1
|
Xiao P, Mao W, Wu Z, Gao H, Ling C, Zhou J. Bifunctional Chromium-Doped Phenolic Porous Hydrothermal Carbon Catalysts for the Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural. Int J Mol Sci 2025; 26:3648. [PMID: 40332244 PMCID: PMC12027228 DOI: 10.3390/ijms26083648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
A sustainable and efficient approach for converting carbohydrates into 5-hydroxymethylfurfural (HMF) via heterogeneous catalysis is crucial for effectively utilizing biomass. In this study, we synthesized a series of CrX-polyphenol-formaldehyde resin (PTF) catalysts, which are composites of Cr-doped phenolic-resin-based hydrothermal carbon, using a chelation-assisted multicomponent co-assembly strategy. The performance of the synthesized catalysts was assessed through various analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, pyrolysis-Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis. Cr incorporation into the catalysts enhanced the total and Lewis acidities. Notably, the optimized catalyst, designated as Cr0.6-PTF, achieved an effective glucose conversion into HMF, yielding a maximum of 69.5% at 180 °C for 180 min in a saturated NaCl solution (NaClaq)/dimethyl sulfoxide (2: 18) solvent system. Furthermore, Cr0.6-PTF maintained excellent catalytic activity and a stable chemical structure after nine cyclic reactions, resulting in a 63.8% HMF yield from glucose. This study revealed an innovative approach for utilizing metal-doped phenolic resin hydrothermal carbon to transform glucose into platform chemicals.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinghong Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (P.X.); (W.M.); (Z.W.); (H.G.); (C.L.)
| |
Collapse
|
2
|
Min H, Kim C, Lin S, Choi J, Sim Y, Yu B, Moon JH. Co-Enriched High Entropy Oxides for Efficient Continuous Electrochemical Methane Conversion: Catalytic Performance and Sustainability Insights. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418767. [PMID: 40130759 PMCID: PMC12016739 DOI: 10.1002/adma.202418767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Indexed: 03/26/2025]
Abstract
The electrochemical conversion of methane offers a sustainable alternative to traditional thermochemical syngas pathways; however, the rational design of catalysts that ensure high productivity remains a significant challenge. In this study, a high-entropy oxide (HEO) catalyst composed of Co, Cr, Fe, Mn, and Ni is explored, with a targeted element enriched, and identify that a Co-rich HEO demonstrates high efficiency in room-temperature electrochemical methane conversion. This analysis of the projected density of states (PDOS) reveals that Co sites in the HEO catalyst possess an optimally positioned p-band center for methane activation. The Co-rich HEO catalyst achieves an ethanol production rate of 12315 µmol/gcat/hr at 1.6 VRHE, with a Faradaic efficiency of 63.5%; a flow cell electrolyzer equipped with this catalyst achieves continuous methane-to-ethanol conversion at a rate of 26533 µmol/gcat/hr over 100 h. Process modeling evaluates the economic and environmental implications, demonstrating that a commercially viable process can be realized through economies of scale while significantly reducing CO₂ emissions.
Collapse
Affiliation(s)
- Heewon Min
- Department of Chemical and Biological EngineeringKorea University145 Anam‐roSeongbuk‐guSeoul02841Republic of Korea
| | - Cheolho Kim
- Department of Chemical and Biological EngineeringKorea University145 Anam‐roSeongbuk‐guSeoul02841Republic of Korea
| | - Shu‐Ya Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei106Taiwan
| | - Jiyun Choi
- Department of Chemical and Biological EngineeringKorea University145 Anam‐roSeongbuk‐guSeoul02841Republic of Korea
| | - Yunjeong Sim
- Department of Chemical and Biological EngineeringKorea University145 Anam‐roSeongbuk‐guSeoul02841Republic of Korea
| | - Bor‐Yih Yu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei106Taiwan
| | - Jun Hyuk Moon
- Department of Chemical and Biological EngineeringKorea University145 Anam‐roSeongbuk‐guSeoul02841Republic of Korea
| |
Collapse
|
3
|
Luo R, Zhang C, Zhang Z, Ren P, Xu Z, Liu Y. NIR-II upconversion nanomaterials for biomedical applications. NANOSCALE 2025; 17:2985-3002. [PMID: 39717956 DOI: 10.1039/d4nr04445b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
As a nonlinear optical phenomenon, upconversion (UC) occurs when two or more low-energy excitation photons are sequentially absorbed and emitted. Upconversion nanomaterials exhibit superior photostability, non-invasiveness, a unique near-infrared anti-Stokes shift, and enhanced tissue penetration capability. However, general upconversion nanomaterials typically utilize visible light (400-700 nm) for excitation, leading to limited tissue penetration, background signal interference, limited excitation efficiency and imaging quality issues due to tissue absorption and scattering. The increasing use of upconversion nanomaterials in the near-infrared one-region (NIR-I) window (700-900 nm) offers benefits such as enhanced penetration into biological tissues, relatively improved imaging resolution, and lower spontaneous luminescence, although these materials are still susceptible to background signals, limiting their effectiveness in high signal-to-noise ratio imaging. This distinctive wavelength conversion endows upconversion nanomaterials in the NIR-II region with extraordinary potential for diverse applications. Biomedical research has primarily focused on biomedical imaging for disease diagnosis and treatment, as well as biomarker detection. Nonetheless, studies specifically targeting the NIR-II window remain limited. This paper summarizes the latest research progress on upconversion nanomaterials in the NIR-II region. It begins by introducing the preparation methods for these materials in the NIR-II, followed by their applications in imaging and biological contexts. Lastly, it discusses the primary challenges and future prospects of upconversion materials in NIR-II, aiming to promote their development.
Collapse
Affiliation(s)
- Ranran Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Chenxi Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zening Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Pengchen Ren
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zhongsheng Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
4
|
Mo Y, Guan X, Wang S, Duan X. Oriented catalysis through chaos: high-entropy spinels in heterogeneous reactions. Chem Sci 2025; 16:1652-1676. [PMID: 39802694 PMCID: PMC11718512 DOI: 10.1039/d4sc05539j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (i.e., activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships. Therefore, this review aims to provide a comprehensive overview of the development of HESs in catalysis, including definition, structural features, synthesis, characterization, and catalytic regimes. The relationships between the unique structure, favorable properties, and improved performance of HES-driven catalysis are highlighted. Finally, an outlook is presented which provides guidance for unveiling the complexities of HESs and advancing the field toward the rational design of efficient energy and environmental materials.
