interface has been built by atomic layer deposition (ALD) based on specific porous templates to optimize the microwave absorption (MA) performance comprehensively. The original porous structure of pristine Ti3 C2 Tx aerogel used as templates can be preserved well during ALD fabrication, which prolongs the reflection and scattering path and ameliorates the dielectric loss. Meanwhile, plenty of heterointerfaces between MoS2 and Ti3 C2 Tx have been fabricated based on conformally ALD-deposited MoS2 with controlled thickness on the porous surfaces of the templates, which can effectively optimize the impedance matching and transform its response to EM waves from shielding into absorbing. Moreover, the interaction between the attenuation capability and impedance matching can also be modulated by the number of ALD cycle in MoS2 fabrication. After optimization, MoS2 /MXene hybrid aerogel obtained under 300 ALD cycles shows a minimum reflection loss of -61.65 dB at the thickness of 4.53 mm. In addition, its preferable lightweight, high surface area, mechanical, and hydrophobicity properties will also be conducive to further practical applications.
Collapse
Affiliation(s)
- Junjie Yang
- School of Mechanical EngineeringSoutheast UniversityNanjing211189P. R. China
| | - Jianqiao Wang
- School of Mechanical EngineeringSoutheast UniversityNanjing211189P. R. China
| | - Huiqin Li
- School of Mechanical EngineeringSoutheast UniversityNanjing211189P. R. China
| | - Ze Wu
- School of Mechanical EngineeringSoutheast UniversityNanjing211189P. R. China
| | - Youqiang Xing
- School of Mechanical EngineeringSoutheast UniversityNanjing211189P. R. China
| | - Yunfei Chen
- School of Mechanical EngineeringSoutheast UniversityNanjing211189P. R. China
| | - Lei Liu
- School of Mechanical EngineeringSoutheast UniversityNanjing211189P. R. China
| |
Collapse
|
35
|
Tetik H, Orangi J, Yang G, Zhao K, Mujib SB, Singh G, Beidaghi M, Lin D. 3D Printed MXene Aerogels with Truly 3D Macrostructure and Highly Engineered Microstructure for Enhanced Electrical and Electrochemical Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104980. [PMID: 34757650 DOI: 10.1002/adma.202104980] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Indexed: 05/07/2023]
Abstract
Assembling 2D materials such as MXenes into functional 3D aerogels using 3D printing technologies gains attention due to simplicity of fabrication, customized geometry and physical properties, and improved performance. Also, the establishment of straightforward electrode fabrication methods with the aim to hinder the restack and/or aggregation of electrode materials, which limits the performance of the electrode, is of great significant. In this study, unidirectional freeze casting and inkjet-based 3D printing are combined to fabricate macroscopic porous aerogels with vertically aligned Ti3 C2 Tx sheets. The fabrication method is developed to easily control the aerogel microstructure and alignment of the MXene sheets. The aerogels show excellent electromechanical performance so that they can withstand almost 50% compression before recovering to the original shape and maintain their electrical conductivities during continuous compression cycles. To enhance the electrochemical performance, an inkjet-printed MXene current collector layer is added with horizontally aligned MXene sheets. This combines the superior electrical conductivity of the current collector layer with the improved ionic diffusion provided by the porous electrode. The cells fabricated with horizontal MXene sheets alignment as current collector with subsequent vertical MXene sheets alignment layers show the best electrochemical performance with thickness-independent capacitive behavior.
