1
|
Ding W, Feng M, Zhang Z, Fan F, Chen L, Zhang K. Machine learning-motivated trace triethylamine identification by bismuth vanadate/tungsten oxide heterostructures. J Colloid Interface Sci 2025; 682:1140-1150. [PMID: 39671948 DOI: 10.1016/j.jcis.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Triethylamine, an extensively used material in industrial organic synthesis, is hazardous to the human respiratory and nervous systems, but its accurate detection and prediction has been a long-standing challenge. Herein, a machine learning-motivated chemiresistive sensor that can predict ppm-level triethylamine is designed. The zero-dimensional (0D) bismuth vanadate (BiVO4) nanoparticles were anchored on the surface of three-dimensional (3D) tungsten oxide (WO3) architectures to form hierarchical BiVO4/WO3 heterostructures, which demonstrates remarkable triethylamine-sensing performance such as high response of 21 (4 times higher than pristine WO3) at optimal temperature of 190 °C, low detection limit of 57 ppb, long-term stability, reproducibility and good anti-interference property. Furthermore, an intelligent framework with good visibility was developed to identify ppm-level triethylamine and predict its definite concentration. Using feature parameters extracted from the sensor responses, the machine learning-based classifier provides a decision boundary with 92.3 % accuracy, and the prediction of unknown gas concentration was successfully achieved by linear regression model after training a series of as-known concentrations. This work not only provides a fundamental understanding of BiVO4-based heterostructures in gas sensors but also offers an intelligent strategy to identify and predict trace triethylamine under an interfering atmosphere.
Collapse
Affiliation(s)
- Wei Ding
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China; College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Min Feng
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China.
| | - Ziqi Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Faying Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science, PR China.
| | - Long Chen
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Kewei Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
2
|
Powroźnik P, Krzywiecki M. Intertwining Density Functional Theory and Experiments in the Investigation of Gas Sensing Mechanisms: A Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:867. [PMID: 39943506 PMCID: PMC11821263 DOI: 10.3390/s25030867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
In this review, we present the last ten years of progress in evaluation of gas sensing mechanisms. We focus mostly on the studies joining theoretical modeling of gas adsorption by density functional theory method with advanced experimental characterization of sensing materials. We provide the background about important aspects that should be taken into account during the design of the effective sensing device and an overview of the most recently studied sensing materials and analytes. Using the exemplary works, we next show how theory and experiment intertwine in revealing how the sensing mechanism serves to improve the device performance. In the end, we summarize the progress already made despite the existing difficulties, and provide an outlook for future methodological development.
Collapse
Affiliation(s)
- Paulina Powroźnik
- Institute of Physics—Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | |
Collapse
|
3
|
Cheng X, Yao Y, Zheng S, Wan Y, Wei C, Yang G, Yuan Y, Tsai HS, Wang Y, Hao J. Te@Se Core-Shell Heterostructures with Tunable Shell Thickness for Ultra-Stable NO 2 Detection. ACS Sens 2025; 10:283-291. [PMID: 39810464 DOI: 10.1021/acssensors.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
An effective long-term nitrogen dioxide (NO2) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO2 detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material. Herein, 2D single-elemental Te@Se heterostructures with a core-shell structure are prepared using a solvothermal method. The Te@Se heterostructures demonstrate an extremely high response of 622% to 1 ppm of NO2 at room temperature, with ultrafast response/recovery times of 10 s/30 s. Moreover, the core-shell heterostructures exhibit excellent stability in NO2 sensing performance over a period of 90 days. The success relies on the ultrathin Se shell with a thickness of 4-6 nm on Te, which enables the efficient redistribution and transport of interfacial charges. These findings reveal the potential of single-element core-shell heterojunctions to achieve high-performance gas sensing, paving the way for advancements in NO2 detection materials.
Collapse
Affiliation(s)
- Xiao Cheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yongtao Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Shengliang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yu Wan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Chenda Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Guangcan Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ye Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| | - Hsu-Sheng Tsai
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, P. R. China
- School of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
4
|
Ghomi S, Martella C, Lee Y, Chang PH, Targa P, Serafini A, Codegoni D, Massetti C, Gharedaghi S, Lamperti A, Grazianetti C, Akinwande D, Molle A. Non-Volatile Resistive Switching in Nanoscaled Elemental Tellurium by Vapor Transport Deposition on Gold. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406703. [PMID: 39352313 PMCID: PMC11714190 DOI: 10.1002/advs.202406703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Indexed: 01/11/2025]
Abstract
Two-dimensional (2D) materials are promising for resistive switching in neuromorphic and in-memory computing, as their atomic thickness substantially improve the energetic budget of the device and circuits. However, many 2D resistive switching materials struggle with complex growth methods or limited scalability. 2D tellurium exhibits striking characteristics such as simplicity in chemistry, structure, and synthesis making it suitable for various applications. This study reports the first memristor design based on nanoscaled tellurium synthesized by vapor transport deposition (VTD) at a temperature as low as 100 °C fully compatible with back-end-of-line processing. The resistive switching behavior of tellurium nanosheets is studied by conductive atomic force microscopy, providing valuable insights into its memristive functionality, supported by microscale device measurements. Selecting gold as the substrate material enhances the memristive behavior of nanoscaled tellurium in terms of reduced values of set voltage and energy consumption. In addition, formation of conductive paths leading to resistive switching behavior on the gold substrate is driven by gold-tellurium interface reconfiguration during the VTD process as revealed by energy electron loss spectroscopy analysis. These findings reveal the potential of nanoscaled tellurium as a versatile and scalable material for neuromorphic computing and underscore the influential role of gold electrodes in enhancing its memristive performance.