Collapse
Affiliation(s)
- Yalan Mo
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Xiaohong Guan
- School of Ecological and Environmental Science, East China Normal University Shanghai 200241 China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
5
|
Gao Y, Tian X, Niu Q, Zhang P. General Synthesis of High-Entropy Oxides and Carbon-Supported High-Entropy Oxides by Mechanochemistry. CHEMSUSCHEM 2025; 18:e202401517. [PMID: 39180138 DOI: 10.1002/cssc.202401517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024]
Abstract
High-entropy oxides (HEOs) have been receiving a lot of attention due to their excellent properties. However, current common methods for preparing HEOs usually involve high-temperature processes. The development of green synthesis techniques remains an important issue. Carbon-supported HEOs have shown excellent performance in electrochemical energy storage in recent years. Crucially, the traditional methods cannot synthesize carbon-supported HEOs under N2 or air atmospheres. Toward this end, a universal method for preparing carbon-supported HEOs was proposed. During this process, without high-temperature post-treatment, high-entropy LaMnO3 could be synthesized in 2 hours using the mechanical ball-milling method. Furthermore, this method was universal and has been proved in the synthesis of a series of HEOs such as PrVO3, SmVO3, and MgAl2O4. The LaMnO3 species synthesized by this method exhibit excellent catalytic performance in CO combustion and could maintain a conversion rate of over 97 % for 350 hours. Subsequently, carbon-supported HEOs could be obtained with 0.5 hours of additional ball-milling, offering significant advantages over traditional methods. This process provides a potential method to synthesize carbon-supported HEOs.
Collapse
Affiliation(s)
- Ying Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xicai Tian
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Niu
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Co., Ltd., Ordos, Inner Mongolia, 016064, China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
6
|
Zou J, Tang L, He W, Zhang X. High-Entropy Oxides: Pioneering the Future of Multifunctional Materials. ACS NANO 2024; 18:34492-34530. [PMID: 39666001 DOI: 10.1021/acsnano.4c12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The high-entropy concept affords an effective method to design and construct customized materials with desired characteristics for specific applications. Extending this concept to metal oxides, high-entropy oxides (HEOs) can be fabricated, and the synergistic elemental interactions result in the four core effects, i.e., the high-entropy effect, sluggish-diffusion effect, severe-lattice-distortion effect, and cocktail effect. All these effects greatly enhance the functionalities of this vast material family, surpassing conventional low- and medium-entropy metal oxides. For instance, the high phase stability, excellent electrochemical performance, and fast ionic conductivity make HEOs one of the hot next-generation candidate materials for electrochemical energy conversion and storage devices. Significantly, the extraordinary mechanical, electrical, optical, thermal, and magnetic properties of HEOs are very attractive for applications beyond catalysts and batteries, such as electronic devices, optic equipment, and thermal barrier coatings. This review will overview the entropy-stabilized composition and structure of HEOs, followed by a comprehensive introduction to the electrical, optical, thermal, and magnetic properties. Then, several typical applications, i.e., transistor, memristor, artificial synapse, transparent glass, photodetector, light absorber and emitter, thermal barrier coating, and cooling pigment, are synoptically presented to show the broad application prospect of HEOs. Lastly, the intelligence-guided design and high-throughput screening of HEOs are briefly introduced to point out future development trends, which will become powerful tools to realize the customized design and synthesis of HEOs with optimal composition, structure, and performance for specific applications.
Collapse
Affiliation(s)
- Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Tang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Weiwei He
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Xiaohua Zhang
- College of Textiles, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Mielniczuk M, Knorpp AJ, Shukla R, Erni R, Kata D, Graule T, Drożdż E, Stuer M. Solvothermal Synthesis of Medium-Entropy Oxide Spheres for Thermocatalytic Conversion of CO 2 to Methanol. Chempluschem 2024:e202400691. [PMID: 39537577 DOI: 10.1002/cplu.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
New chemical compositions and structures for medium- and high-entropy oxides (HEOs) currently represent a promising new avenue in materials research for a wide range of applications including catalysis, energy storage, and ceramics. To speed up further development, synthesis methods for multicationic oxides are needed for controlling features like morphology, porosity, and chemical compositions. In this work, mesoporous spinel oxide spheres with five cations are synthesized using solvothermal synthesis techniques. The targeted chemistry included Co, Al, Fe, and Cr as the first four cations, where the fifth cation was varied by increasing cation radii (Ga, In, Yb, Ho, or Ce). After calcination, all as-synthesized precursors led to mesoporous oxide spheres with spinel oxide structures. In order to demonstrate an example of applicability for targeting different M3+ cations, the sample containing Co, Al, Fe, Cr, and In was tested in a model reaction of thermocatalytic CO2 hydrogenation and is shown to be active with a preference to methanol formation (58 % selectivity, 7.8 % conversion at 300 °C). The synthesis of multicationic mesoporous spheres appears to be quite flexible in terms of possible M3+ cations compositions and is a potential material to combine targeted chemistry for applications like catalysis.
Collapse
Affiliation(s)
- Monika Mielniczuk
- High Performance Ceramics Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Duebendorf, Switzerland
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Amy J Knorpp
- High Performance Ceramics Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Duebendorf, Switzerland
| | - Rishabh Shukla
- High Performance Ceramics Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Duebendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Duebendorf, Switzerland
| | - Dariusz Kata
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Thomas Graule
- High Performance Ceramics Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Duebendorf, Switzerland
| | - Ewa Drożdż
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Michael Stuer
- High Performance Ceramics Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Duebendorf, Switzerland
| |
Collapse
|
8
|
Alves RF, Raimundo RA, Lima BASG, Loureiro FJA, Fagg DP, Macedo DA, Gomes UU, Morales MA. The effect of particle size on structural and catalysts for oxygen evolution reaction of (CoFeNiMnCr) 3O 4 prepared by controlled synthesis with polyvinylpyrrolidone (PVP). J Colloid Interface Sci 2024; 680:818-831. [PMID: 39546903 DOI: 10.1016/j.jcis.2024.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
In this study, high-entropy spinel oxides (CoNiMnFeCr)3O4 were synthesized using a PVP-assisted sol-gel method, marking the first report of this approach for producing high-entropy oxides. This method provides new insights into morphology customization through precise temperature control during calcination. Samples were calcined at 800, 900, and 1000 °C, and structural, optical, and electrochemical characterizations were performed to evaluate the impact of synthesis conditions on the oxygen evolution reaction (OER) performance. X-ray diffraction (XRD) confirmed the formation of a single-phase spinel structure with face-centered cubic symmetry. UV-Vis spectroscopy revealed a band gap shift associated with calcination temperature, indicating subtle changes in electronic structure that can influence catalytic behavior. The S-HEO 800 sample exhibited the highest catalytic activity, achieving an overpotential of 316 mV at 10 mA cm-2. Electrochemical tests showed excellent short-term durability, with the electrodes maintaining stable performance for 24 h at 10 mA cm-2. Field emission gun scanning electron microscopy (FEGSEM) analysis revealed that particle size increased with calcination temperature, ranging from 96 nm (S-HEO 800) to 475 nm (S-HEO 1000). X-ray photoelectron spectroscopy (XPS) showed a higher concentration of Cr6+, Cr4+, and Ni3+ ions on the surface of S-HEO 800, correlating with its superior OER performance. Additionally, Raman and FT-IR spectra confirmed the formation of the spinel phase and provided insights into metal-oxygen bonding. Electrochemical impedance spectroscopy (EIS) results indicated that S-HEO 800 exhibited the lowest charge transfer resistance (Rct), further supporting its enhanced catalytic behavior. These findings demonstrate the potential of the PVP-assisted sol-gel method to produce customized high-entropy oxides with tunable morphology, making them promising candidates for energy conversion applications, particularly in water electrolysis.