Collapse
Affiliation(s)
- Halil Tetik
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Jafar Orangi
- Product Engineer, Lam Research, Fremont, CA, 94538, USA
| | - Guang Yang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Keren Zhao
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Shakir Bin Mujib
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Gurpreet Singh
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Majid Beidaghi
- Department of Mechanical and Material Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Dong Lin
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
36
|
Yang GY, Wang SZ, Sun HT, Yao XM, Li CB, Li YJ, Jiang JJ. Ultralight, Conductive Ti 3C 2T x MXene/PEDOT:PSS Hybrid Aerogels for Electromagnetic Interference Shielding Dominated by the Absorption Mechanism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57521-57531. [PMID: 34793675 DOI: 10.1021/acsami.1c13303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXene aerogels with a porous microstructure are a promising electromagnetic interference (EMI) shielding material due to its low density and excellent electrical conductivity, which has attracted widespread attention. Compared with traditional EMI shielding materials that rely on reflection as the primary mechanism, MXene aerogels with absorption as the dominant mechanism have greater potential for development as a novel EMI shielding material because of its ability to reduce environmental contamination from reflected electromagnetic (EM) waves from materials. In this study, a novel Ti3C2Tx MXene/PEDOT:PSS hybrid aerogel was presented by freeze-drying and thermal annealing using few-layered Ti3C2Tx MXene and the conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). PEDOT:PSS not only improved the gelling ability of Ti3C2Tx but also successfully established a conductive bridge between MXene nanosheets. The experimental results demonstrated that the hybrid aerogel exhibited an obvious porous microstructure, which was beneficial for the multiple scattering of EM waves within the materials. The EMI shielding effectiveness and specific shielding effectiveness reached up to 59 dB and 10,841 dB·cm2·g-1, respectively, while the SER/SET ratio value was only 0.05, indicating superior wave absorption performance. Furthermore, the good impedance matching, due to the electrical conductance loss and polarization loss effect of the composites, plays a critical role in their excellent wave absorption and EMI shielding performance. Therefore, this work provides a practical approach for designing and fabricating lightweight absorption-dominated EMI shielding materials.
Collapse
Affiliation(s)
- Guo-Yu Yang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shao-Zhe Wang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hong-Tai Sun
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xu-Ming Yao
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Chuan-Bing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Yu-Jun Li
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jian-Jun Jiang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
37
|
Qu Z, Wang Y, Wang W, Yu D. Three-dimensional network structure Co/CNT derived from bimetal MOFs toward efficient electromagnetic wave absorber. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Jiang D, Zhang J, Qin S, Hegh D, Usman KAS, Wang J, Lei W, Liu J, Razal JM. Scalable Fabrication of Ti 3C 2T x MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51333-51342. [PMID: 34696589 DOI: 10.1021/acsami.1c13808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High aspect ratio two-dimensional Ti3C2Tx MXene flakes with extraordinary mechanical, electrical, and thermal properties are ideal candidates for assembling elastic and conductive aerogels. However, the scalable fabrication of large MXene-based aerogels remains a challenge because the traditional preparation method relies on supercritical drying techniques such as freeze drying, resulting in poor scalability and high cost. Herein, the use of porous melamine foam as a robust template for MXene/reduced graphene oxide aerogel circumvents the volume shrinkage during its natural drying process. Through this approach, we were able to produce large size (up to 600 cm3) MXene-based aerogel with controllable shape. In addition, the aerogels possess an interconnected cellular structure and display resilience up to 70% of compressive strain. Some key features also include high solvent absorption capacity (∼50-90 g g-1), good photothermal conversion ability (an average evaporation rate of 1.48 kg m-2 h-1 for steam generation), and an excellent electrothermal conversion rate (1.8 kg m-2 h-1 at 1 V). More importantly, this passive drying process provides a scalable, convenient, and cost-effective approach to produce high-performance MXene-based aerogels, demonstrating the feasibility of commercial production of MXene-based aerogels toward practical applications.