Collapse
Affiliation(s)
- Sara Ghomi
- CNR IMMUnit of Agrate Brianzavia C. Olivetti 2Agrate Brianza20864Italy
- Dipartimento di EnergiaPolitecnico di Milanovia Ponzio 34/3Milano20133Italy
| | | | - Yoonseok Lee
- Microelectronics Research CenterThe University of Texas at AustinAustinTexas78758USA
| | - Penny Hui‐Ping Chang
- Microelectronics Research CenterThe University of Texas at AustinAustinTexas78758USA
| | - Paolo Targa
- STMicroelectronicsvia C. Olivetti 2Agrate Brianza20864Italy
| | | | | | - Chiara Massetti
- CNR IMMUnit of Agrate Brianzavia C. Olivetti 2Agrate Brianza20864Italy
| | | | - Alessio Lamperti
- CNR IMMUnit of Agrate Brianzavia C. Olivetti 2Agrate Brianza20864Italy
| | - Carlo Grazianetti
- CNR IMMUnit of Agrate Brianzavia C. Olivetti 2Agrate Brianza20864Italy
| | - Deji Akinwande
- Microelectronics Research CenterThe University of Texas at AustinAustinTexas78758USA
| | - Alessandro Molle
- CNR IMMUnit of Agrate Brianzavia C. Olivetti 2Agrate Brianza20864Italy
| |
Collapse
|
5
|
Wang C, Chen T, Meng Z, Niu S, Li Z, Yang X. Mo 2TiAlC 2 as a Saturable Absorber for a Passively Q-Switched Tm:YAlO 3 Laser. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1823. [PMID: 39591064 PMCID: PMC11597821 DOI: 10.3390/nano14221823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
Owing to their remarkable characteristics, two-dimensional (2D) layered, MAX phase materials have garnered significant attention in the field of optoelectronics in recent years. Herein, a novel MAX phase ceramic material (Mo2TiAlC2) was prepared into a saturable absorber (SA) by the spin-coating method for passively Q-switching (PQS), and its nonlinear optical absorption properties were characterized with a Tm:YAlO3 (Tm:YAP) nanosecond laser. The structure characteristics and composition analysis revealed that the Mo2TiAlC2 material exhibits a well-defined and stable structure, with a uniform thin film successfully obtained through spin coating. In this study of a PQS laser by employing a Mo2TiAlC2-based SA, an average output power of 292 mW was achieved when the absorbed pump power was approximately 4.59 W, corresponding to a central output wavelength of 1931.2 nm. Meanwhile, a stable pulse with a duration down to 242.9 ns was observed at a repetition frequency of 47.07 kHz, which is the narrowest pulse width recorded among PQS solid-state lasers using MAX phase materials as SAs. Our findings indicate that the Mo2TiAlC2 MAX phase ceramic material is an excellent modulator and has promising potential for ultrafast nonlinear photonic applications.
Collapse
Affiliation(s)
| | | | | | | | - Zhaoxue Li
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China; (C.W.); (T.C.); (Z.M.); (S.N.)
| | - Xining Yang
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China; (C.W.); (T.C.); (Z.M.); (S.N.)
| |
Collapse
|
6
|
Zha J, Dong D, Huang H, Xia Y, Tong J, Liu H, Chan HP, Ho JC, Zhao C, Chai Y, Tan C. Electronics and Optoelectronics Based on Tellurium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408969. [PMID: 39279605 DOI: 10.1002/adma.202408969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
As a true 1D system, group-VIA tellurium (Te) is composed of van der Waals bonded molecular chains within a triangular crystal lattice. This unique crystal structure endows Te with many intriguing properties, including electronic, optoelectronic, thermoelectric, piezoelectric, chirality, and topological properties. In addition, the bandgap of Te exhibits thickness dependence, ranging from 0.31 eV in bulk to 1.04 eV in the monolayer limit. These diverse properties make Te suitable for a wide range of applications, addressing both established and emerging challenges. This review begins with an elaboration of the crystal structures and fundamental properties of Te, followed by a detailed discussion of its various synthesis methods, which primarily include solution phase, and chemical and physical vapor deposition technologies. These methods form the foundation for designing Te-centered devices. Then the device applications enabled by Te nanostructures are introduced, with an emphasis on electronics, optoelectronics, sensors, and large-scale circuits. Additionally, performance optimization strategies are discussed for Te-based field-effect transistors. Finally, insights into future research directions and the challenges that lie ahead in this field are shared.
