1
|
Wu J, Yan H, Yang X, Qiao L, Rao X, Zhou R. Poly-Lysine-Derived Carbon Quantum Dots Promote the Repair of Bone Defects in Osteomyelitis Through Antibacterial and Osteogenic Effects. Int J Nanomedicine 2025; 20:7199-7214. [PMID: 40491853 PMCID: PMC12147817 DOI: 10.2147/ijn.s521727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025] Open
Abstract
Background Osteomyelitis is a challenging clinical condition to manage effectively. In this study, we used ε-Poly (L-lysine) as the raw material to synthesize carbon quantum dots (PL-CQDs). These PL-CQDs possess antibacterial and osteogenesis ability, and are expected to improve the therapeutic effect of osteomyelitis. Methods PL-CQDs were synthesized via a dry heat-intermittent ultrasound method and characterized. The antibacterial efficacy of PL-CQDs was assessed using the spread plate method. The biological functions of PL-CQDs were evaluated through CCK-8 assays, scratch wound healing assay, osteogenic differentiation experiments, and transcriptome sequencing. In the in vivo experiments, the rats with osteomyelitis were evenly divided into five groups and treated with calcium sulfate containing different concentrations of PL-CQDs, and the therapeutic effects were evaluated by micro-CT and histology. Results PL-CQDs at concentrations of 200, 400, and 800 µg/mL exhibited no cytotoxicity and demonstrated the ability to kill methicillin-resistant Staphylococcus aureus and Escherichia coli. Additionally, PL-CQDs promoted the migration and osteogenic differentiation of mouse pre-osteoblasts (MC3T3-E1) cells. Transcriptome sequencing revealed that PL-CQDs significantly altered the ECM-receptor interaction signaling pathways and participated in biological processes such as the positive regulation of chondrocyte proliferation, collagen fiber organization, and regulation of fibroblast proliferation. Micro-CT and Masson staining results showed that the incorporation of PL-CQDs at different concentrations was beneficial to the repair of osteomyelitis defects, with the best repair in the PL-CQD50@CS group. Immunohistochemistry (CD31, DMP1) suggested that PL-CQDs facilitated the repair of osteomyelitis by enhancing matrix deposition and vascularization at the bone defect site. Conclusion PL-CQDs exhibit antibacterial and osteogenic properties and may serve as a potential alternative treatment for osteomyelitis.
Collapse
Affiliation(s)
- Jianghong Wu
- Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, People’s Republic of China
| | - He Yan
- Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiaorong Yang
- Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Li Qiao
- Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, People’s Republic of China
| | - Renjie Zhou
- Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Lu T, Chen Y, Sun M, Chen Y, Tu W, Zhou Y, Li X, Hu T. Multifunctional Carbon-Based Nanocomposite Hydrogels for Wound Healing and Health Management. Gels 2025; 11:345. [PMID: 40422365 DOI: 10.3390/gels11050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/28/2025] Open
Abstract
Compared with acute wounds, typical chronic wounds (infection, burn, and diabetic wounds) are susceptible to bacterial infection and hard to heal. As for the complexity of chronic wounds, biocompatible hydrogel dressings can be employed to regulate the microenvironment and accelerate wound healing with their controllable physical and chemical properties. Recently, various nanomaterials have been introduced into hydrogel networks to prepare functional nanocomposite hydrogels. Among them, carbon-based nanomaterials (CBNs) have attracted wide attention in the biomedical field due to their outstanding physicochemical properties. However, comprehensive reviews on the use of CBNs for multifunctional hydrogel wound dressings in the past 10 years are very scarce. This review focuses on the research progress on hydrogel dressings made with typical CBNs. Specifically, a series of CBNs (carbon dots, graphene quantum dots, fullerenes, nanodiamonds, carbon nanotubes, graphene, graphene oxide and reduced graphene oxide) employed in the preparation of hydrogels are described as well as carbon-based nanocomposite hydrogels (CBNHs) with versatility (conductivity, antibacterial, injectable and self-healing, anti-inflammatory and antioxidant properties, substance delivery, stimulus response and real-time monitoring). Moreover, applications of CBNHs in treating different chronic wounds are concretely discussed. This review may provide some new inspirations for the future development of CBNHs in wound care and tissue engineering.
Collapse
Affiliation(s)
- Tianyi Lu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Yaqian Chen
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Meng Sun
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Yuxian Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Weilong Tu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Yuxuan Zhou
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Xiao Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
- Advanced Ocean Institute of Southeast University, Nantong 226010, China
| | - Tao Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
- Advanced Ocean Institute of Southeast University, Nantong 226010, China
| |
Collapse
|
3
|
Qi W, Liu Y, Dong N, Li M, Zhou J, Xie Y, Chang Q, Luo B, Celia C, Wang J, Zhao RC, Deng X. Multifunctional Carbon Quantum Dots for Monitoring and Therapy of Bacterial Infected Wounds. Adv Healthc Mater 2025; 14:e2403670. [PMID: 39962805 DOI: 10.1002/adhm.202403670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Indexed: 05/17/2025]
Abstract
Bacterial infections in wounds and bacteremia present significant global health challenges, driving the urgent need for innovative alternatives to traditional antibiotics. Here, the development of PEI-EDTA-2Na carbon quantum dots (PECDs) synthesized via a hydrothermal method is reported. Synthesis conditions affect PECDs' antibacterial efficacy; those at 180 °C have optimal -NH2 functionalization for better adhesion and activity. PECDs are pH - responsive, eradicating bacteria in weakly acidic conditions by disrupting DNA and proteins. Following the resolution of infection, PECDs adapt to neutral and alkaline environments, where they scavenge reactive oxygen species (ROS), reduce inflammation, promote macrophage polarization, and accelerate wound healing. Furthermore, PECDs significantly improve survival in bacteremia models. Their intrinsic fluorescence enables real-time pH monitoring of wounds, offering a non-invasive diagnostic tool. Genomic and transcriptomic analyses reveal that PECDs disrupt bacterial metabolism and resistance pathways, while simultaneously supporting antibacterial and anti-inflammatory responses during tissue repair. This dual functionality-combining therapeutic efficacy in wound healing with antimicrobial and anti-inflammatory properties in bacteremia-positions PECDs as a versatile platform for smart wound management and an emerging candidate for advanced biomedical applications.
Collapse
Affiliation(s)
- Wenxin Qi
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- School of Life Sciences, Shanghai University, Shanghai, 200240, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Naijun Dong
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, P. R. China
| | - Mengting Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianxin Zhou
- School of Life Sciences, Shanghai University, Shanghai, 200240, China
| | - Yijun Xie
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qing Chang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Benxiang Luo
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200240, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200240, China
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100191, China
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Devin PK, Farahpour MR, Tabatabaei ZG. Multicomponent biopolymer hydrogels based on polycaprolactone with the combination of nano silver and linalool for the healing of infectious wounds. Int Immunopharmacol 2025; 148:114075. [PMID: 39862628 DOI: 10.1016/j.intimp.2025.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds. Assessments included wound closure rates, bacterial counts, histopathological parameters, and immunofluorescence staining for Ki-67, keratinocyte growth factor (KGF), collagen type I (COL1A), vascular endothelial growth factor (VEGF), extracellular signal-regulated kinases 1 and 2 (ERK1/2), cluster of differentiation 206 (CD206), cluster of differentiation (CD31) and basic fibroblast growth factor (bFGF). The hydrogel structures demonstrated significant safety and antibacterial activity. Administration of hydrogels accelerated wound healing by reducing bacterial counts in granulation tissue and edema, while promoting fibroblast activity and epithelization. Additionally, there was increased expression of VEGF, CD31, ERK1/2, CD206, bFGF, Ki-67, KGF, and COL1A compared to control groups (P = 0.000). Synergistic interactions between Ag and Lin were observed in enhancing the wound healing process. In conclusion, these hydrogels effectively accelerated wound healing through antibacterial properties and modulation of gene expression.