Collapse
Affiliation(s)
- Degang Jiang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jinfeng Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
39
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
40
|
Zhao P, Jia Y, Liang Y, Zheng J, Yang M, Huo D, Wang Y, Hou C. A Prussian blue-doped RGO/MXene composite aerogel with peroxidase-like activity for real-time monitoring of H 2O 2 secretion from living cells. Chem Commun (Camb) 2021; 57:9870-9873. [PMID: 34490866 DOI: 10.1039/d1cc03957a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we develop a novel 3D composite aerogel (3D PB/GMA) and apply it to the real-time monitoring of H2O2 secretion from living cells. The 3D PB/GMA shows an obvious porous structure and superior peroxidase-like activity. The electrochemical sensor based on 3D PB/GMA shows an excellent electrocatalytic performance towards H2O2. When applied to the real-time tracking of H2O2 secretion from living cells, it can satisfactorily distinguish cancer cell lines from normal cell lines, revealing a good application potential in pathological diagnosis.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Yuanyuan Jia
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Jilin Zheng
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
41
|
Song S, Jiang X, Shen H, Wu W, Shi Q, Wan M, Zhang J, Mo H, Shen J. MXene (Ti 3C 2) Based Pesticide Delivery System for Sustained Release and Enhanced Pest Control. ACS APPLIED BIO MATERIALS 2021; 4:6912-6923. [PMID: 35006991 DOI: 10.1021/acsabm.1c00607] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A multifunctional nanomaterials based pesticide delivery system provides a powerful strategy for the efficient utilization of pesticides. We present here the application of a 2D MXene (Ti3C2) nanomaterial for pesticide delivery and plant protection. Avermectin (AV), a hydrophobic and unstable insecticide, was chosen as the model pesticide. In our study, AV@Ti3C2 was formed by fast adsorption of AV on Ti3C2, with a maximum loading capacity of 81.44%. Compared with hydrophobic AV, AV@Ti3C2 exhibited significantly improved water solubility, which is beneficial for ensuring the bioactivity of pesticide. The AV@Ti3C2 nanoformulation showed pH responsive slow-release behavior, overcoming the burst-release of conventional AV formulations. Besides, AV@Ti3C2 possessed excellent photostability under UV irradiation, which prolonged the persistent period of AV. Therefore, AV@Ti3C2 performed sustaining and enhanced antipest activity, according to the bioactivity assay. Furthermore, AV@Ti3C2 showed satisfactory biosafety, with no negative effect to the germination and growth of maize. Our current research provides a potential candidate, AV@Ti3C2, for pest control, and also broadens the application of 2D MXene materials in plant protection and sustainable agriculture.
Collapse
Affiliation(s)
- Saijie Song
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xuefeng Jiang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, P. R. China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Minghui Wan
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun Zhang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hong Mo
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Yang W, Yang D, Mei H, Yao L, Xiao S, Yao Y, Chen C, Cheng L. 3D printing of PDC-SiOC@SiC twins with high permittivity and electromagnetic interference shielding effectiveness. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Guo Z, Li Y, Jin P, Zhang T, Zhao Y, Ai Y, Xiu H, Zhang Q, Fu Q. Poly(vinyl alcohol)/MXene biomimetic aerogels with tunable mechanical properties and electromagnetic interference shielding performance controlled by pore structure. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Wang S, Meng W, Lv H, Wang Z, Pu J. Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing. Carbohydr Polym 2021; 270:118414. [PMID: 34364635 DOI: 10.1016/j.carbpol.2021.118414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Conductive nanocellulose aerogels have attracted significant attention in pressure sensing for wearable devices owing to lightweight, sustainability and good chemical stability. Limited by its flammability and weak mechanical properties, aramid nanofiber (ANF) was designed as reinforcement to overcome the shortcoming mentioned above. Herein, the unidirectional freeze casting method was proposed to fabricate nanocellulose/aramid nanofiber (CA) aerogel. Then, the CA/PPy (CAP) aerogel was obtained by using the oriented structure of CA aerogel as a template for inducing conductive polypyrrole (PPy) in-situ formation inside the composite aerogel. The conductive aerogel with the ordered microstructure exhibited the anisotropic mechanical properties and thermal conductivity. And it could withstand high temperature without any destruction phenomenon. Moreover, the aerogel sensor revealed high strain sensitivity and satisfactory electrochemical performance. Lightweight CAP aerogel with controllable alignment, sensitive sensing property and thermal stability is very promising in pressure sensor under some extreme conditions.