Collapse
Affiliation(s)
- Jiajia Zha
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Dechen Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jingyi Tong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Handa Liu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Chunsong Zhao
- Huawei Technologies CO., LTD, Shenzhen, 518000, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, 999077, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| |
Collapse
|
7
|
Li L, Zhang G, Younis M, Luo T, Yang L, Jin W, Wu H, Xiao B, Zhang W, Chang H. 2D Tellurium Films Based Self-Drive Near Infrared Photodetector. Chemphyschem 2024; 25:e202400383. [PMID: 38661567 DOI: 10.1002/cphc.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
To reduce the amount of energy consumed in integrated circuits, high efficiency with the lowest energy is always expected. Self-drive device is one of the options in the pursuit of low power nanodevices. It is a typical strategy to form an internal electric field by constructing a heterojunction in self-drive semiconductor system. Here, a two-step method is proposed to prepare high quality centimeter-sized 2D tellurium (Te) thin film with hall mobility as high as 37.3 cm2 V-1 s-1, and the 2D Te film is further assembled with silicon to form a heterojunction for self-drive photodetector, which can realize effective detection from visible to near infrared bands. The photodetectivity of the heterojunctions can reach 1.58×1011 Jones under the illumination of 400 nm@ 1.615 mW/cm2 and 2.08×108 Jones under the illumination of 1550 nm@ 1.511 mW/cm2 without bias. Our experiments demonstrate the potential of 2D tellurium thin films for wide band and near infrared integrated device applications.
Collapse
Affiliation(s)
- Luji Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Micro and Nano Devices Fabrication Center, Yongjiang Laboratory, Ningbo, 315202, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaojie Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Younis
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tianyuan Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Yang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen Jin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bichen Xiao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenfeng Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haixin Chang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Li M, Wang XF. Metal (Ni, Pd, and Pt)-Doped BS Monolayers as a Gas Sensor upon Vented Gases in Lithium-Ion Batteries: A First-Principles Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38305214 DOI: 10.1021/acs.langmuir.3c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Real-time monitoring of the vented gases emitted by the thermal runaway of lithium-ion batteries (LIBs) is of great significance to the normal use of LIBs. We study systematically the adsorption and sensing performances of pristine and metal-doped BS monolayers to five typical gases (CO, CO2, CH4, C2H2, and C2H4) emitted from LIBs employing the first-principles method. The adsorption structure and energetics, charge transfer, band structure, density of states, sensitivity, and recovery time are simulated and analyzed. Outstanding sensing properties are predicted for the Ni-, Pd-, and Pt-doped BS monolayers, although their recently synthesized pristine counterpart shows little sensing potential for those gases. The magnitude of the adsorption energy increases from 0.249 eV to 2.32 eV (Ni-BS), 1.954 eV(Pd-BS), and 2.994 eV (Pt-BS) for the CO gas after doping. Besides, significant variation of band gap is observed after gas adsorption in doped BS nanosheets, which leads to huge theoretical values of the sensitivity. The sensitivity for CO, CO2, CH4, C2H2, and C2H4 on Pt-BS may reach up to 5.87 × 105, 1.57 × 106, 1.81 × 105, 8.33 × 104, and 8.18 × 103, respectively. In addition, the calculated recovery times indicate that the doped BS monolayers have strong selectivity for the adsorption and detection of these five gases. The three metal-doped BS monolayers should have great potential for application in sensors monitoring the gases emitted from LIBs.
Collapse
Affiliation(s)
- Ming Li
- Institute of theoretical and applied physics and Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Xue-Feng Wang
- Institute of theoretical and applied physics and Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| |
Collapse
|
9
|
Gan W, Jiang M, Liu Y, Ming L, Xiao R, Tang X, Liu Y, Long D, Zhao C, Li H. Van der Waals heterostructure gas sensors based on narrow-wide bandgap semiconductors for superior sensitivity. NANOTECHNOLOGY 2023; 35:05LT03. [PMID: 37879318 DOI: 10.1088/1361-6528/ad06d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Achieving high sensitivity in gas sensors is crucial for the precise detection of toxic agents. However, this can be challenging as it requires gas sensors to possess both a high response signal and low electrical noise simultaneously, which seems controversial as it necessitates adopting semiconductors with different bandgaps. Herein, we demonstrate the superior sensitivity of 2D molybdenum disulfide (MoS2)/tellurium (Te) van der Waals heterostructure (vdWH) gas sensors fabricated by combining narrow-bandgap (Te) and wide-bandgap (MoS2) semiconductors. The as-fabricated MoS2/Te vdWH gas sensors exhibit excellent sensitivity that is unavailable for sensors based on its individual counterparts. The response toward 50 ppm NH3is improved by two and six times compared to the individual MoS2and Te gas sensors, respectively. In addition, a high signal-to-noise ratio of ∼350 and an ultralow limit of detection of ∼2 ppb are achieved. These results outperform most previously reported gas sensors due to the efficient modulation of the barrier height of the MoS2/Te p-n junction as well as the synergistic effect benefiting from the low electric noise of the narrow-bandgap Te and high response signal of the wide-bandgap MoS2. Our work provides an insight into utilizing vdWHs based on narrow-wide bandgap semiconductors for developing highly sensitive gas sensors.