Collapse
Affiliation(s)
- Paria Khodapanah Devin
- Department of Clinical Sciences Faculty of Veterinary Medicine Urmia Branch Islamic Azad University Urmia Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences Faculty of Veterinary Medicine Urmia Branch Islamic Azad University Urmia Iran.
| | | |
Collapse
|
5
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
6
|
Han Y, Hao H, Zeng H, Li H, Niu X, Qi W, Zhang D, Wang K. Harnessing the Potential of Graphene Quantum Dots for Multifunctional Biomedical Applications. CHEM REC 2024; 24:e202400185. [PMID: 39529421 DOI: 10.1002/tcr.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The existing and emerging demand for materials for life and health has contributed to the cultivation and development of respective markets. Nevertheless, the current generation of biomedical materials has yet to fully satisfy the clinical requirements of the market, which is still in its relative infancy. Research and development in this area must be prioritized in light of the pivotal role of new life and health materials in the biological field. Among many life and health materials, GQDs, an emerging nanomaterial, exhibit considerable promise in the biomedical field, primarily due to their exceptional properties. Furthermore, the direct preparation and functionalization of GQDs have facilitated the development of specific functional composites based on GQDs. The biological applications of GQDs are undergoing rapid growth, which makes it necessary to publish a review article presenting the latest advances in this field. This review provides an overview of the significant advances in synthesizing GQDs, the techniques employed for structural characterizations, and the properties that have been elucidated. Furthermore, it presents recent findings on applying GQDs in antimicrobial, anticancer, biosensing, drug delivery, and bioimaging applications. Finally, it explores the potential of GQDs in biomedicine and biotechnology, highlighting the current challenges that remain to be addressed.
Collapse
Affiliation(s)
- Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongyan Hao
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Haixiang Zeng
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Wei Qi
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
7
|
Guan S, Tang M. Exposure of quantum dots in the nervous system: Central nervous system risks and the blood-brain barrier interface. J Appl Toxicol 2024; 44:936-952. [PMID: 38062852 DOI: 10.1002/jat.4568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 07/21/2024]
Abstract
Quantum dots currently possess significant importance in the field of biomedical science. Upon introduction into the body, quantum dots exhibit a tendency to accumulate in diverse tissues including the central nervous system (CNS). Consequently, it becomes imperative to devote specific attention to their potential toxic effects. Moreover, the preservation of optimal CNS function relies heavily on blood-brain barrier (BBB) integrity, thereby necessitating its prioritization in neurotoxicological investigations. A more comprehensive understanding of the BBB and CNS characteristics, along with the underlying mechanisms that may contribute to neurotoxicity, will greatly aid researchers in the development of effective design strategies. This article offers an in-depth look at the methods used to reduce the harmful effects of quantum dots on the nervous system, alongside the progression of effective treatments for brain-related conditions. The focal point of this discussion is the BBB and its intricate association with the CNS and neurotoxicology. The discourse commences by recent advancements in the medical application of quantum dots are examined. Subsequently, elucidating the mechanisms through which quantum dots infiltrate the human body and traverse into the brain. Additionally, the discourse delves into the factors that facilitate the passage of quantum dots across the BBB, primarily encompassing the physicochemical properties of quantum dots and the BBB's inherent capacity for self-permeability alteration. Furthermore, a concluding summary is presented, emphasizing existing research deficiencies and identifying promising avenues for further investigation within this field.
Collapse
Affiliation(s)
- Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Bae G, Cho H, Hong BH. A review on synthesis, properties, and biomedical applications of graphene quantum dots (GQDs). NANOTECHNOLOGY 2024; 35:372001. [PMID: 38853586 DOI: 10.1088/1361-6528/ad55d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
A new type of 0-dimensional carbon-based materials called graphene quantum dots (GQDs) is gaining significant attention as a non-toxic and eco-friendly nanomaterial. GQDs are nanomaterials composed of sp2hybridized carbon domains and functional groups, with their lateral size less than 10 nm. The unique and exceptional physical, chemical, and optical properties arising from the combination of graphene structure and quantum confinement effect due to their nano-size make GQDs more intriguing than other nanomaterials. Particularly, the low toxicity and high solubility derived from the carbon core and abundant edge functional groups offer significant advantages for the application of GQDs in the biomedical field. In this review, we summarize various synthetic methods for preparing GQDs and important factors influencing the physical, chemical, optical, and biological properties of GQDs. Furthermore, the recent application of GQDs in the biomedical field, including biosensor, bioimaging, drug delivery, and therapeutics are discussed. Through this, we provide a brief insight on the tremendous potential of GQDs in biomedical applications and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Gaeun Bae
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Sun G, Huang S, Wang S, Li Y. Nanomaterial-based drug-delivery system as an aid to antimicrobial photodynamic therapy in treating oral biofilm. Future Microbiol 2024; 19:741-759. [PMID: 38683167 PMCID: PMC11259068 DOI: 10.2217/fmb-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Diverse microorganisms live as biofilm in the mouth accounts for oral diseases and treatment failure. For decades, the prevention and treatment of oral biofilm is a global challenge. Antimicrobial photodynamic therapy (aPDT) holds promise for oral biofilm elimination due to its several traits, including broad-spectrum antimicrobial capacity, lower possibility of resistance and low cytotoxicity. However, the physicochemical properties of photosensitizers and the biological barrier of oral biofilm have limited the efficiency of aPDT. Nanomaterials has been used to fabricate nanocarriers to improve photosensitizer properties and thus enhance antimicrobial effect. In this review, we have discussed the challenges of aPDT used in dentistry, categorized the nanomaterial-delivery system and listed the possible mechanisms involved in nanomaterials when enhancing aPDT effect.
Collapse
Affiliation(s)
- Guanwen Sun
- Department of stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Shan Huang
- Department of stomatology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Shaofeng Wang
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Stomatological Disease Diagnosis & Treatment, Xiamen, China
| |
Collapse
|
12
|
Chen R, Zhang K, Shi Y, Ettelaie R, Shi Y, Li D, Zhang S, Dang Y, Chen J. Advancing Photodynamic Antimicrobial Strategy: Sustainable Fabrication of Novel Lauryl Gallate-Chitosan Hydrophobic Films with Rapid Bacterial Capture and Biofilms Elimination Capabilities for Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19571-19584. [PMID: 38564737 DOI: 10.1021/acsami.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.