Collapse
Affiliation(s)
- Ricardo F Alves
- Federal University of Rio Grande do Norte, Department of Materials Science and Engineering, 59078-970 Natal, RN, Brazil.
| | - Rafael A Raimundo
- Federal University of Paraíba, Department of Materials Science and Engineering, 58051-900 João Pessoa, PB, Brazil; TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno A S G Lima
- Federal University of Paraíba, Department of Mechanical Engineering, 58051-900 João Pessoa, PB, Brazil
| | - Francisco J A Loureiro
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Duncan P Fagg
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Daniel A Macedo
- Federal University of Paraíba, Department of Materials Science and Engineering, 58051-900 João Pessoa, PB, Brazil
| | - Uilame U Gomes
- Federal University of Rio Grande do Norte, Department of Materials Science and Engineering, 59078-970 Natal, RN, Brazil.
| | - Marco A Morales
- Federal University of Rio Grande do Norte, Department of Materials Science and Engineering, 59078-970 Natal, RN, Brazil; Federal University of Rio Grande do Norte, Department of Theoretical and Experimental Physics, 59078-970 Natal, Brazil
| |
Collapse
|
9
|
Gonzalez SN, McFadden Block C, O'Hayre RP, Richards RM. Synthesis Methods for Electrochemically Applicable High Entropy Oxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23573-23582. [PMID: 39472312 DOI: 10.1021/acs.langmuir.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As field-dispatchable power sources offer an alternative means of energy conversion, electrocatalyst development has become an area of intense focus. Emphasis has been placed on the transition from expensive electrocatalysts such as platinum and palladium toward earth abundant materials. Such a shift would result in lowered costs, enhanced durability, and an increased potential for implementation on a broader scale. High entropy oxides (HEOs) are an emerging class of materials that can offer both earth abundance and tunability of composition and morphology, making them excellent candidates for electrocatalysis. Several approaches have been taken to synthesize these materials and achieve balance between single-phase, highly crystalline products and high-surface area, nanostructured products. This work offers a survey of these methods, as well as our perspective on the most promising pathways forward. Emphasis is placed on clarifying the benefits, challenges, and overall suitability of each means of synthesis with electrocatalytic applications in mind.
Collapse
Affiliation(s)
- Sienna N Gonzalez
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Claire McFadden Block
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ryan P O'Hayre
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ryan M Richards
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
10
|
Chang L, Jing H, Liu C, Qiu C, Ling X. High-Entropy Materials for Prospective Biomedical Applications: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406521. [PMID: 39248345 PMCID: PMC11558137 DOI: 10.1002/advs.202406521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Indexed: 09/10/2024]
Abstract
With their unique structural characteristics, customizable chemical composition, and adjustable functional characteristics, high-entropy materials (HEMs) have triggered a wide range of interdisciplinary research, especially in the biomedical field. In this paper, the basic concept, core properties, and preparation methods of HEMs are first summarized, and then the application and development of HEMs in the field of biomedical are briefly described. Subsequently, based on the diverse and comprehensive properties of HEMs and a few reported cases, the possible application scenarios of HEMs in biological fields such as biosensors, antibacterial materials, therapeutics, bioimaging, and tissue engineering are prospectively predicted and discussed. Finally, their potential advantages and major challenges is summarized, which may provide useful guidance and principles for researchers to develop and optimize novel HEMs.
Collapse
Affiliation(s)
- Ling Chang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoeletronicsShenzhen UniversityShenzhen518060China
| | - Haochuan Jing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoeletronicsShenzhen UniversityShenzhen518060China
| | - Chao Liu
- Department of Nuclear MedicineYunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical UniversityKunming650000China
| | - Chuantian Qiu
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoeletronicsShenzhen UniversityShenzhen518060China
| |
Collapse
|
11
|
Zheng M, Yi Q, Wang Y, Tang W, Ma X, Kim Y. Engineering Oxygen Vacancies of Co-Mn-Ni-Fe-Al High-Entropy Spinel Oxides by Adjusting Co Content for Enhanced Catalytic Combustion of Propane. Inorg Chem 2024; 63:16842-16854. [PMID: 39178218 DOI: 10.1021/acs.inorgchem.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Transition metal-based oxides with similar oxidation activities for catalytic hydrocarbon combustion have attracted much attention. In this study, a new class of metal high-entropy oxides (CoxMnNiFeAl)3O4 (x = 1, 2, 3, 4, 5) with a porous structure was fabricated through a simple and inexpensive NaCl template-assisted sol-gel approach, which was employed for the catalytic oxidation of propane. The results indicated that the content of cobalt has a great impact on its activity, and the (Co4MnNiFeAl)3O4 catalyst exhibited the best catalytic activity. At the high space velocity of 60 000 mL·g-1·h-1, the optimized one with high-temperature treatment can still achieve 90% propane conversion at 309 °C, which is 68 and 178 °C lower than those of the (CoMnNiFeAl)3O4 catalyst and pure cobalt oxide, respectively. Meanwhile, it has the lowest apparent activation energy (46.6 KJ·mol-1) and the fastest reaction rate (26.976 × 10-6 mol·gcat-1·s-1 at 290 °C). The improved performance of the (Co4MnNiFeAl)3O4 catalyst could be attributed to the enhancement of low-temperature reducibility, the increased number of reactive surface oxygen species, and the cocktail effect of the high-entropy oxides. This work provides new insights into the preparation of efficient light alkane degradation catalysts and a realistic approach for the large-scale application of high-entropy oxides in the field of oxidation catalysts.
Collapse
Affiliation(s)
- Mouqiao Zheng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qijie Yi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ye Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodong Ma
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Youngjae Kim
- Dept. of Materials Science and Engineering, Inha University, 5N141, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| |
Collapse
|
12
|
Zhang X, Hao N, Liu S, Wei K, Ma C, Pan J, Feng S. Direct and specific detection of methyl-paraoxon using a highly sensitive fluorescence strategy combined with phosphatase-like nanozyme and molecularly imprinted polymer. Talanta 2024; 277:126434. [PMID: 38879946 DOI: 10.1016/j.talanta.2024.126434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Methyl paraoxon (MP) is a highly toxic, efficient and broad-spectrum organophosphorus pesticide, which poses significant risks to ecological environment and human health. Many detection methods for MP are based on the enzyme catalytic or inhibition effect. But natural biological enzymes are relatively expensive and easy to be inactivated with a short service life. As a unique tool of nanotechnology with enzyme-like characteristics, nanozyme has attracted increasing concern. However, a large proportion of nanozymes lack the intrinsic specificity, becoming a main barrier of constraining their use in biochemical analysis. Here, we use a one-pot reverse microemulsion polymerization combine the gold nanoclusters (AuNCs) with molecularly imprinted polymers (MIPs), polydopamine (PDA) and hollow CeO2 nanospheres to synthesize the bright red-orange fluorescence probe (CeO2@PDA@AuNCs-MIPs) with high phosphatase-like activity for selective detection of MP. The hollow structure possesses a specific surface area and porous matrix, which not only increases the exposure of active sites but also enhances the efficiency of mass and electron transport. Consequently, this structure significantly enhances the catalytic activity by reducing transport distances. The introduced MIPs provide the specific recognition sites for MP. And Ce (III) can excite aggregation induced emission of AuNCs and enhance the fluorescent signal. The absolute fluorescence quantum yield (FLQY) of CeO2@PDA@AuNCs-MIPs (1.41 %) was 12.8-fold higher than that of the GSH-AuNCs (0.11 %). With the presence of MP, Ce (IV)/Ce (III) species serve as the active sites to polarize and hydrolyze phosphate bonds to generate p-nitrophenol (p-NP), which can quench the fluorescent signal through the inner-filter effect. The as-prepared CeO2@PDA@AuNCs-MIPs nanozyme-based fluorescence method for MP detection displayed superior analytical performances with wide linearities range of 0.45-125 nM and the detection limit of 0.15 nM. Furthermore, the designed method offers satisfactory practical application ability. The developed method is simple and effective for the in-field detection.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Information Science &Technology 211800, China.