Collapse
Affiliation(s)
- Wei Gan
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Ming Jiang
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Yucheng Liu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Li Ming
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Ruichun Xiao
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Xi Tang
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Yu Liu
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, People's Republic of China
| | - Dunxu Long
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, People's Republic of China
| | - Changhui Zhao
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Hui Li
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| |
Collapse
|
10
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Je Y, Chee SS. Controlling the Morphology of Tellurene for a High-Performance H 2S Chemiresistive Room-Temperature Gas Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2707. [PMID: 37836349 PMCID: PMC10574203 DOI: 10.3390/nano13192707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
A two-dimensional (2D) van der Waals material composed only of tellurium (Te) atoms-tellurene-is drawing attention because of its high intrinsic electrical conductivity and strong interaction with gas molecules, which could allow the development of high-performance chemiresistive sensors. However, the correlation between the morphologies and gas detection properties of tellurene has not yet been studied in depth, and few reports exist on tellurene-based hydrogen sulfide (H2S) chemiresistive sensors in spite of their strong interaction with H2S molecules. Here, we investigate the morphology-dependent H2S gas detection properties of tellurene synthesized using a hydrothermal method. To tailor the morphologies of tellurene, the molecular weight of the surfactant was controlled, revealing that a 1D or 2D form was synthesized and also accompanied with the high crystallinity. The 1D tellurene-based chemiresistive sensor presented superior H2S detection properties compared to the 2D form, achieving a gas response (Rg/Ra) of ~38, even at room temperature. This outstanding performance was attributed to the high intrinsic electrical conductivity and high specific surface area of the resultant 1D tellurene.
Collapse
Affiliation(s)
- Yeonjin Je
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea;
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Soo Chee
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea;
| |
Collapse
|
12
|
Shangguan L, He LB, Ran YT, Hong H, Zhu JH, Gao YT, Sun LT. Hydrothermal Synthesis of Te Nanosheets: Growth Mechanism and Electrical Property. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38707-38715. [PMID: 37527542 DOI: 10.1021/acsami.3c08118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Hydrothermal synthesis is a highly efficient way to yield multiform Te nanosheets. However, the growth mechanisms and property discrepancies between different types of Te nanosheets are still unclear. In this paper, we perform an investigation on this issue by monitoring the hydrothermally synthesized Te nanosheets at different growth stages with transmission electron microscopy and electrical tests. Three main types of Te nanosheets and their variants are revealed including trapezoidal and "V"-shaped configurations. It is found that the different types of Te nanosheets dominate at different reaction stages, indicating a sequential growth scenario. Surfactants and surface energy co-determine the growth kinetics, while the crystallographic attachments lead to specifically included angles of 74° and 41° in the "V"-shaped Te nanosheets. The fractions of the three main types of Te nanosheets as a function of reaction time are statistically tracked, and their crystalline structures, interfaces, and preferential growth orientations are uncovered. Moreover, the electrical properties of the Te nanosheets are tested, and the results show an interface-related feature. These findings provide some new insights into the synthesis and property of low-dimensional Te functional materials.
Collapse
Affiliation(s)
- Lei Shangguan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Long-Bing He
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, P. R. China
| | - Ya-Ting Ran
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Hua Hong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Jiong-Hao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Yu-Tian Gao
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Li-Tao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Wan X, Yu W, Wang A, Wang X, Robertson J, Zhang Z, Guo Y. High-Throughput Screening of Gas Sensor Materials for Decomposition Products of Eco-Friendly Insulation Medium by Machine Learning. ACS Sens 2023; 8:2319-2330. [PMID: 37172078 DOI: 10.1021/acssensors.3c00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nowadays, trifluoromethyl sulfonyl fluoride (CF3SO2F) has shown great potential to replace SF6 as an eco-friendly insulation medium in the power industry. In this work, an effective and low-cost design strategy toward ideal gas sensors for the decomposed gas products of CF3SO2F was proposed. The strategy achieved high-throughput screening from a large candidate space based on first-principle calculation and machine learning (ML). The candidate space is made up of different transition metal-embedded graphic carbon nitrides (TM/g-C3N4) owing to their high surface area and subtle electronic structure. Four main noteworthy decomposition gases of CF3SO2F, namely, CF4, SO2, SO2F2, and HF, as well as their initial stable structure on TM/g-C3N4 were determined. The best-performing ML model was established and implemented to predict the interaction strength between gas products and TM/g-C3N4, thus determining the promising gas-sensing materials for target gases with the requirements of interaction strength, recovery time, sensitivity, and selectivity. Further analysis guarantees their stability and reveals the origin of excellent properties as a gas sensor. The high-throughput strategy opens a new avenue of rational and low-cost design principles of desirable gas-sensing materials in an interdisciplinary view.