Collapse
Affiliation(s)
- Rukang Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Ke Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yugang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Yu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Donghui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Siying Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yali Dang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jianshen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| |
Collapse
|
13
|
Liu Y, Xu Y, Wen Q. Carbon dots for staining bacterial dead cells and distinguishing dead/alive bacteria. Anal Biochem 2024; 687:115432. [PMID: 38113980 DOI: 10.1016/j.ab.2023.115432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The small molecular dyes such as propidium iodide (PI) always suffer from photo-bleaching and potential toxicity. To tackle the problems, a type of nontoxic carbon dots (CDs) was obtained for dead/alive bacterial distinguishing. This kind of carbon dots has an average size of 1.91 nm and owns carboxyl groups, emerging as excellent candidates for imaging bacterial cells. The negative charges of carboxyl groups lead their avoidance of alive cells while their small size facilitates penetration of dead cells. This kind of nontoxic CDs has effectively differentiated between and alive ones, presenting a highly promising green dye comparing with traditional small molecular dyes.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Qin Wen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
14
|
Ma S, Kong J, Luo X, Xie J, Zhou Z, Bai X. Recent progress on bismuth-based light-triggered antibacterial nanocomposites: Synthesis, characterization, optical properties and bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170125. [PMID: 38242469 DOI: 10.1016/j.scitotenv.2024.170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Bacterial infections pose a seriously threat to the safety of the environment and human health. In particular, the emergence of drug-resistant pathogens as a result of antibiotic abuse and high trauma risk has rendered conventional therapeutic techniques insufficient for treating infections by these so-called "superbugs". Therefore, there is an urgent need to develop highly efficient and environmentally-friendly antimicrobial agents. Bismuth-based nanomaterials with unique structures and physicochemical characteristics have attracted considerable attention as promising antimicrobial candidates, with many demonstratingoutstanding antibacterial effects upon being triggered by broad-spectrum light. These nanomaterials have also exhibited satisfactory energy band gaps and electronic density distribution with improved photonic properties for extensive and comprehensive applications after being modified through various engineering methods. This review summarizes the latest research progress made on bismuth-based nanomaterials with different morphologies, structures and compositions as well as the different methods used for their synthesis to meet their rapidly increasing demand, especially for antibacterial applications. Moreover, the future prospects and challenges regarding the application of these nanomaterials are discussed. The aim of this review is to stimulate interest in the development and experimental transformation of novel bismuth-based nanomaterials to expand the arsenal of effective antimicrobials.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361002, China
| | - Jun Xie
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zonglang Zhou
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Zarouki MA, Tamegart L, Hejji L, El Hadj Ali YA, Ayadi AE, Villarejo LP, Mennane Z, Souhail B, Azzouz A. Graphene quantum dots based on cannabis seeds for efficient wound healing in a mouse incisional wound model: Link with stress and neurobehavioral effect. Int J Pharm 2024; 649:123658. [PMID: 38042382 DOI: 10.1016/j.ijpharm.2023.123658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Graphene quantum dots (GQDs) are promising biomaterials with potential applicability in several areas due to their many useful and unique features. Among different applications, GQDs are photodynamic therapy agents that generate single oxygen and improve antimicrobial activity. In the present study, and for the first time, GQD were isolated from the Cannabis sativa L. seeds to generate C-GQDs as a new biomaterial for antibacterial and wound healing applications. Detailed characterization was performed using FTIR, UV-vis, Raman spectra, photoluminescence, TEM examination, HRTEM, ζ-potential, and XRD. Our results revealed in vitro and in vivo antibacterial activity of C-GQDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with reduced minimal inhibitory concentration of 236 µg/mL for both strains. In addition, the C-GQDs confirmed the in vitro analysis and exhibited anti-inflammatory activity by reducing the level of neutrophils in blood and skin tissue. C-GQDs act by accelerating re-epithelization and granulation tissue formation. In addition, C-GQDs restored neurobehavioral alteration induced by incisional wounds by reducing oxidative stress, decreasing cortisol levels, increasing anxiolytic-like effect, and increasing vertical locomotor activity. The wound-healing effects of C-GQDs support its role as a potential therapeutic agent for diverse skin injuries.
Collapse
Affiliation(s)
- Mohamed Amine Zarouki
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Lahcen Tamegart
- Department of Biology, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares (Jaén), Spain
| | - Youssef Aoulad El Hadj Ali
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Luis Pérez Villarejo
- Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares (Jaén), Spain
| | - Zakaria Mennane
- Department of Biology, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco.
| |
Collapse
|
16
|
He L, Di D, Chu X, Liu X, Wang Z, Lu J, Wang S, Zhao Q. Photothermal antibacterial materials to promote wound healing. J Control Release 2023; 363:180-200. [PMID: 37739014 DOI: 10.1016/j.jconrel.2023.09.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Wound healing is a crucial process that restores the integrity and function of the skin and other tissues after injury. However, external factors, such as infection and inflammation, can impair wound healing and cause severe tissue damage. Therefore, developing new drugs or methods to promote wound healing is of great significance. Photothermal therapy (PTT) is a promising technique that uses photothermal agents (PTAs) to convert near-infrared radiation into heat, which can eliminate bacteria and stimulate tissue regeneration. PTT has the advantages of high efficiency, controllability, and low drug resistance. Hence, nanomaterial-based PTT and its related strategies have been widely explored for wound healing applications. However, a comprehensive review of PTT-related strategies for wound healing is still lacking. In this review, we introduce the physiological mechanisms and influencing factors of wound healing, and summarize the types of PTAs commonly used for wound healing. Then, we discuss the strategies for designing nanocomposites for multimodal combination treatment of wounds. Moreover, we review methods to improve the therapeutic efficacy of PTT for wound healing, such as selecting the appropriate wound dressing form, controlling drug release, and changing the infrared irradiation window. Finally, we address the challenges of PTT in wound healing and suggest future directions.
Collapse
Affiliation(s)
- Luning He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinhui Chu
- Wuya College of innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinlin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
17
|
Wang Y, Zong Q, Wu H, Ding Y, Pan X, Fu B, Sun W, Zhai Y. Functional Microneedle Patch for Wound Healing and Biological Diagnosis and Treatment. Macromol Biosci 2023; 23:e2300332. [PMID: 37633658 DOI: 10.1002/mabi.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Wound healing, especially chronic wounds, has been one of the major challenges in the field of biomedicine. Drug therapy alone is not effective, so a variety of functional wound healing dressings have been developed. Microneedles have attracted more and more attentions in the field of wound healing dressings due to their penetration and high drug delivery efficiency. In this review, all the studies on the application of microneedles in wound healing in recent years are summarized, classify different microneedles according to their functions in the process of wound healing, discuss the current challenges in the transformation of microneedle technology toward clinical applications, and finally look forward to the future design and development directions of microneedles in this field.
Collapse
Affiliation(s)
- Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Ding
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang, 110016, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
18
|
Fang M, Lin L, Zheng M, Liu W, Lin R. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. J Mater Chem B 2023; 11:9386-9403. [PMID: 37720998 DOI: 10.1039/d3tb01543b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Bacterial infections and inflammation pose a severe threat to human health and the social economy. The existence of super-bacteria and the increasingly severe phenomenon of antibiotic resistance highlight the development of new antibacterial agents. Due to low cytotoxicity, high biocompatibility, and different antibacterial mechanisms from those for antibiotics, functionalized carbon dots (FCDs) promise a new platform for the treatment of bacterial infectious diseases. However, few articles have systematically sorted out the available antibacterial mechanisms for FCDs and their application in the treatment of bacterial inflammation. This review focuses on the available antibacterial mechanisms for FCDs, including covalent and non-covalent interactions, reactive oxygen species, photothermal therapy, and size effect. Meanwhile, the design of antibacterial FCDs is introduced, including surface modification, doping, and combination with other nanomaterials. Furthermore, this review specifically concentrates on the research advances of antibacterial FCDs in the treatment of bacterial inflammation. Finally, the advantages and challenges of applying FCDs in practical antimicrobial applications are discussed.