| | - Shucheng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Wei
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China
| | - Changchang Ma
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Sheng Feng
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
13
|
Liu S, Chen M, Luo Y, He Y, Zhang W, Chen Y, Wang M, Ye Y, Zhu K, Luo Y, Yu R, Hou J, Liu H, Shu H, Wang X. Synergistic electrochemical catalysis by high-entropy metal phosphide in lithium-sulfur batteries. J Colloid Interface Sci 2024; 669:126-136. [PMID: 38713952 DOI: 10.1016/j.jcis.2024.04.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
The shuttle effect and sluggish redox kinetics of polysulfides have hindered the development of lithium-sulfur batteries (LSBs) as premier energy storage devices. To address these issues, a high-entropy metal phosphide (NiCoMnFeCrP) was synthesized using the sol-gel method. NiCoMnFeCrP, with its rich metal species, exhibits strong synergistic effects and provides numerous catalytic active sites for the conversion of polysulfides. These active sites, possessing significant polarity, can bond with polysulfides. In situ ultraviolet-visible were conducted to monitor the dynamic changes in species and concentrations of polysulfides, validating the ability of NiCoMnFeCrP to facilitate the conversion of polysulfides. The batteries with the NiCoMnFeCrP catalyst as functional separators exhibited minimal capacity decay rates of 0.04 % and 0.23 % after 100 cycles at 0 °C and 60 °C, respectively. This indicates that the NiCoMnFeCrP catalyst possesses good thermal stability. Meanwhile, its area capacity can reach 4.78 mAh cm-2 at a high sulfur load of 4.54 mg cm-2. In conclusion, NiCoMnFeCrP achieves the objective of mitigating the shuttle effect and accelerating the kinetics of the redox reaction, thereby facilitating the commercialization of LSBs.
Collapse
Affiliation(s)
- Sisi Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Manfang Chen
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yixin Luo
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yongqian He
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Wanqi Zhang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ying Chen
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Mengqing Wang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yongjie Ye
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Kai Zhu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yan Luo
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ruizhi Yu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, China.
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hong Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Shu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
14
|
Feng Y, Wang G, Feng B, Li P, Wei J. Mussel-inspired interface deposition strategy for mesoporous metal-phenolic nanospheres with superior antioxidative, photothermal and antibacterial performance. J Colloid Interface Sci 2024; 668:282-292. [PMID: 38678884 DOI: 10.1016/j.jcis.2024.04.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Metal-phenolic networks (MPNs) have emerged as a versatile and multifunctional platform applied in bioimaging, disease treatment, electrocatalysis, and water purification. The synthesis of MPNs with mesoporous frameworks and ultra-small diameters (<200 nm), crucial for post-modification, cargo loading, and mass transport, remains a formidable challenge. Inspired by mussel chemistry, mesoporous metal-phenolic nanospheres (MMPNs) are facilely prepared by direct deposition of the metal-polyphenol complex on the interface of oil nano-droplets composed of block copolymers/1,3,5-trimethylbenzene followed by a spontaneous template-removal process. Due to the penetrable and stable networks, the oil nano-droplets gradually leak from the networks driven by shear stress during the stirring process. As a result, MMPNs are obtained without additional template removal procedures such as solvent extraction or high-temperature calcination. The materials have a large pore size (∼12.1 nm), uniform spherical morphology with a small particle size (∼99 nm), and a large specific surface area (49.8 m2 g-1). Due to the abundant phenolic hydroxyl groups, the MMPNs show excellent antioxidative property. The MMPNs also have excellent photothermal property, whose photothermal conversion efficiency was 40.9 %. Moreover, the phenolic hydroxyl groups can reduce Ag+ in situ to prepare Ag nanoparticles loaded MMPNs composites, which have excellent inhibition performance of drug-resistant bacteria biofilm.
Collapse
Affiliation(s)
- Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China
| | - Gen Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and TechnologyXi'an, 710055, PR China
| | - Bingxi Feng
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China
| | - Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, 710049, PR China.
| |
Collapse
|
15
|
Meng H, Gong Z, Xiang X, Zhu Y, Wu X, Chen Y, Zhang Y. Influence of entropy on catalytic performance of high-entropy oxides (NiMgZnCuCoOx) in peroxymonosulfate-mediated acetaminophen degradation. CHEMOSPHERE 2024; 362:142610. [PMID: 38878979 DOI: 10.1016/j.chemosphere.2024.142610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Developing a high-performance activator is crucial for the practical application of peroxymonosulfate-based advanced oxidation processes (PMS-AOPs). High-entropy oxides (HEOs) have attracted increasing attention due to their stable crystal structure, flexible composition and unique functionality. However, research into the mechanisms by which HEOs function as PMS activators for degrading organic pollutants remains insufficient, and the relationship between entropy and the catalytic performance of HEOs has yet to be clarified. In this study, we synthesized NiMgZnCuCoOx with different levels of entropy as PMS activators for acetaminophen (APAP) degradation, and observed a significant effect for entropy on the catalytic performance. Sulfate radicals (SO4•‒) were identified as the primary reactive oxygen species (ROS), while hydroxyl radicals (•OH) and singlet oxygen (1O2) act as secondary ROS during APAP degradation. Both the Co2+ contents and the oxygen vacancy concentration in NiMgZnCuCoOx are found to increase with the entropy. An increase in the Co2+ sites leads to more activation sites for PMS activation, while excessive oxygen vacancies consume PMS, producing weak oxidation species, and affect the electron-donating ability of Co2+. Consequently, the NiMgZnCuCoOx with middle level of entropy exhibits the optimal performance with APAP degradation rate and mineralization rate reaching 100% and 74.22%, respectively. Furthermore, the degradation intermediates and their toxicities were assessed through liquid chromatography-mass spectrometry and quantitative structure-activity relationship analysis. This work is expected to provide critical insight into the impact of the HEOs entropy on the PMS activation and guide the rational design of highly efficient peroxymonosulfate activators for environmental applications.