Collapse
Affiliation(s)
- Xuhao Wan
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
- Department of Engineering, Cambridge University, Cambridge CB2 1PZ, United Kingdom
| | - Wei Yu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Anyang Wang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiting Wang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - John Robertson
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
- Department of Engineering, Cambridge University, Cambridge CB2 1PZ, United Kingdom
| | - Zhaofu Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
14
|
Liang T, Feng Z, Wang D, Lin L. Adsorption of chalcogenide gas by 2H-MoSe 2 monolayer modified by transition metal. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2182616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Tong Liang
- Yellow River Conservancy Technical Institute, Kaifeng, People’s Republic of China
| | - Zhiyan Feng
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, People’s Republic of China
| | - Dongbin Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, People’s Republic of China
| | - Long Lin
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, People’s Republic of China
| |
Collapse
|
15
|
Wang Z, Hu J, Lu J, Zhu X, Zhou X, Huang L, Chi L. Charge Transport Manipulation via Interface Doping: Achieving Ultrasensitive Organic Semiconductor Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8355-8366. [PMID: 36735056 DOI: 10.1021/acsami.2c20391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic semiconductor (OSC) gas sensors are receiving tremendous attention with the rise of wearable devices. Due to the complicated charge transport characteristics of OSCs, it is usually difficult to optimize their gas sensitivity by directly tailoring the original signals, as in many other kinds of sensors. Instead, device engineering strategies are frequently centered on enhancing the gas-film interaction. Herein, by introducing interface doping between self-assembled monolayers and triisopropylsilylethynyl-substituted pentacene films, we report a wide tuning of OSC gas sensitivity via charge transport manipulation and achieve an ultrahigh sensitivity of nearly 2000%/ppm to NO2, simultaneously resulting in a fast square-wave-like response feature. In addition, this sensor demonstrates good humidity stability and operates well in flexible devices. More importantly, we identify that charge transport manipulation tailors the gas sensibility of OSCs by means of electronic structure instead of original signal values: compared to shallow traps, the presence of proper deep traps is conducive to gaining high sensitivity and ultrafast response/recovery speeds. This approach is also effective for tuning the sensitivity to reductive gases, verifying its generality for promoting the performance of OSC gas sensors, as well as a promising strategy for other types of sensors or detectors.
Collapse
Affiliation(s)
- Zi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
- Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, P.R. China
| | - Jing Hu
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Jie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaofei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
16
|
Liu X, Guo H, Wang J, Huang Q, Chen X, Bao J, Yu J. A first-principles study of the adsorption mechanism of NO 2 on monolayer antimonide phosphide: a highly sensitive and selective gas sensor. NEW J CHEM 2023. [DOI: 10.1039/d2nj05553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A NO2/SbP adsorption system with high adsorption energy (−0.876 eV) and charge transfer value (−0.83 e) is reported.
Collapse
Affiliation(s)
- Xiaodong Liu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jia Wang
- College of Architectural Engineering, Shanxi Institute of Applied Science and Technology, Taiyuan 030031, China
| | - Qing Huang
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jiading Bao
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| |
Collapse
|
17
|
Chen GX, Chen Z, Du RY, Liu S, Wang DD, Zhang JM. Adsorption and sensing of formaldehyde on pristine and noble metal doped tellurene: A first-principles investigation. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Xie Z, Duo Y, Fan T, Zhu Y, Feng S, Li C, Guo H, Ge Y, Ahmed S, Huang W, Liu H, Qi L, Guo R, Li D, Prasad PN, Zhang H. Light-induced tumor theranostics based on chemical-exfoliated borophene. LIGHT, SCIENCE & APPLICATIONS 2022; 11:324. [PMID: 36369148 PMCID: PMC9652458 DOI: 10.1038/s41377-022-00980-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 06/03/2023]
Abstract
Among 2D materials (Xenes) which are at the forefront of research activities, borophene, is an exciting new entry due to its uniquely varied optical, electronic, and chemical properties in many polymorphic forms with widely varying band gaps including the lightest 2D metallic phase. In this paper, we used a simple selective chemical etching to prepare borophene with a strong near IR light-induced photothermal effect. The photothermal efficiency is similar to plasmonic Au nanoparticles, with the added benefit of borophene being degradable due to electron deficiency of boron. We introduce this selective chemical etching process to obtain ultrathin and large borophene nanosheets (thickness of ~4 nm and lateral size up to ~600 nm) from the precursor of AlB2. We also report first-time observation of a selective Acid etching behavior showing HCl etching of Al to form a residual B lattice, while HF selectively etches B to yield an Al lattice. We demonstrate that through surface modification with polydopamine (PDA), a biocompatible smart delivery nanoplatform of B@PDA can respond to a tumor environment, exhibiting an enhanced cellular uptake efficiency. We demonstrate that borophene can be more suitable for safe photothermal theranostic of thick tumor using deep penetrating near IR light compared to gold nanoparticles which are not degradable, thus posing long-term toxicity concerns. With about 40 kinds of borides, we hope that our work will open door to more discoveries of this top-down selective etching approach for generating borophene structures with rich unexplored thermal, electronic, and optical properties for many other technological applications.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yanhong Duo