Collapse
Affiliation(s)
- Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Muyue Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
19
|
Wang Y, Shi HD, Zhang HL, Yu Chen Y, Ren B, Tang Q, Sun Q, Zhang QL, Liu JG. A Multifunctional Nanozyme with NADH Dehydrogenase-Like Activity and Nitric Oxide Release under Near-Infrared Light Irradiation as an Efficient Therapeutic for Antimicrobial Resistance Infection and Wound Healing. Adv Healthc Mater 2023; 12:e2300568. [PMID: 37326411 DOI: 10.1002/adhm.202300568] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Indexed: 06/17/2023]
Abstract
In recent years, antimicrobial resistance (AMR) has become one of the greatest threats to human health. There is an urgent need to develop new antibacterial agents to effectively treat AMR infection. Herein, a novel nanozyme platform (Cu,N-GQDs@Ru-NO) is prepared, where Cu,N-doped graphene quantum dots (Cu,N-GQDs) are covalently functionalized with a nitric oxide (NO) donor, ruthenium nitrosyl (Ru-NO). Under 808 nm near-infrared (NIR) light irradiation, Cu,N-GQDs@Ru-NO demonstrates nicotinamide adenine dinucleotide (NADH) dehydrogenase-like activity for photo-oxidizing NADH to NAD+ , thus disrupting the redox balance in bacterial cells and resulting in bacterial death; meanwhile, the onsite NIR light-delivered NO effectively eradicates the methicillin-resistant Staphylococcus aureus (MRSA) bacterial and biofilms, and promotes wound healing; furthermore, the nanozyme shows excellent photothermal effect that enhances the antibacterial efficacy as well. With the combination of NADH dehydrogenase activity, photothermal therapy, and NO gas therapy, the Cu,N-GQDs@Ru-NO nanozyme displays both in vitro and in vivo excellent efficacy for MRSA infection and biofilm eradication, which provides a new therapeutic modality for effectively treating MRSA inflammatory wounds.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hong-Dong Shi
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, P. R. China
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu- Yu Chen
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, P. R. China
| | - Qian-Ling Zhang
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
20
|
Li X, Jing X, Yu Z, Huang Y. Diverse Antibacterial Treatments beyond Antibiotics for Diabetic Foot Ulcer Therapy. Adv Healthc Mater 2023; 12:e2300375. [PMID: 37141030 DOI: 10.1002/adhm.202300375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Diabetic foot ulcer (DFU), a common complication of diabetes, has become a great burden to both patients and the society. The delayed wound closure of ulcer sites resulting from vascular damage and neutrophil dysfunction facilitates bacterial infection. Once drug resistance occurs or bacterial biofilm is formed, conventional therapy tends to fail and amputation is unavoidable. Therefore, effective antibacterial treatment beyond antibiotics is of utmost importance to accelerate the wound healing process and prevent amputation. Considering the complexity of multidrug resistance, biofilm formation, and special microenvironments (such as hyperglycemia, hypoxia, and abnormal pH value) at the infected site of DFU, several antibacterial agents and different mechanisms have been explored to achieve the desired outcome. The present review focuses on the recent progress of antibacterial treatments, including metal-based medications, natural and synthesized antimicrobial peptides, antibacterial polymers, and sensitizer-based therapy. This review provides a valuable reference for the innovation of antibacterial material design for DFU therapy.
Collapse
Affiliation(s)
- Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Xin Jing
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Ziqian Yu
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
21
|
Sun H, Sun M, You Y, Xie J, Xu X, Li J. Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. CHEMICAL ENGINEERING JOURNAL 2023; 471:144597. [DOI: 10.1016/j.cej.2023.144597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. Trends in Photothermal Nanostructures for Antimicrobial Applications. Int J Mol Sci 2023; 24:9375. [PMID: 37298326 PMCID: PMC10253355 DOI: 10.3390/ijms24119375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid development of antimicrobial resistance due to broad antibiotic utilisation in the healthcare and food industries and the non-availability of novel antibiotics represents one of the most critical public health issues worldwide. Current advances in nanotechnology allow new materials to address drug-resistant bacterial infections in specific, focused, and biologically safe ways. The unique physicochemical properties, biocompatibility, and wide range of adaptability of nanomaterials that exhibit photothermal capability can be employed to develop the next generation of photothermally induced controllable hyperthermia as antibacterial nanoplatforms. Here, we review the current state of the art in different functional classes of photothermal antibacterial nanomaterials and strategies to optimise antimicrobial efficiency. The recent achievements and trends in developing photothermally active nanostructures, including plasmonic metals, semiconductors, and carbon-based and organic photothermal polymers, and antibacterial mechanisms of action, including anti-multidrug-resistant bacteria and biofilm removal, will be discussed. Insights into the mechanisms of the photothermal effect and various factors influencing photothermal antimicrobial performance, emphasising the structure-performance relationship, are discussed. We will examine the photothermal agents' functionalisation for specific bacteria, the effects of the near-infrared light irradiation spectrum, and active photothermal materials for multimodal synergistic-based therapies to minimise side effects and maintain low costs. The most relevant applications are presented, such as antibiofilm formation, biofilm penetration or ablation, and nanomaterial-based infected wound therapy. Practical antibacterial applications employing photothermal antimicrobial agents, alone or in synergistic combination with other nanomaterials, are considered. Existing challenges and limitations in photothermal antimicrobial therapy and future perspectives are presented from the structural, functional, safety, and clinical potential points of view.
Collapse
Affiliation(s)
- Violeta Dediu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Jana Ghitman
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
- NUS College, National University of Singapore, 18 College Avenue East, Singapore 138593, Singapore
| | - Florina Silvia Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Ciprian Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
23
|
Malik SB, Gul A, Saggu JI, Abbasi BA, Azad B, Iqbal J, Kazi M, Chalgham W, Firoozabadi SAM. Fabrication and Characterization of Ag-Graphene Nanocomposites and Investigation of Their Cytotoxic, Antifungal and Photocatalytic Potential. Molecules 2023; 28:molecules28104139. [PMID: 37241880 DOI: 10.3390/molecules28104139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, we aimed to synthesize (Ag)1-x(GNPs)x nanocomposites in variable ratios (25% GNPs-Ag, 50% GNPs-Ag, and 75% GNPs-Ag) via an ex situ approach to investigate the incremental effects of GNPs (graphene nanoparticles) on AgNPs (silver nanoparticles). The prepared nanocomposites were successfully characterized using different microscopic and spectroscopic techniques, including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet spectroscopy, and Raman spectroscopic analysis. For the evaluation of morphological aspects, shape, and percentage elemental composition, SEM and EDX analyses were employed. The bioactivities of the synthesized nanocomposites were briefly investigated. The antifungal activity of (Ag)1-x(GNPs)x nanocomposites was reported to be 25% for AgNPs and 66.25% using 50% GNPs-Ag against Alternaria alternata. The synthesized nanocomposites were further evaluated for cytotoxic potential against U87 cancer cell lines with improved results (for pure AgNPs IC50: ~150 µg/mL, for 50% GNPs-Ag IC50: ~12.5 µg/mL). The photocatalytic properties of the nanocomposites were determined against the toxic dye Congo red, and the percentage degradation was recorded as 38.35% for AgNPs and 98.7% for 50% GNPs-Ag. Hence, from the results, it is concluded that silver nanoparticles with carbon derivatives (graphene) have strong anticancer and antifungal properties. Dye degradation strongly confirmed the photocatalytic potential of Ag-graphene nanocomposites in the removal of toxicity present in organic water pollutants.