Collapse
Affiliation(s)
- Hong Meng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China
| | - Zhiheng Gong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China
| | - Xuepeng Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China; Department of Mechanical Engineering, City University of Hong Kong, 999077, Hong Kong, China
| | - Yunmin Zhu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China
| | - Xuefeng Wu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China
| | - Yan Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yongqing Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
16
|
Rowell JL, Kang M, Yoon D, Jiang KZ, Jia Y, Abruña HD, Muller DA, Robinson RD. Colloidal Synthesis of Monodisperse High-Entropy Spinel Oxide Nanocrystals. J Am Chem Soc 2024; 146:17613-17617. [PMID: 38885442 DOI: 10.1021/jacs.4c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Synthesis of high-entropy oxide (HEO) nanocrystals has focused on increasing the temperature in the entropy term (T(ΔS)) to overcome the enthalpy term. However, these high temperatures lead to large, polydisperse nanocrystals. In this work, we leverage the low solubility product (Ksp) of metal oxides and optimize the Lewis-acid-catalyzed esterification reaction for equal rate production of the cation monomers to synthesize HEO nanocrystals at low temperatures, producing the smallest (<4 nm) and most monodisperse (<15% size dispersity) HEOs to date. We apply these HEO nanocrystals as electrocatalysts, exhibiting promising activity toward the oxygen evolution reaction in alkaline media, with an overpotential of 345 mV at 10 mA/cm2.
Collapse
Affiliation(s)
- Jonathan L Rowell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Minsoo Kang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dasol Yoon
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin Zhijian Jiang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yafu Jia
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Richard D Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Chigozie AE, Ravikumar A, Yang X, Tamilselvan G, Deng Y, Arunjegan A, Li X, Hu Z, Zhang Z. A metal-phenolic coordination framework nanozyme exhibits dual enzyme mimicking activity and its application is effective for colorimetric detection of biomolecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3530-3538. [PMID: 38779841 DOI: 10.1039/d4ay00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Biomolecules play vital roles in many biological processes and diseases, making their identification crucial. Herein, we present a colorimetric sensing method for detecting biomolecules like cysteine (Cys), homocysteine (Hcy), and glutathione (GSH). This approach is based on a reaction system whereby colorless 3,3',5,5'-tetramethylbenzidine (TMB) undergoes catalytic oxidation to form blue-colored oxidized TMB (ox-TMB) in the presence of hydrogen peroxide (H2O2), utilizing the peroxidase and catalase-mimicking activities of metal-phenolic coordination frameworks (MPNs) of Cu-TA, Co-TA, and Fe-TA nanospheres. The Fe-TA nanospheres demonstrated superior activity, more active sites and enhanced electron transport. Under optimal conditions, the Fe-TA nanospheres were used for the detection of biomolecules. When present, biomolecules inhibit the reaction between TMB and H2O2, causing various colorimetric responses at low detection limits of 0.382, 0.776 and 0.750 μM for Cys, Hcy and GSH. Furthermore, it was successfully applied to real water samples with good recovery results. The developed sensor not only offers a rapid, portable, and user-friendly technique for multi-target analysis of biomolecules at low concentrations but also expands the potential uses of MPNs for other targets in the environmental field.
Collapse
Affiliation(s)
- Aham Emmanuel Chigozie
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - A Ravikumar
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaofeng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - G Tamilselvan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yibin Deng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
- Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China
| | - A Arunjegan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhang Hu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
- Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China
| |
Collapse
|
18
|
Dey G, Soliman SS, McCormick CR, Wood CH, Katzbaer RR, Schaak RE. Colloidal Nanoparticles of High Entropy Materials: Capabilities, Challenges, and Opportunities in Synthesis and Characterization. ACS NANOSCIENCE AU 2024; 4:3-20. [PMID: 38406312 PMCID: PMC10885327 DOI: 10.1021/acsnanoscienceau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 02/27/2024]
Abstract
Materials referred to as "high entropy" contain a large number of elements randomly distributed on the lattice sites of a crystalline solid, such that a high configurational entropy is presumed to contribute significantly to their formation and stability. High temperatures are typically required to achieve entropy stabilization, which can make it challenging to synthesize colloidal nanoparticles of high entropy materials. Nonetheless, strategies are emerging for the synthesis of colloidal high entropy nanoparticles, which are of interest for their synergistic properties and unique catalytic functions that arise from the large number of constituent elements and their interactions. In this Perspective, we highlight the classes of materials that have been made as colloidal high entropy nanoparticles as well as insights into the synthetic methods and the pathways by which they form. We then discuss the concept of "high entropy" within the context of colloidal materials synthesized at much lower temperatures than are typically required for entropy to drive their formation. Next, we identify and address challenges and opportunities in the field of high entropy nanoparticle synthesis. We emphasize aspects of materials characterization that are especially important to consider for nanoparticles of high entropy materials, including powder X-ray diffraction and elemental mapping with scanning transmission electron microscopy, which are among the most commonly used techniques in laboratory settings. Finally, we share perspectives on emerging opportunities and future directions involving colloidal nanoparticles of high entropy materials, with an emphasis on synthesis, characterization, and fundamental knowledge that is needed for anticipated advances in key application areas.
Collapse
Affiliation(s)
- Gaurav
R. Dey
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Samuel S. Soliman
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Connor R. McCormick
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Charles H. Wood
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rowan R. Katzbaer
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E. Schaak
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Buckingham MA, Skelton JM, Lewis DJ. Synthetic Strategies toward High Entropy Materials: Atoms-to-Lattices for Maximum Disorder. CRYSTAL GROWTH & DESIGN 2023; 23:6998-7009. [PMID: 37808901 PMCID: PMC10557048 DOI: 10.1021/acs.cgd.3c00712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Indexed: 10/10/2023]
Abstract
High-entropy materials are a nascent class of materials that exploit a high configurational entropy to stabilize multiple elements in a single crystal lattice and to yield unique physical properties for applications in energy storage, catalysis, and thermoelectric energy conversion. Initially, the synthesis of these materials was conducted by approaches requiring high temperatures and long synthetic time scales. However, successful homogeneous mixing of elements at the atomic level within the lattice remains challenging, especially for the synthesis of nanomaterials. The use of atom-up synthetic approaches to build crystal lattices atom by atom, rather than the top-down alteration of extant crystalline lattices, could lead to faster, lower-temperature, and more sustainable approaches to obtaining high entropy materials. In this Perspective, we discuss some of these state-of-the-art atom-up synthetic approaches to high entropy materials and contrast them with more traditional approaches.
Collapse
Affiliation(s)
- Mark A. Buckingham
- Department
of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Jonathan M. Skelton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - David J. Lewis
- Department
of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| |
Collapse
|
20
|
Meng Z, Xu Z, Tian H, Zheng W. Insights into high-entropy material synthesis dynamics criteria based on a thermodynamic framework. MATERIALS HORIZONS 2023; 10:3293-3303. [PMID: 37365968 DOI: 10.1039/d3mh00360d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
High-entropy materials (HEMs) have attracted increasing research interests owing to their structural diversity and great potential for regulation. Numerous HEMs synthesis criteria have so far been reported but most are based on thermodynamics while a guiding basis for the synthesis of HEMs is lacking, resulting in many synthesis problems. Based on the overall thermodynamic formation criterion of HEMs, this study has explored the principles of the synthesis dynamics required based on this criterion and the influence of different synthesis kinetic rates on the final products of the reaction, filling the gap suggesting that thermodynamic criteria cannot guide the specific process changes. This will effectively provide more specific guidelines for the top-level design of material synthesis. By considering various aspects of HEMs synthesis criteria, new technologies suitable for high-performance HEMs catalysts were extracted. Also, the physical and chemical characteristics of the HEMs obtained from actual synthesis can be predicted in a better way, playing an important role in the personalized customization of HEMs with specific performance. Future development directions of HEMs synthesis were prospected for possible prediction and customization of HEMs catalysts with high performance.