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Taojian Fan
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, 518020, Shenzhen, China
| | - Shuai Feng
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Honglian Guo
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Yanqi Ge
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Shakeel Ahmed
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, 226019, Nantong, Jiangsu, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Ling Qi
- Department of Core Medical Laboratory, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guang Dong Province, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Han Zhang
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
19
|
Transition metal disulfide (MoTe2, MoSe2 and MoS2) were modified to improve NO2 gas sensitivity sensing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Hussain A, Zhang X, Shi Y, Bushira FA, Chen Y, Zhang W, Chen W, Xu G. Oxygen Vacancies Induced by Pd Doping in Ni-P 2O 5/MoO 3 Hollow Polyhedral Heterostructures for Highly Efficient Diethylamine Gas Sensing. Anal Chem 2022; 94:15359-15366. [DOI: 10.1021/acs.analchem.2c03062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
- University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Xiaohui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
- University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Yulin Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-Ku, Yokohama226-8502, Japan
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
- University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Yequan Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
- University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
- University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
- University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| |
Collapse
|
21
|
Dissolved Gas Analysis in Transformer Oil Using Ni Catalyst Decorated PtSe2 Monolayer: A DFT Study. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, the first-principles theory is used to explore the adsorption behavior of Ni catalyst decorated PtSe2 (Ni-PtSe2) monolayer toward the dissolved gas in transformer oil, namely CO and C2H2. Some Ni atoms from the catalyst are trapped in the Se vacancy on the pure PtSe2 surface. The geometry configurations of Ni-PtSe2 monolayer before and after gas adsorption, the electronic property of Ni-PtSe2 monolayer upon gas adsorption, and the sensibility and recovery property of Ni-PtSe2 monolayer are explored in this theoretical work. Through the simulation, the Ead of CO and C2H2 gas adsorption systems are calculated as −1.583 eV and −1.319 eV, respectively, both identified as chemisorption and implying the stronger performance of the Ni-PtSe2 monolayer on CO molecule, which is further supported by the DOS and BS analysis. According to the formula, the sensitivity of Ni-PtSe2 monolayer towards CO and C2H2 detection can reach up to 96.74% and 99.91% at room temperature (298 K), respectively, which manifests the favorable sensing property of these gases as a chemical resistance-type sensor. Recovery behavior indicates that the Ni-PtSe2 monolayer is a satisfied gas scavenger upon the noxious gas dissolved in transformer oil, but its recovery time at room temperature is not satisfactory. To sum up, we monitor the status of the transformer to guarantee the stable operation of the power system through the Ni-PtSe2 monolayer upon the detection of CO and C2H2, which may realize related applications, and provide the basis and reference to cutting-edge research in the field of electricity in the future.
Collapse
|
22
|
Grillo S, Pulci O, Marri I. Evolution of the Electronic and Optical Properties of Meta-Stable Allotropic Forms of 2D Tellurium for Increasing Number of Layers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2503. [PMID: 35889726 PMCID: PMC9324411 DOI: 10.3390/nano12142503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023]
Abstract
In this work, ab initio Density Functional Theory calculations are performed to investigate the evolution of the electronic and optical properties of 2D Tellurium-called Tellurene-for three different allotropic forms (α-, β- and γ-phase), as a function of the number of layers. We estimate the exciton binding energies and radii of the studied systems, using a 2D analytical model. Our results point out that these quantities are strongly dependent on the allotropic form, as well as on the number of layers. Remarkably, we show that the adopted method is suitable for reliably predicting, also in the case of Tellurene, the exciton binding energy, without the need of computationally demanding calculations, possibly suggesting interesting insights into the features of the system. Finally, we inspect the nature of the mechanisms ruling the interaction of neighbouring Tellurium atoms helical chains (characteristic of the bulk and α-phase crystal structures). We show that the interaction between helical chains is strong and cannot be explained by solely considering the van der Waals interaction.