Collapse
Affiliation(s)
- Sidra Batool Malik
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Javed Iqbal Saggu
- Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Beenish Azad
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Javed Iqbal
- 2Department of Botany, Bacha Khan University, Charsadda 24420, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wadie Chalgham
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
24
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
25
|
Tang T, Liu Y, Wang P, Xiang Y, Liu L, Xiao S, Wang G. Carbon quantum dots as a nitric oxide donor can promote wound healing of deep partial-thickness burns in rats. Eur J Pharm Sci 2023; 183:106394. [PMID: 36740102 DOI: 10.1016/j.ejps.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/01/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION In this study, a new carbon quantum dots-NO (CQDs-NO) that is based on spermidine trihydrochloride and can be used as a nitric oxide donor was prepared using a two-step hyperthermia-intermittent ultrasonic method, after which its healing effect on deep partial-thickness burn wounds was tested in rats. MATERIALS AND METHODS CQDs-NO were prepared by a two-step hyperthermia-intermittent ultrasonic method. NO-released rate and biocompatibility of CQDs-NO were tested. The biological functions of CQDs-NO were measured by scratch assay, Western blotting, histology, and transcriptome sequencing. RESULTS CQDs-NO with a concentration of 1 μg/mL and 5 μg/mL showed no cytotoxicity. CQDs-NO could release NO when co-cultured with cells or glutathione peroxidase. We also found that CQDs-NO promotes the biological processes such as angiogenesis, cell-substrate adhesion, extracellular matrix organization, cell migration, and wound healing in human umbilical vein endothelial cells (HUVEC). Additionally, CQDs-NO promoted wound healing of deep partial-thickness burn by enhancing vascularization, matrix deposition, as well as regulating the inflammatory reactions of wounds. CONCLUSIONS CQDs-NO could be used as an alternative method for deep partial-thickness burn healing.
Collapse
Affiliation(s)
- Tao Tang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Yingying Liu
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Peng Wang
- Department of Burns and Plastic Surgery Linfen Central Hospital, Linfen, Shanxi, 041000, China
| | - Yang Xiang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Lei Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shichu Xiao
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China.
| | - Guangyi Wang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China.
| |
Collapse
|
26
|
Naskar A, Kim KS. Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections. Pharmaceutics 2023; 15:1116. [PMID: 37111601 PMCID: PMC10146283 DOI: 10.3390/pharmaceutics15041116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are rapidly emerging, coupled with the failure of current antibiotic therapy; thus, new alternatives for effectively treating infections caused by MDR bacteria are required. Hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) have attracted extensive attention as antibacterial therapies owing to advantages such as low invasiveness, low toxicity, and low likelihood of causing bacterial resistance. However, both strategies have notable drawbacks, including the high temperature requirements of PTT and the weak ability of PDT-derived ROS to penetrate target cells. To overcome these limitations, a combination of PTT and PDT has been used against MDR bacteria. In this review, we discuss the unique benefits and limitations of PTT and PDT against MDR bacteria. The mechanisms underlying the synergistic effects of the PTT-PDT combination are also discussed. Furthermore, we introduced advancements in antibacterial methods using nano-based PTT and PDT agents to treat infections caused by MDR bacteria. Finally, we highlight the existing challenges and future perspectives of synergistic PTT-PDT combination therapy against infections caused by MDR bacteria. We believe that this review will encourage synergistic PTT- and PDT-based antibacterial research and can be referenced for future clinical applications.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
27
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
28
|
Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-Based Materials for Inhibition of Wound Infection and Accelerating Wound Healing. Biomed Pharmacother 2023; 158:114184. [PMID: 36587554 DOI: 10.1016/j.biopha.2022.114184] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp2 carbon atoms in a honeycomb structure. It has superior properties, strength, conductivity, antimicrobial, and molecular carrier abilities. Graphene and its derivatives, Graphene oxide (GO) and reduced GO (rGO), have antibacterial activity and could damage bacterial morphology and lead to the leakage of intracellular substances. Besides, for wound infection management, Graphene-platforms could be functionalized by different antibacterial agents such as metal-nanoparticles, natural compounds, and antibiotics. The Graphene structure can absorb near-infrared wavelengths, allowing it to be used as antimicrobial photodynamic therapy. Therefore, Graphene-based material could be used to inhibit pathogens that cause serious skin infections and destroy their biofilm community, which is one of the biggest challenges in treating wound infection. Due to its agglomerated structure, GO hydrogel could entrap and stack the bacteria; thus, it prevents their initial attachment and biofilm formation. The sharp edges of GO could destroy the extracellular polymeric substance surrounding the biofilm and ruin the biofilm biomass structure. As well as, Chitosan and different natural and synthetic polymers such as collagen and polyvinyl alcohol (PVA) also have attracted a great deal of attention for use with GO as wound dressing material. To this end, multi-functional polymers based on Graphene and blends of synthetic and natural polymers can be considered valid non-antibiotic compounds useful against wound infection and improvement of wound healing. Finally, the global wound care market size was valued at USD 20.8 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 5.4% from 2022 to 2027 (USD 27.2 billion). This will encourage academic as well as pharmaceutical and medical device industries to investigate any new materials such as graphene and its derivatives for the treatment of wound healing.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amelia Seifalian
- Department of Urogynaecology and Surgery, Imperial College London, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
29
|
Lin B, Yuan L, Gao B, He B. Patterned Duplex Fabric Based on Genetically Modified Spidroin for Smart Wound Management. Adv Healthc Mater 2023; 12:e2202213. [PMID: 36349744 DOI: 10.1002/adhm.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The treatment of diabetic wounds remains a great challenge for the medical community. Here, a smart patterned DNA double helix (duplex)-like fabric based on genetically modified spider silk protein (PDF-S) which is inspired by soft plant tendrils, is proposed for diabetic wound treatment. Benefiting from spider silk protein (spidroin); PDF-S is equipped with high strength; high toughness, and excellent biocompatibility. Notably, the fabric crimped through the biomimetic DNA double-helix-like structure can effectively adapt to tensile impact and the maximum stretch rate reaches 1500%. A pattern-based microfluidic channel of PDF-S allowed wound secretion to flow spontaneously through the channel. Meanwhile; due to the optical properties of the introduced photonic crystal structure; PDF-S is equipped with fluorescence enhancement properties; enabling PDF-S to display color-sensitive behavior suitable for wound monitoring and guiding clinical treatment. In addition, to enable sensitive motion monitoring, microelectronic circuits are integrated on the surface of the PDF-S. These unique material features suggest that this study will lead to a new generation of biomimetic artificial spider silk materials for design and application in the biomedical field.