Collapse
Affiliation(s)
- Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Zijin Xu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
21
|
Fan J, Wang T, Bridges CA, Borisevich AY, Steren CA, Li P, Thapaliya BP, Do-Thanh CL, Yang Z, Yuan Y, Dai S. Entropy stabilized cubic Li 7La 3Zr 2O 12 with reduced lithium diffusion activation energy: studied using solid-state NMR spectroscopy. RSC Adv 2023; 13:19856-19861. [PMID: 37409041 PMCID: PMC10318413 DOI: 10.1039/d3ra02206d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Stabilizing cubic polymorph of Li7La3Zr2O12 at low temperatures is challenging and currently limited to mono- or dual-ion doping with aliovalent ions. Herein, a high-entropy strategy at the Zr sites was deployed to stabilize the cubic phase and lower the lithium diffusion activation energy, evident from the static 7Li and MAS 6Li NMR spectra.
Collapse
Affiliation(s)
- Juntian Fan
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge 37831 USA
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge 37831 USA
| | - Craig A Bridges
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge 37831 USA
| | - Albina Y Borisevich
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Oak Ridge 37831 USA
| | - Carlos A Steren
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | - Pengzhen Li
- Department of Agricultural and Resource Economics, University of Tennessee Knoxville TN 37996 USA
| | - Bishnu P Thapaliya
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge 37831 USA
| | - Chi-Linh Do-Thanh
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge 37831 USA
| | - Yating Yuan
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge 37831 USA
| | - Sheng Dai
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge 37831 USA
| |
Collapse
|
22
|
Li Y, Li P, Chen Y, Wu Y, Wei J. Interfacial deposition of Ag nanozyme on metal-polyphenol nanosphere for SERS detection of cellular glutathione. Biosens Bioelectron 2023; 228:115200. [PMID: 36921386 DOI: 10.1016/j.bios.2023.115200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
The low polarization and low Raman cross section characteristics of glutathione (GSH) make it challenging to directly detect GSH molecules through surface enhanced Raman scattering (SERS) technology. Development of nanostructures for indirect detection of GSH applied to the SERS platform is of great interest. Herein, silver nanoparticles (Ag NPs)/copper-polyphenol colloidal spheres (denoted as CuTA@Ag) with adjustable Ag NPs coverage are prepared by deposition of Ag NPs on the metal-polyphenol colloidal spheres via an interfacial polyphenol reduction method. The size and density of the Ag NPs deposited on the out layer can be readily adjusted by tailoring the concentrations of silver precursor. It leads to activity difference for the nanozyme and SERS characteristics. The SERS properties of the obtained CuTA@Ag are studied using oxTMB, catalytic products of nanozyme, as the probing molecules. They provide satisfactory SERS performance with a low detection limit of 10-7 M (S/N = 3) and linear determination in the 1-100 μM range for GSH. Moreover, it is further able to detect the glutathione content in cancer cells with well accurate and reproducible capability, catching the signs of rising cancer marker levels. This work proposes structurally tunable nanomaterials platform for a catalytic-based SERS assay, which is expected to utilize the high sensitivity of SERS tool for GSH detection in the cellular environment.
Collapse
Affiliation(s)
- Yuxin Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Yiqing Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Yue Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| |
Collapse
|
23
|
Einert M, Waheed A, Lauterbach S, Mellin M, Rohnke M, Wagner LQ, Gallenberger J, Tian C, Smarsly BM, Jaegermann W, Hess F, Schlaad H, Hofmann JP. Sol-Gel-Derived Ordered Mesoporous High Entropy Spinel Ferrites and Assessment of Their Photoelectrochemical and Electrocatalytic Water Splitting Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205412. [PMID: 36653934 DOI: 10.1002/smll.202205412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico- and (photo-) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe2 O4 thin films synthesized by a soft-templating and dip-coating approach. The A-site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase-pure and crack-free on the meso- and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X-ray-based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity-modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm-2 in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications.
Collapse
Affiliation(s)
- Marcus Einert
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Arslan Waheed
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Stefan Lauterbach
- Institute for Applied Geosciences, Geomaterial Science, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287, Darmstadt, Germany
| | - Maximilian Mellin
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Marcus Rohnke
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Lysander Q Wagner
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Institute for Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Julia Gallenberger
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Chuanmu Tian
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Bernd M Smarsly
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Institute for Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Wolfram Jaegermann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Franziska Hess
- Institute of Chemistry, Technical University Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Helmut Schlaad
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| |
Collapse
|
24
|
Yan X, Wang C, Ai T, Li Z, Niu Y. Synthesis of porous (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high entropy oxide catalysts for peroxymonosulfate activation toward tetracycline degradation. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
25
|
Ponti A, Triolo C, Petrovičovà B, Ferretti AM, Pagot G, Xu W, Di Noto V, Pinna N, Santangelo S. Structure and magnetism of electrospun porous high-entropy (Cr 1/5Mn 1/5Fe 1/5Co 1/5Ni 1/5) 3O 4, (Cr 1/5Mn 1/5Fe 1/5Co 1/5Zn 1/5) 3O 4 and (Cr 1/5Mn 1/5Fe 1/5Ni 1/5Zn 1/5) 3O 4 spinel oxide nanofibers. Phys Chem Chem Phys 2023; 25:2212-2226. [PMID: 36594637 DOI: 10.1039/d2cp05142g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
High-entropy oxide nanofibers, based on equimolar (Cr,Mn,Fe,Co,Ni), (Cr,Mn,Fe,Co,Zn) and (Cr,Mn,Fe,Ni,Zn) combinations, were prepared by electrospinning followed by calcination. The obtained hollow nanofibers exhibited a porous structure consisting of interconnected nearly strain-free (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4, (Cr1/5Mn1/5Fe1/5Co1/5Zn1/5)3O4 and (Cr1/5Mn1/5Fe1/5Ni1/5Zn1/5)3O4 single crystals with a pure Fd3̄m spinel structure. Oxidation state of the cations at the nanofiber surface was assessed by X-ray photoelectron spectroscopy and cation distributions were proposed satisfying electroneutrality and optimizing octahedral stabilization. The magnetic data are consistent with a distribution of cations that satisfies the energetic preferences for octahedral vs. tetrahedral sites and is random only within the octahedral and tetrahedral sublattices. The nanofibers are ferrimagnets with relatively low critical temperature more similar to cubic chromites and manganites than to ferrites. Replacing the magnetic cations Co or Ni with non-magnetic Zn lowers the critical temperature from 374 K (Cr,Mn,Fe,Co,Ni) to 233 and 105 K for (Cr,Mn,Fe,Ni,Zn) and (Cr,Mn,Fe,Co,Zn), respectively. The latter nanofibers additionally have a low temperature transition to a reentrant spin-glass-like state.