Collapse
Affiliation(s)
- Simone Grillo
- Department of Physics, University of Rome Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Olivia Pulci
- Department of Physics, University of Rome Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Ivan Marri
- Department of Sciences and Methods for Engineering, University of Modena e Reggio Emilia, 42122 Reggio Emilia, Italy
- Interdepartmental Center for Research and Services in the Field of Hydrogen Production, Storage and Use H2—MO.RE, Via Università 4, 41121 Modena, Italy
| |
Collapse
|
23
|
Gao X, Li Y. Monitoring Gases Content in Modern Agriculture: A Density Functional Theory Study of the Adsorption Behavior and Sensing Properties of CO 2 on MoS 2 Doped GeSe Monolayer. SENSORS (BASEL, SWITZERLAND) 2022; 22:3860. [PMID: 35632267 PMCID: PMC9144932 DOI: 10.3390/s22103860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The reasonable allocation and control of CO2 concentration in a greenhouse are very important for the optimal growth of crops. In this study, based on density functional theory (DFT), an MoS2-GeSe monolayer was proposed to unravel the issues of the lower selectivity, poorer sensitivity and non-recyclability of traditional nanomaterial gas sensors. The incorporation of MoS2 units greatly enhanced the sensitivity of the pure GeSe monolayer to CO2 and the high binding energy also demonstrated the thermal stability of the doped structures. The ideal adsorption energy, charge transfer and recovery time ensured that the MoS2-GeSe monolayer had a good adsorption and desorption ability. This paper aimed to solve the matter of recycling sensors within agriculture. This research could provide the theoretical basis for the establishment of a potentially new generation of gas sensors for the monitoring of crop growth.
Collapse
Affiliation(s)
- Xin Gao
- College of Engineering and Technology, Southwest University, Chongqing 400716, China;
- School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yunwu Li
- College of Engineering and Technology, Southwest University, Chongqing 400716, China;
| |
Collapse
|
24
|
Bhui A, Roychowdhury S, Sen A, Waghmare UV, Biswas K. Free‐Standing Few‐Layer Tellurene Nanosheets: Simple Solution‐Phase Synthesis and Electronic Structure. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Animesh Bhui
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research INDIA
| | | | - Arpita Sen
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research INDIA
| | - Umesh V Waghmare
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research INDIA
| | - Kanishka Biswas
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) New Chemistry Unit INDIA
| |
Collapse
|
25
|
Tsai HS, Wang Y, Liu C, Wang T, Huo M. The elemental 2D materials beyond graphene potentially used as hazardous gas sensors for environmental protection. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127148. [PMID: 34537634 DOI: 10.1016/j.jhazmat.2021.127148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The intrinsic and electronic properties of elemental two-dimensional (2D) materials beyond graphene are first introduced in this review. Then the studies concerning the application of gas sensing using these 2D materials are comprehensively reviewed. On the whole, the carbon-, nitrogen-, and sulfur-based gases could be effectively detected by using most of them. For the sensing of organic vapors, the borophene, phosphorene, and arsenene may perform it well. Moreover, the G-series nerve agents might be efficiently monitored by the bismuthene. So far, there is still challenge on the material preparation due to the instability of these 2D materials under atmosphere. The synthesis or growth of materials integrated with the technique of surface protection should be associated with the device fabrication to establish a complete process for particular application. This review provides a complete and methodical guideline for scientists to further research and develop the hazardous gas sensors of these 2D materials in order to achieve the purpose of environmental protection.
Collapse
Affiliation(s)
- Hsu-Sheng Tsai
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China; School of Physics, Harbin Institute of Technology, 150001 Harbin, China.
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Chaoming Liu
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China; School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Tianqi Wang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China
| | - Mingxue Huo
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
26
|
Sun D, Tang X, Tian XA, Liu L. Ga-doped 3D ordered porous SnO2 with an ultrasmall pore size for enhanced formaldehyde sensitivity. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2033123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dan Sun
- College of Physics, Jilin University, Changchun, PR China
| | - Xiaonian Tang
- College of Physics, Jilin University, Changchun, PR China
| | - Xi-ang Tian
- Faculty of Science, Shandong Jianzhu University, Jinan, PR China
| | - Li Liu
- College of Physics, Jilin University, Changchun, PR China
| |
Collapse
|
27
|
Seo J, Nam SH, Lee M, Kim JY, Kim SG, Park C, Seo DW, Kim YL, Kim SS, Kim UJ, Hahm MG. Gate-controlled gas sensor utilizing 1D-2D hybrid nanowires network. iScience 2022; 25:103660. [PMID: 35024590 PMCID: PMC8733229 DOI: 10.1016/j.isci.2021.103660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Novel gas sensors that work at room temperature are attracting attention due to their low energy consumption and stability in the presence of toxic gases. However, the development of sensing characteristics at room temperature is still a primary challenge. Diverse reaction pathways and low adsorption energy for gas molecules are required to fabricate a gas sensor that works at room temperature with high sensitivity, selectivity, and efficiency. Therefore, we enhanced the gas sensing performance at room temperature by constructing hybridized nanostructure of 1D-2D hybrid of SnSe2 layers and SnO2 nanowire networks and by controlling the back-gate bias (Vg = 1.5 V). The response time was dramatically reduced by lowering the energy barrier for the adsorption on the reactive sites, which are controlled by the back gate. Consequently, we believe that this research could contribute to improving the performance of gas sensors that work at room temperature.