Collapse
Affiliation(s)
- Baoyang Lin
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
30
|
Ribeiro ERFR, Correa LB, Ricci-Junior E, Souza PFN, dos Santos CC, de Menezes AS, Rosas EC, Bhattarai P, Attia MF, Zhu L, Alencar LMR, Santos-Oliveira R. Chitosan-graphene quantum dot based active film as smart wound dressing. J Drug Deliv Sci Technol 2023; 80:104093. [PMID: 38650740 PMCID: PMC11034917 DOI: 10.1016/j.jddst.2022.104093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene quantum dots (GQDs), are biocompatible materials, with mechanical strength and stability. Chitosan, has antibacterial and anti-inflammatory properties, and biocompatibility. Wound healing is a challenging process especially in chronic diseases and infection. In this study, films consisting of chitosan and graphene quantum dots were developed for application in infected wounds. The chitosan-graphene films were prepared in the acidic solution followed by slow solvent evaporation and drying. The chitosan-graphene films were characterized by the scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy and thermogravimetric analysis. The films' was evaluated by the wound healing assays, hemolytic potential, and nitrite production, cytokine production and swelling potential. The obtained films were flexible and well-structured, promoting cell migration, greater antibacterial activity, lower hemolytic activity, and maintaining wound moisture. Our data suggested that the use of graphene quantum dot-containing chitosan films would be an efficient and promising way in combating wounds.
Collapse
Affiliation(s)
- Elisabete Regina Fernandes Ramos Ribeiro
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, 21941906, Brazil
| | - Luana Barbosa Correa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, 21941906, Brazil
| | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, School of Pharmacy, Galenic Development Laboratory (LADEG), Rio de Janeiro, 21941-170, Brazil
| | - Pedro Filho Noronha Souza
- Biochemistry and Molecular Biology Department, Federal University of Ceará, CE, Brazil, Laboratory of Plant Defense Proteins, Ceará, 60451, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal, University of Ceará, 60451, Brazil
| | - Clenilton Costa dos Santos
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranháo, 65080-805, Brazil
| | - Alan Silva de Menezes
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranháo, 65080-805, Brazil
| | - Elaine Cruz Rosas
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - Prapanna Bhattarai
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed F. Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
| | - Luciana Magalhães Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranháo, 65080-805, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, 21941906, Brazil
- State University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200, Brazil
| |
Collapse
|
31
|
Liu Y, Zhong D, Yu L, Shi Y, Xu Y. Primary Amine Functionalized Carbon Dots for Dead and Alive Bacterial Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:437. [PMID: 36770398 PMCID: PMC9920602 DOI: 10.3390/nano13030437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Small molecular dyes are commonly used for bacterial imaging, but they still meet a bottleneck of biological toxicity and fluorescence photobleaching. Carbon dots have shown high potential for bio-imaging due to their low cost and negligible toxicity and anti-photobleaching. However, there is still large space to enhance the quantum yield of the carbon quantum dots and to clarify their mechanisms of bacterial imaging. Using carbon dots for dyeing alive bacteria is difficult because of the thick density and complicated structure of bacterial cell walls. In this work, both dead or alive bacterial cell imaging can be achieved using the primary amine functionalized carbon dots based on their small size, excellent quantum yield and primary amine functional groups. Four types of carbon quantum dots were prepared and estimated for the bacterial imaging. It was found that the spermine as one of precursors can obviously enhance the quantum yield of carbon dots, which showed a high quantum yield of 66.46% and high fluorescence bleaching-resistance (70% can be maintained upon 3-h-irradiation). Furthermore, a mild modifying method was employed to bound ethylenediamine on the surface of the spermine-carbon dots, which is favorable for staining not only the dead bacterial cells but also the alive ones. Investigations of physical structure and chemical groups indicated the existence of primary amine groups on the surface of spermine-carbon quantum dots (which own a much higher quantum yield) which can stain alive bacterial cells visibly. The imaging mechanism was studied in detail, which provides a preliminary reference for exploring efficient and environment-friendly carbon dots for bacterial imaging.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao 266000, China
| | - Lei Yu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
32
|
Wu W, Qin Y, Fang Y, Zhang Y, Shao S, Meng F, Zhang M. Based on multi-omics technology study the antibacterial mechanisms of pH-dependent N-GQDs beyond ROS. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129954. [PMID: 36116315 DOI: 10.1016/j.jhazmat.2022.129954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Currently, graphene quantum dots (GQDs) are widely used as antibacterial agents, and their effects are dependent on the reactive oxygen species (ROS) generated by photodynamic and peroxidase activities. Nevertheless, the supply of substrates or light greatly limits GQDs application. Besides, due to compensatory mechanisms in bacteria, comprehensive analysis of the molecular mechanism underlying the effects of GQDs based on cellular-level experiments is insufficient. Therefore, N-GQDs with inherent excellent, broad-spectrum antibacterial efficacy under acidic conditions were successfully synthesized. Then, via multi-omics analyses, the antibacterial mechanisms of the N-GQDs were found to not only involve generation ROS but also be associated with changes in osmotic pressure, interference with nucleic acid synthesis and inhibition of energy metabolism. More surprisingly, the N-GQDs could destroy intracellular acid-base homeostasis, causing bacterial cell death. In conclusion, this study provides important insights into the antibacterial mechanism of GQDs, offering a basis for the engineering design of antibacterial nanomaterials.
Collapse
Affiliation(s)
- Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yukun Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China.
| |
Collapse
|
33
|
Guo C, Cheng F, Liang G, Zhang S, Duan S, Fu Y, Marchetti F, Zhang Z, Du M. Multimodal Antibacterial Platform Constructed by the Schottky Junction of Curcumin‐Based Bio Metal–Organic Frameworks and Ti
3
C
2
T
x
MXene Nanosheets for Efficient Wound Healing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chuanpan Guo
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Fang Cheng
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Gaolei Liang
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Shuai Zhang
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Shuxia Duan
- Henan Provincial Key Laboratory of Medical Protective Products Henan Yadu Industrial Co., Ltd. Changyuan 453400 China
| | - Yingkun Fu
- Henan Provincial Key Laboratory of Medical Protective Products Henan Yadu Industrial Co., Ltd. Changyuan 453400 China
| | - Fabio Marchetti
- School of Science and Technology Chemistry Section University of Camerino Via S. Agostino 1 62032 Camerino MC Italy
| | - Zhihong Zhang
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Miao Du
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 China
| |
Collapse
|
34
|
Jin W, Song P, Wu Y, Tao Y, Yang K, Gui L, Zhang W, Ge F. Biofilm Microenvironment-Mediated MoS 2 Nanoplatform with Its Photothermal/Photodynamic Synergistic Antibacterial Molecular Mechanism and Wound Healing Study. ACS Biomater Sci Eng 2022; 8:4274-4288. [PMID: 36095153 DOI: 10.1021/acsbiomaterials.2c00856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-resistant bacterial infections pose a serious threat to human public health. Biofilm formation is one of the main factors contributing to the development of bacterial resistance, characterized by a hypoxic and microacidic microenvironment. Traditional antibiotic treatments have been ineffective against multidrug-resistant (MDR) bacteria. Novel monotherapies have had little success. On the basis of the photothermal effect, molybdenum disulfide (MoS2) nanoparticles were used to link quaternized polyethylenimine (QPEI), dihydroporphyrin e6 (Ce6), and Panax notoginseng saponins (PNS) in a zeolitic imidazolate framework-8 (ZIF-8). A multifunctional nanoplatform (MQCP@ZIF-8) was constructed with dual response to pH and near-infrared light (NIR), which resulted in synergistic photothermal and photodynamic antibacterial effects. The nanoplatform exhibited a photothermal conversion efficiency of 56%. It inhibited MDR Escherichia coli (E. coli) and MDR Staphylococcus aureus (S. aureus) by more than 95% and effectively promoted wound healing in mice infected with MDR S. aureus. The nanoplatform induced the death of MDR bacteria by promoting biofilm ablation, disrupting bacterial cell membranes and intracellular DNA, and interfering with intracellular material and energy metabolism. In this study, a multifunctional nanoplatform with good antibacterial effect was developed. The molecular mechanisms of MDR bacteria were also elucidated for possible clinical application.