Collapse
Affiliation(s)
- Alessandro Ponti
- Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via Fantoli 16/15, 20138 Milano, Italy.
| | - Claudia Triolo
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali (DICEAM), Università "Mediterranea", Loc. Feo di Vito, 89122 Reggio Calabria, Italy. .,National Reference Center for Electrochemical Energy Storage (GISEL), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Beatrix Petrovičovà
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali (DICEAM), Università "Mediterranea", Loc. Feo di Vito, 89122 Reggio Calabria, Italy.
| | - Anna M Ferretti
- Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via Fantoli 16/15, 20138 Milano, Italy.
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Wenlei Xu
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany.
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany.
| | - Saveria Santangelo
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali (DICEAM), Università "Mediterranea", Loc. Feo di Vito, 89122 Reggio Calabria, Italy. .,National Reference Center for Electrochemical Energy Storage (GISEL), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| |
Collapse
|
26
|
Pikalova EY, Kalinina EG, Pikalova NS, Filonova EA. High-Entropy Materials in SOFC Technology: Theoretical Foundations for Their Creation, Features of Synthesis, and Recent Achievements. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248783. [PMID: 36556589 PMCID: PMC9781791 DOI: 10.3390/ma15248783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 05/31/2023]
Abstract
In this review, recent achievements in the application of high-entropy alloys (HEAs) and high-entropy oxides (HEOs) in the technology of solid oxide fuel cells (SOFC) are discussed for the first time. The mechanisms of the stabilization of a high-entropy state in such materials, as well as the effect of structural and charge factors on the stability of the resulting homogeneous solid solution are performed. An introduction to the synthesis methods for HEAs and HEOs is given. The review highlights such advantages of high-entropy materials as high strength and the sluggish diffusion of components, which are promising for the use at the elevated temperatures, which are characteristic of SOFCs. Application of the medium- and high-entropy materials in the hydrocarbon-fueled SOFCs as protective layers for interconnectors and as anode components, caused by their high stability, are covered. High-entropy solid electrolytes are discussed in comparison with traditional electrolyte materials in terms of conductivity. High-entropy oxides are considered as prospective cathodes for SOFCs due to their superior electrochemical activity and long-term stability compared with the conventional perovskites. The present review also determines the prioritizing directions in the future development of high-entropy materials as electrolytes and electrodes for SOFCs operating in the intermediate and low temperature ranges.
Collapse
Affiliation(s)
- Elena Y. Pikalova
- Laboratory of Solid Oxide Fuel Cells, Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620137, Russia
- Department of Environmental Economics, Graduate School of Economics and Management, Ural Federal University, Yekaterinburg 620002, Russia
| | - Elena G. Kalinina
- Laboratory of Complex Electrophysic Investigations, Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620016, Russia
- Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
| | - Nadezhda S. Pikalova
- Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620016, Russia
| | - Elena A. Filonova
- Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
| |
Collapse
|
27
|
Kim KH, Choi YH. Effect of constituent cations on the electrocatalytic oxygen evolution reaction in high-entropy oxide (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)O. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation. Molecules 2022; 27:molecules27185951. [PMID: 36144684 PMCID: PMC9504205 DOI: 10.3390/molecules27185951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Hexanary high-entropy oxides (HEOs) were synthesized through the mechanochemical sol-gel method for electrocatalytic water oxidation reaction (WOR). As-synthesized catalysts were subjected to characterization, including X-ray diffraction (XRD), Fourier transforms infrared (FTIR) analysis, and scanning electron microscopy (SEM). All the oxide systems exhibited sharp diffraction peaks in XRD patterns indicating the defined crystal structure. Strong absorption between 400–700 cm−1 in FTIR indicated the formation of metal-oxide bonds in all HEO systems. WOR was investigated via cyclic voltammetry using HEOs as electrode platforms, 1M KOH as the basic medium, and 1M methanol (CH3OH) as the facilitator. Voltammetric profiles for both equiatomic (EHEOs) and non-equiatomic (NEHEOs) were investigated, and NEHEOs exhibited the maximum current output for WOR. Moreover, methanol addition improved the current profiles, thus leading to the electrode utility in direct methanol fuel cells as a sequential increase in methanol concentration from 1M to 2M enhanced the OER current density from 61.4 to 94.3 mA cm−2 using NEHEO. The NEHEOs comprising a greater percentage of Al, ([Al0.35(Mg, Fe, Cu, Ni, Co)0.65]3O4) displayed high WOR catalytic performance with the maximum diffusion coefficient, D° (10.90 cm2 s−1) and heterogeneous rate constant, k° (7.98 cm s−1) values. These primary findings from the EC processes for WOR provide the foundation for their applications in high-energy devices. Conclusively, HEOs are proven as novel and efficient catalytic platforms for electrochemical water oxidation.
Collapse
|
30
|
High-Entropy Spinel Oxides Produced via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteries. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the last few years, high-entropy oxides (HEOs), a new class of single-phase solid solution materials, have attracted growing interest in both academic research and industry for their great potential in a broad range of applications. This work investigates the possibility of producing pure single-phase HEOs with spinel structure (HESOs) under milder conditions (shorter heat treatments at lower temperatures) than standard solid-state techniques, thus reducing the environmental impact. For this purpose, a large set of HESOs was prepared via sol-gel and electrospinning (by using two different polymers). Ten different equimolar combinations of five metals were considered, and the influence of the synthesis method and conditions on the microstructure, morphology and crystalline phase purity of the produced HESOs was investigated by a combination of characterization techniques. On the other hand, the presence of specific metals, such as copper, lead to the formation of minority secondary phase(s). Finally, two representative pure single-phase HESOs were preliminarily evaluated as active anode materials in lithium-ion batteries and possible strategies to enhance their rate capability and cyclability were proposed and successfully implemented. The approaches introduced here can be extensively applied for the optimization of HEO properties targeting different applications.
Collapse
|
31
|
Li F, Sun SK, Chen Y, Naka T, Hashishin T, Maruyama J, Abe H. Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides. NANOSCALE ADVANCES 2022; 4:2468-2478. [PMID: 36134132 PMCID: PMC9418488 DOI: 10.1039/d1na00871d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Low-dimensional high-entropy materials, such as nanoparticles and two-dimensional (2D) layers, have great potential for catalysis and energy applications. However, it is still challenging to synthesize 2D layered high-entropy materials through a bottom-up soft chemistry method, due to the difficulty of mixing and assembling multiple elements in 2D layers. Here, we report a simple polyol process for the synthesis of a series of 2D layered high-entropy transition metal (Co, Cr, Fe, Mn, Ni, and Zn) hydroxides (HEHs), involving the hydrolysis and inorganic polymerization of metal-containing species in ethylene glycol media. The as-synthesized HEHs demonstrate 2D layered structures with interlayer distances ranging from 0.860 to 0.987 nm and homogeneous elemental distribution of designed equimolar stoichiometry in the layers. These 2D HEHs exhibit a low overpotential of 275 mV at 10 mA cm-2 in a 0.1 M KOH electrolyte for the oxygen evolution reaction. Superparamagnetic spinel-type high-entropy nanoparticles can also be obtained by annealing these HEHs. Our polyol approach creates opportunities for synthesizing low-dimensional high-entropy materials with promising properties and applications.