Collapse
Affiliation(s)
- Sijie Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Wanyao Meng
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Haifeng Lv
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Zhenxing Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Junwen Pu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China.
| |
Collapse
|
45
|
Sun Y, Li Y. Potential environmental applications of MXenes: A critical review. CHEMOSPHERE 2021; 271:129578. [PMID: 33450420 DOI: 10.1016/j.chemosphere.2021.129578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Various environmental pollutants (e.g., air, water and solid pollutants) are discharged into environments with the rapid development of industrializations, which is presently at the forefront of global attention. The high efficient removal of these environmental pollutants is of important concern due to their potential threat to human health and eco-diversity. Advanced nanomaterials may play an important role in the elimination of pollutants from environmental media. MXenes as the new intriguing class of graphene-like 2D transition metal carbides and/or carbonitrides have been widely used in energy storage, environmental remediation benefitting from exceptional structural properties such as highly active sites, high chemical stability, hydrophilicity, large interlayer spacing, huge specific surface area, superior sorption-reduction capacity. However, the comprehensive investigation concerning the removal of various environmental pollutants on MXenes is yet not available up to date. In this review, we summarized the synthesis and properties of MXenes to demonstrate the key roles in ameliorating their adsorption performance; then the recent advances and achievements in environmental application of MXenes on the removal of gases, organics, heavy metals and radionuclides were comprehensively reviewed in details; Finally, the formidable challenges and further perspectives regarding utilizing MXene in environmental remediation were proposed. Hopefully, this review can provide the useful information for environmental scientists and material engineers on designing versatile MXenes in actual environmental applications.
Collapse
Affiliation(s)
- Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Ying Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
46
|
He P, Cao MS, Cao WQ, Yuan J. Developing MXenes from Wireless Communication to Electromagnetic Attenuation. NANO-MICRO LETTERS 2021; 13:115. [PMID: 34138345 PMCID: PMC8079551 DOI: 10.1007/s40820-021-00645-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/21/2021] [Indexed: 05/08/2023]
Abstract
There is an urgent global need for wireless communication utilizing materials that can provide simultaneous flexibility and high conductivity. Avoiding the harmful effects of electromagnetic (EM) radiation from wireless communication is a persistent research hot spot. Two-dimensional (2D) materials are the preferred choice as wireless communication and EM attenuation materials as they are lightweight with high aspect ratios and possess distinguished electronic properties. MXenes, as a novel family of 2D materials, have shown excellent properties in various fields, owing to their excellent electrical conductivity, mechanical stability, high flexibility, and ease of processability. To date, research on the utility of MXenes for wireless communication has been actively pursued. Moreover, MXenes have become the leading materials for EM attenuation. Herein, we systematically review the recent advances in MXene-based materials with different structural designs for wireless communication, electromagnetic interference (EMI) shielding, and EM wave absorption. The relationship governing the structural design and the effectiveness for wireless communication, EMI shielding, and EM wave absorption is clearly revealed. Furthermore, our review mainly focuses on future challenges and guidelines for designing MXene-based materials for industrial application and foundational research.
Collapse
Affiliation(s)
- Peng He
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jie Yuan
- School of Information Engineering, Minzu University of China, Beijing, 100081, People's Republic of China
| |
Collapse
|
47
|
Liang L, Li Q, Yan X, Feng Y, Wang Y, Zhang HB, Zhou X, Liu C, Shen C, Xie X. Multifunctional Magnetic Ti 3C 2T x MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS NANO 2021; 15:6622-6632. [PMID: 33780231 DOI: 10.1021/acsnano.0c09982] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ingenious microstructure design and a suitable multicomponent strategy are still challenging for advanced electromagnetic wave absorbing (EMA) materials with strong absorption and a broad effective absorption bandwidth (EAB) at thin sample thickness and low filling level. Herein, a three-dimensional (3D) dielectric Ti3C2Tx MXene/reduced graphene oxide (RGO) aerogel anchored with magnetic Ni nanochains was constructed via a directional-freezing method followed by the hydrazine vapor reduction process. The oriented cell structure and heterogeneous dielectric/magnetic interfaces benefit the superior absorption performance by forming perfect impedance matching, multiple polarizations, and electric/magnetic-coupling effects. Interestingly, the prepared ultralight Ni/MXene/RGO (NiMR-H) aerogel (6.45 mg cm-3) delivers the best EMA performance in reported MXene-based absorbing materials up to now, with a minimal reflection loss (RLmin) of -75.2 dB (99.999 996% wave absorption) and a broadest EAB of 7.3 GHz. Furthermore, the excellent structural robustness and mechanical properties, as well as the high hydrophobicity and heat insulation performance (close to air), guarantee the stable and durable EMA application of the NiMR-H aerogel to resist deformation, water or humid environments, and high-temperature attacks.