Collapse
Affiliation(s)
- Weihao Jin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yujia Wu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
35
|
Bao X, Zhu Q, Chen Y, Tang H, Deng W, Guo H, Zeng L. Antibacterial and antioxidant films based on HA/Gr/TA fabricated using electrospinning for wound healing. Int J Pharm 2022; 626:122139. [PMID: 36055445 DOI: 10.1016/j.ijpharm.2022.122139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
Prevention of bacterial contamination, maintenance of redox balance in the environment, and acceleration of wound healing are key requirements for wound dressing. In the present study, hyaluronic acid (HA)/graphene (Gr)-electrospun fibre films loaded with polyphenolic tannic acid (TA) were prepared using electrospinning. The antioxidant activity of the films was then examined to determine whether they contained optimal TA concentrations for subsequent research. Following that, the surface morphology and physicochemical properties of the films were determined and in vitro experiments were conducted to assess their biocompatibility and antibacterial activity. Finally, the in vivo effects of the electrostatically spun fibre films on infected wound healing in mouse models were observed. The HA/Gr/TA-electrospun fibre film with 0.3% w/v TA concentration displayed the best antioxidant activity and better mechanical, water-absorption, water-retention, and degradation properties than the film without TA. In addition, it displayed superior antibacterial activity and biocompatibility, as well acceleration of infected wound healing, than the film without TA. Therefore, the HA/Gr/TA-electrospun fibre film is a promising alternative option for wound dressings.
Collapse
Affiliation(s)
- Xiang Bao
- First college of clinical medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Proctology, Zhongda Hospital Southeast University, Nanjing, China
| | - Qianying Zhu
- Department of Pneumology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yunyun Chen
- Department of Proctology, Zhongda Hospital Southeast University, Nanjing, China
| | - Huijuan Tang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, China
| | - Weimin Deng
- Department of Andrology, Zhongda Hospital Southeast University, Nanjing, China
| | - Haixia Guo
- First college of clinical medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Zeng
- First college of clinical medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
36
|
Fabrication, characterization and application of novel nanoemulsion polyvinyl alcohol/chitosan hybrid incorporated with citral for healing of infected full-thickness wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Tang S, Zhang H, Mei L, Dou K, Jiang Y, Sun Z, Wang S, Hasanin MS, Deng J, Zhou Q. Fucoidan-derived carbon dots against Enterococcus faecalis biofilm and infected dentinal tubules for the treatment of persistent endodontic infections. J Nanobiotechnology 2022; 20:321. [PMID: 35836267 PMCID: PMC9281061 DOI: 10.1186/s12951-022-01501-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) biofilm-associated persistent endodontic infections (PEIs) are one of the most common tooth lesions, causing chronic periapical periodontitis, root resorption, and even tooth loss. Clinical root canal disinfectants have the risk of damaging soft tissues (e.g., mucosa and tongue) and teeth in the oral cavity, unsatisfactory to the therapy of PEIs. Nanomaterials with remarkable antibacterial properties and good biocompatibility have been developed as a promising strategy for removing pathogenic bacteria and related biofilm. Herein, carbon dots (CDs) derived from fucoidan (FD) are prepared through a one-pot hydrothermal method for the treatment of PEIs. The prepared FDCDs (7.15 nm) with sulfate groups and fluorescence property are well dispersed and stable in water. Further, it is found that in vitro FDCDs display excellent inhibiting effects on E. faecalis and its biofilm by inducing the formation of intracellular and extracellular reactive oxygen species and altering bacterial permeability. Importantly, the FDCDs penetrated the root canals and dentinal tubules, removing located E. faecalis biofilm. Moreover, the cellular assays show that the developed FDCDs have satisfactory cytocompatibility and promote macrophage recruitment. Thus, the developed FDCDs hold great potential for the management of PEIs.
Collapse
Affiliation(s)
- Shang Tang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, 266003, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Keke Dou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yuying Jiang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, 266400, China
| | - Shuai Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mohamed Sayed Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266003, China. .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, 266003, China.
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266003, China. .,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China. .,University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
38
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
39
|
Bacterial responsive hydrogels based on quaternized chitosan and GQDs-ε-PL for chemo-photothermal synergistic anti-infection in diabetic wounds. Int J Biol Macromol 2022; 210:377-393. [PMID: 35526764 DOI: 10.1016/j.ijbiomac.2022.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023]
Abstract
Clinically, systemic antibiotic therapy and traditional dressings care are not satisfactory in treating chronic diabetic ulcers (DU). Therefore, we presented sprayable antibacterial hydrogel for effective treatment of DU by using antibacterial macromolecules (quaternized chitosan, QCS, Mn ≈ 1.5 × 105), photothermal antibacterial nanoparticles (ε-poly-l-lysine grafted graphene quantum dots, GQDs-ε-PL) and miocompatible macromolecules (benzaldehyde-terminated four-arm poly(ethylene glycol), 4 arm PEG-BA) as materials. The results revealed that the hydrogel could be in situ formed in 70-89 s through dynamic imine bonds crosslinking and exhibited a pH-dependent swelling ability and degradability. The hydrogel could respond to bacterial triggered acidic environment to play a synergistic effect of chemotherapy and xenon light irradiated PTT, leading to the rupture of the bacterial membrane and the inactivation of bacteria, promoting the migration and proliferation of fibroblast cell, enhancing the adhesion of platelet endothelial cell, and finally accelerating the healing of infected diabetic wound. Moreover, the hydrogel displayed self-healing, hemostatic, and biocompatible abilities, which could provide a better healing environment for wound and further promote wound healing. Hence, the multifunctional hydrogel is expected to be a potential dressing for the clinical treatment of DU.
Collapse
|
40
|
Kansara V, Tiwari S, Patel M. Graphene quantum dots: A review on the effect of synthesis parameters and theranostic applications. Colloids Surf B Biointerfaces 2022; 217:112605. [PMID: 35688109 DOI: 10.1016/j.colsurfb.2022.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The rising demand for early-stage diagnosis of diseases such as cancer, diabetes, neurodegenerative can be met with the development of materials offering high sensitivity and specificity. Graphene quantum dots (GQDs) have been investigated extensively for theranostic applications owing to their superior photostability and high aqueous dispersibility. These are attractive for a range of biomedical applications as their physicochemical and optoelectronic properties can be tuned precisely. However, many aspects of these properties remain to be explored. In the present review, we have discussed the effect of synthetic parameters upon their physicochemical characteristics relevant to bioimaging. We have highlighted the effect of particle properties upon sensing of biological molecules through 'turn-on' and 'turn-off' fluorescence and generation of electrochemical signals. After describing the effect of surface chemistry and solution pH on optical properties, an inclusive view on application of GQDs in drug delivery and radiation therapy has been given. Finally, a brief overview on their application in gene therapy has also been included.