Collapse
Affiliation(s)
- Fei Li
- Joining and Welding Research Institute, Osaka University Osaka 5670047 Japan
| | - Shi-Kuan Sun
- School of Material Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University Hangzhou 310024 China
| | - Takashi Naka
- National Institute for Materials Science Ibaraki 3050047 Japan
| | - Takeshi Hashishin
- Faculty of Advanced Science and Technology, Kumamoto University Kumamoto 8608555 Japan
| | - Jun Maruyama
- Osaka Research Institute of Industrial Science and Technology Osaka 5368553 Japan
| | - Hiroya Abe
- Joining and Welding Research Institute, Osaka University Osaka 5670047 Japan
| |
Collapse
|
32
|
Wang G, Zhang Y, Ge L, Liu Z, Zhu X, Yang S, Jin P, Zeng X, Zhang X. Monodispersed CuO nanoparticles supported on mineral substrates for groundwater remediation via a nonradical pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128282. [PMID: 35074751 DOI: 10.1016/j.jhazmat.2022.128282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Nonradical oxidation based on singlet oxygen (1O2) has attracted great interest in groundwater remediation due to the selective oxidation property and good resistance to background constituents. Herein, recoverable CuO nanoparticles (NPs) supported on mineral substrates (SiO2) were prepared by calcination of surface-coated metal-plant phenolic networks and explored for peroxymonosulfate (PMS) activation to generate 1O2 for degrading organic pollutants in groundwater. CuO NPs with a close particle size (40 nm) were spatially monodispersed on SiO2 substrates, allowing highly exposure of active sites and consequently leading to outstanding catalytic performance. Efficient removal of various organic pollutants was obtained by the supported CuO NPs/PMS system under wide operation conditions, e.g., working pH, background anions and natural organic matters. Chemical scavenging experiments, electron paramagnetic resonance tests, furfuryl alcohol decay and solvent dependency experiments confirmed the formation of 1O2 and its dominant role in pollutants removal. In situ characterization with ATR-FTIR and Raman spectroscopy and computational calculation revealed that a redox cycle of surface Cu(II)-Cu(III)-Cu(II) was responsible for the generation of 1O2. The feasibility of the supported CuO NPs/PMS for actual groundwater remediation was evaluated via a flow-through test in a fixed-bed column, which manifested long-term durability, high mineralization ratio and low metal ion leaching.
Collapse
Affiliation(s)
- Gen Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Yue Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Lei Ge
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Zhuoyue Liu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Xiurong Zhu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Shengjiong Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Pengkang Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Xiangkang Zeng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Xiwang Zhang
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
33
|
Wang G, Yang S, Cao L, Jin P, Zeng X, Zhang X, Wei J. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214086] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Qin J, Feng Y, Cheng D, Liu B, Wang Z, Zhao Y, Wei J. Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40302-40314. [PMID: 34412471 DOI: 10.1021/acsami.1c10821] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozyme has been regarded as one of the antibacterial agents to kill bacteria via a Fenton-like reaction in the presence of H2O2. However, it still suffers drawbacks such as insufficient catalytic activity in near-neutral conditions and the requirement of high H2O2 levels, which would minimize the side effects to healthy tissues. Herein, a mesoporous ceria hollow sphere/enzyme nanoreactor is constructed by loading glucose oxidase in the mesoporous ceria hollow sphere nanozyme. Due to the mesoporous framework, large internal voids, and high specific surface area, the obtained nanoreactor can effectively convert the nontoxic glucose into highly toxic hydroxyl radicals via a cascade catalytic reaction. Moreover, the generated glucose acid can decrease the localized pH value, further boosting the peroxidase-like catalytic performance of mesoporous ceria. The generated hydroxyl radicals could damage severely the cell structure of the bacteria and prevent biofilm formation. Moreover, the in vivo experiments demonstrate that the nanoreactor can efficiently eliminate 99.9% of bacteria in the wound tissues and prevent persistent inflammation without damage to normal tissues in mice. This work provides a rational design of a nanoreactor with enhanced catalytic activity, which can covert glucose to hydroxyl radicals and exhibits potential applications in antibacterial therapy.
Collapse
Affiliation(s)
- Jing Qin
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Dong Cheng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Ningxia 750021, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
35
|
Cheng D, Qin J, Feng Y, Wei J. Synthesis of Mesoporous CuO Hollow Sphere Nanozyme for Paper-Based Hydrogen Peroxide Sensor. BIOSENSORS 2021; 11:258. [PMID: 34436060 PMCID: PMC8392683 DOI: 10.3390/bios11080258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/03/2023]
Abstract
Point-of-care monitoring of hydrogen peroxide is important due to its wide usage in biomedicine, the household and industry. Herein, a paper sensor is developed for sensitive, visual and selective detection of H2O2 using a mesoporous metal oxide hollow sphere as a nanozyme. The mesoporous CuO hollow sphere is synthesized by direct decomposition of copper-polyphenol colloidal spheres. The obtained mesoporous CuO hollow sphere shows a large specific surface area (58.77 m2/g), pore volume (0.56 cm3/g), accessible mesopores (5.8 nm), a hollow structure and a uniform diameter (~100 nm). Furthermore, they are proven to show excellent peroxidase-like activities with Km and Vmax values of 120 mM and 1.396 × 10-5 M·s-1, respectively. Such mesoporous CuO hollow spheres are then loaded on the low-cost and disposable filter paper test strip. The obtained paper sensor can be effectively used for detection of H2O2 in the range of 2.4-150 μM. This work provides a new kind of paper sensor fabricated from a mesoporous metal oxide hollow sphere nanozyme. These sensors could be potentially used in bioanalysis, food security and environmental protection.
Collapse
Affiliation(s)
| | | | | | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.Q.); (Y.F.)
| |
Collapse
|
36
|
Qin J, Liang G, Cheng D, Liu Y, Cheng X, Yang P, Wu N, Zhao Y, Wei J. Controllable synthesis of iron-polyphenol colloidal nanoparticles with composition-dependent photothermal performance. J Colloid Interface Sci 2021; 593:172-181. [PMID: 33744528 DOI: 10.1016/j.jcis.2021.02.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Iron-polyphenol nanoparticles are usually prepared with nontoxic plant polyphenols as a main building block, which are an emerging photothermal agent for photothermal therapy. However, till now, few works have been made on the controllable synthesis of iron-polyphenol nanoparticles with tunable composition, as well as investigation of the relationship between material composition and photothermal property. In the present study, iron-polyphenol colloidal nanoparticles with tunable diameter (21-303 nm) and ion content (9.2-97.6 mg/g), as well as high colloidal stability are successfully synthesized using different polyphenols (such as tannic acid, epigallocatechin gallate, gallic acid, epicatechin and proanthocyanidin) as a ligand. In addition, photothermal performance is highly dependent on the organic ligand, iron content and particle size. Higher iron content and smaller diameter can contribute to higher photothermal performance. The iron-polyphenol nanoparticles with the optimal iron content and particle size are selected as a photothermal agent. They can effectively inhibit the tumour growth in vivo. The current work demonstrates a general synthesis strategy for iron-polyphenol colloidal nanoparticles with tailorable composition and clarifies the relationship between material composition and photothermal performance. Moreover, it is conductive to the rational design of polyphenol-based photothermal agents for theranostic applications.
Collapse
Affiliation(s)
- Jing Qin
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Guohai Liang
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Dong Cheng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yining Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoran Cheng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pengkun Yang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|