Collapse
Affiliation(s)
- Luyang Liang
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Qianming Li
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Xu Yan
- Beijing Institute of Radio Measurement, Beijing 100854, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yaming Wang
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
48
|
Qin Y, Wang M, Gao W, Liang S. Rationally designed structure of mesoporous carbon hollow microspheres to acquire excellent microwave absorption performance. RSC Adv 2021; 11:14787-14795. [PMID: 35423987 PMCID: PMC8698231 DOI: 10.1039/d1ra00465d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023] Open
Abstract
In this study, we used a novel and facile hard-template etching method to manufacture mesoporous carbon hollow microspheres (MCHMs). We prove that the dielectric ability and microwave absorption of MCHMs can be adjusted by structural characteristics. When the average particle size of MCHMs is 452 nm, the paraffin composite material mixed with 10 wt% MCHMs can achieve a maximum reflection loss value of -51 dB with a thickness of 4.0 mm at 7.59 GHz. When the average particle size of MCHMs is 425 nm, the effective absorption bandwidth of the paraffin composite material mixed with 10 wt% MCHMs can achieve a broad bandwidth of 7.14 GHz with a thickness of 2.5 mm. Compared with other microwave absorbers, MCHMs possess high microwave absorption capacity and broad microwave absorption bandwidth with as low as a 10 wt% filler ratio. This excellent microwave absorption performance is due to the internal cavity and the mesoporous shell of MCHMs. By rationally designing the structure of MCHMs, excellent microwave absorption performance can be acquired. Meanwhile, this design concept based on a rational design of spherical structure can be extended to other spherical absorbers.
Collapse
Affiliation(s)
- Yuxuan Qin
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
| | - Muqun Wang
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes Nanning 530000 Guangxi China
| | - Shaofeng Liang
- School of Resources, Environment and Materials, Guangxi University Nanning 530000 Guangxi China
| |
Collapse
|
49
|
Chen G, Zhang L, Fan X, Wu H. Interfacial and defect polarization in MXene-like laminated spinel for electromagnetic wave absorption application. J Colloid Interface Sci 2021; 588:813-825. [DOI: 10.1016/j.jcis.2020.11.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
|
50
|
Jiang D, Zhang J, Qin S, Wang Z, Usman KAS, Hegh D, Liu J, Lei W, Razal JM. Superelastic Ti 3C 2T x MXene-Based Hybrid Aerogels for Compression-Resilient Devices. ACS NANO 2021; 15:5000-5010. [PMID: 33635074 DOI: 10.1021/acsnano.0c09959] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superelastic aerogels with excellent electrical conductivity, reversible compressibility, and high durability hold great potential for varied emerging applications, ranging from wearable electronics to multifunctional scaffolds. In the present work, superelastic MXene/reduced graphene oxide (rGO) aerogels are fabricated by mixing MXene and GO flakes, followed by a multistep reduction of GO, freeze-casting, and finally an annealing process. By optimizing both the composition and reducing conditions, the resultant aerogel shows a reversible compressive strain of 95%, surpassing all current reported values. The conducting MXene/rGO network provides fast electron transfer and stable structural integrity under compression/release cycles. When assembled into compressible supercapacitors, 97.2% of the capacitance was retained after 1000 compression/release cycles. Moreover, the high conductivity and porous structure also enabled the fabrication of a piezoresistive sensor with high sensitivity (0.28 kPa-1), wide detection range (up to 66.98 kPa), and ultralow detection limit (∼60 Pa). It is envisaged that the superelasticity of MXene/rGO aerogels offers a versatile platform for utilizing MXene-based materials in a wide array of applications including wearable electronics, electromagnetic interference shielding, and flexible energy storage devices.
Collapse
Affiliation(s)
- Degang Jiang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Zhiyu Wang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|