Collapse
Affiliation(s)
- Vrushti Kansara
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| | - Mitali Patel
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India.
| |
Collapse
|
41
|
Ma S, Zhou Z, Ran G, Xie J, Luo X, Li Y, Wang X, Zhuo H, Yan J, Wang L. An outstanding role of novel virus-like heterojunction nanosphere BOCO@Ag as high performance antibacterial activity agent. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126785. [PMID: 34403941 DOI: 10.1016/j.jhazmat.2021.126785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The development of highly efficient photonic nanomaterials with synergistic biological effects is critical and challenging task for public hygiene health well-being and has attracted extensive interest. In this study, a type of near-infrared (NIR) driven, virus-like heterojunction was first developed for synergistic biological application. The Ag-coated Bi2CO5 nanomaterial (BOCO@Ag) demonstrated good biocompatibility, low cytotoxicity, high antibacterial activity and excellent light utilization stability. The synthesized BOCO@Ag performed a potential high photothermal conversion (efficiency~46.81%) to generate high temperatures when irradiated with near-infrared light illumination. As expected, compared to single Ag+ disinfection, BOCO@Ag can exhibit better antibacterial performance when combined with photothermal energy and released Ag+ . These results suggest that BOCO@Ag can be a promising photo-activate antimicrobial candidate and provide security for humans health and the environment treatment.
Collapse
Affiliation(s)
- Sihan Ma
- College of energy, Xiamen University, Xiamen, Fujian 361002, China; Fujian Research Center for Nuclear Engineering, Xiamen, Fujian 361102, China
| | - Zonglang Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; 174 Clinical College Affiliated to Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, China
| | - Guang Ran
- College of energy, Xiamen University, Xiamen, Fujian 361002, China; Fujian Research Center for Nuclear Engineering, Xiamen, Fujian 361102, China
| | - Jun Xie
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
| | - Xian Luo
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
| | - Yipeng Li
- College of energy, Xiamen University, Xiamen, Fujian 361002, China; Fujian Research Center for Nuclear Engineering, Xiamen, Fujian 361102, China
| | - Xin Wang
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Department of Oncology, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, China.
| | - Huiqing Zhuo
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China.
| | - Jianghua Yan
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China.
| | - Lin Wang
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Department of Oncology, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China.
| |
Collapse
|
42
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
43
|
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022; 17:5947-5990. [PMID: 36510620 PMCID: PMC9739148 DOI: 10.2147/ijn.s382796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial-infected wounds are a serious threat to public health. Bacterial invasion can easily delay the wound healing process and even cause more serious damage. Therefore, effective new methods or drugs are needed to treat wounds. Nanozyme is an artificial enzyme that mimics the activity of a natural enzyme, and a substitute for natural enzymes by mimicking the coordination environment of the catalytic site. Due to the numerous excellent properties of nanozymes, the generation of drug-resistant bacteria can be avoided while treating bacterial infection wounds by catalyzing the sterilization mechanism of generating reactive oxygen species (ROS). Notably, there are still some defects in the nanozyme antibacterial agents, and the design direction is to realize the multifunctionalization and intelligence of a single system. In this review, we first discuss the pathophysiology of bacteria infected wound healing, the formation of bacterial infection wounds, and the strategies for treating bacterially infected wounds. In addition, the antibacterial advantages and mechanism of nanozymes for bacteria-infected wounds are also described. Importantly, a series of nanomaterials based on nanozyme synthesis for the treatment of infected wounds are emphasized. Finally, the challenges and prospects of nanozymes for treating bacterial infection wounds are proposed for future research in this field.
Collapse
Affiliation(s)
- Fayin Mo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Duanping Sun; Tianhui You, Email ;
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
44
|
Cong X, Mu Y, Qin D, Sun X, Su C, Chen T, Wang X, Chen X, Feng C. Copper deposited diatom-biosilica with enhanced photothermal and photodynamic performance for infected wound therapy. NEW J CHEM 2022. [DOI: 10.1039/d1nj05283g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Considering the increase in drug resistance due to the abuse of antibiotics, the development of non-conventional antibiotics for the treatment of bacterial infections is necessary and urgent.
Collapse
Affiliation(s)
- Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Tongtong Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
- Qingdao National Laboratory for Marine Science and Technology, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| |
Collapse
|
45
|
Qiu Y, Yu S, Wang Y, Xiao L, Pei L, Pu Y, Zhang Y. Photothermal Therapy may be a Double-edge Sword by Inducing the Formation of Bacterial Antibiotic Tolerance. Biomater Sci 2022; 10:1995-2005. [PMID: 35266929 DOI: 10.1039/d1bm01740c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal nanoparticles are thought to be the most potential candidates against infectious disease, by disrupting cell membrane and inhibiting metabolism. However, subpopulation survived with this low-activity state may be endowed...
Collapse
Affiliation(s)
- Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Shimin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linsen Pei
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| |
Collapse
|
46
|
Zhang S, Feng S, Ma L, Yang Y, Liu C, Song N, Yang Y. Research of Synergistic Photothermal Antibacterial Strategy Based on Polymeric Guanidine Derivative Grafted on Mesoporous Carbon Nanospheres. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - From membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 2022; 299:102526. [PMID: 34610862 DOI: 10.1016/j.cis.2021.102526] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
As a result of increasing resistance among pathogens against antibiotics and anti-viral therapeutics, nanomaterials are attracting current interest as antimicrobial agents. Such materials offer triggered functionalities to combat challenging infections, based on either direct membrane action, effects of released ions, thermal shock induced by either light or magnetic fields, or oxidative photocatalysis. In the present overview, we focus on photocatalytic antimicrobial effects, in which light exposure triggers generation of reactive oxygen species. These, in turn, cause oxidative damage to key components in bacteria and viruses, including lipid membranes, lipopolysaccharides, proteins, and DNA/RNA. While an increasing body of studies demonstrate that potent antimicrobial effects can be achieved by photocatalytic nanomaterials, understanding of the mechanistic foundation underlying such effects is still in its infancy. Addressing this, we here provide an overview of the current understanding of the interaction of photocatalytic nanomaterials with pathogen membranes and membrane components, and how this translates into antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| |
Collapse
|
48
|
Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, Guo B. Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS NANO 2021; 15:18895-18930. [PMID: 34870413 DOI: 10.1021/acsnano.1c08334] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light is an attractive tool that has a profound impact on modern medicine. Particularly, light-based photothermal therapy (PTT) and photodynamic therapy (PDT) show great application prospects in the prevention of wound infection and promoting wound healing. In addition, hydrogels have shown attractive advantages in the field of wound dressings due to their excellent biochemical effects. Therefore, multifunctional photoresponsive hydrogels (MPRHs) that integrate the advantages of light and hydrogels are increasingly used in biomedicine, especially in the field of wound repair. However, a comprehensive review of MPRHs for wound regeneration is still lacking. This review first focuses on various types of MPRHs prepared by diverse photosensitizers, photothermal agents (PHTAs) including transition metal sulfide/oxides nanomaterials, metal nanostructure-based PHTAs, carbon-based PHTAs, conjugated polymer or complex-based PHTAs, and/or photodynamic agents (PHDAs) such as ZnO-based, black-phosphorus-based, TiO2-based, and small organic molecule-based PHDAs. We also then discuss how PTT, PDT, and photothermal/photodynamic synergistic therapy can modulate the microenvironments of bacteria to inhibit infection. Overall, multifunctional hydrogels with both therapeutic and tissue regeneration capabilities have been discussed and existing challenges, as well as future research directions in the field of MPRHs and their application in wound management are argued.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Jiahui He
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Shayesteh Bochani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Vahideh Nosrati
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| |
Collapse
|
49
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
50
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|