Collapse
Affiliation(s)
- Juyeon Seo
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seung Hyun Nam
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Moonsang Lee
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seung Gyu Kim
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Changkyoo Park
- Department of Laser and Electron Beam Technologies, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Dong-Woo Seo
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Goyang-Si, Gyeonggi-Do 10223, Republic of Korea
| | - Young Lae Kim
- Department of Electronic Engineering, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Un Jeong Kim
- Advanced Sensor Laboratory, Samsung Advanced Institute of Technology, Suwon 443-803, Republic of Korea
| | - Myung Gwan Hahm
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
28
|
Rajput K, He J, Frauenheim T, Roy DR. Monolayer PC 3: A promising material for environmentally toxic nitrogen-containing multi gases. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126761. [PMID: 34418836 DOI: 10.1016/j.jhazmat.2021.126761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon and its analogous nanomaterials are beneficial for toxic gas sensors since they are used to increase the electrochemically active surface region and improve the transmission of electrons. The present article addresses a detailed investigation on the potential of the monolayer PC3 compound as a possible sensor material for environmentally toxic nitrogen-containing gases (NCGs), namely NH3, NO, and NO2. The entire work is carried out under the frameworks of density functional theory, ab-initio molecular dynamics simulations, and non-equilibrium Green's function approaches. The monolayer-gas interactions are studied with the van der Waals dispersion correction. The stability of pristine monolayer PC3 is confirmed through dynamical, mechanical, and thermal analyses. The mobility and relaxation time of 2D PC3 sensor material with NCGs are obtained in the range of 101-104 cm2 V-1 s-1 and 101-103 fs for armchair and zigzag directions, respectively. Out of six possible adsorption sites for toxic gases on the PC3 surface, the most prominent site is identified with the highest adsorption energy for all the NCGs. Considering the most stable configuration site of the NCGs, we have obtained relevant electronic properties by utilizing the band unfolding technique. The considerable adsorption energies are obtained for NO and NO2 compared to NH3. Although physisorption is observed for all the NCGs on the PC3 surface, NO2 is found to convert into NO and O at 5.05 ps (at 300 K) under molecular dynamics simulation. The maximum charge transfer (0.31e) and work function (5.17 eV) are observed for the NO2 gas molecule in the series. Along with the considerable adsorption energies for NO and NO2 gas molecules, their shorter recovery time (0.071 s and 0.037 s, respectively) from the PC3 surface also identifies 2D PC3 as a promising sensor material for those environmentally toxic gases. The experimental viability and actual implications for PC3 monolayer as NCGs sensor material are also confirmed by examining the humidity effect and transport properties with modeled sensor devices. The transport properties (I-V characteristics) reflect the significant sensitivity of PC3 monolayer toward NO and NO2 molecules. These results certainly confirm PC3 monolayer as a promising sensor material for NO and NO2 NCG molecules.
Collapse
Affiliation(s)
- Kaptan Rajput
- Materials and Biophysics Group, Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany; Department of Physical and Macromolecular Chemistry & Charles University Centre of Advanced Materials, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 128 43, Czech Republic
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany; Computational Science Research Center (CSRC) Beijing and Computational Science and Applied Research (CSAR) Institute, Shenzhen, Beijing 100193, China.
| | - Debesh R Roy
- Materials and Biophysics Group, Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Surat, India; Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany; Hanse-Wissenschaftskolleg (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany.
| |
Collapse
|
29
|
Enhanced adsorption properties of ZnO/GaN heterojunction for CO and H2S under external electric field. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Limbu TB, Adhikari B, Song SK, Chitara B, Tang Y, Parsons GN, Yan F. Toward understanding the phase-selective growth mechanism of films and geometrically-shaped flakes of 2D MoTe 2. RSC Adv 2021; 11:38839-38848. [PMID: 35493247 PMCID: PMC9044229 DOI: 10.1039/d1ra07787b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Two-dimensional (2D) molybdenum ditelluride (MoTe2) is an interesting material for fundamental study and applications, due to its ability to exist in different polymorphs of 2H, 1T, and 1T′, their phase change behavior, and unique electronic properties. Although much progress has been made in the growth of high-quality flakes and films of 2H and 1T′-MoTe2 phases, phase-selective growth of all three phases remains a huge challenge, due to the lack of enough information on their growth mechanism. Herein, we present a novel approach to growing films and geometrical-shaped few-layer flakes of 2D 2H-, 1T-, and 1T′-MoTe2 by atmospheric-pressure chemical vapor deposition (APCVD) and present a thorough understanding of the phase-selective growth mechanism by employing the concept of thermodynamics and chemical kinetics involved in the growth processes. Our approach involves optimization of growth parameters and understanding using thermodynamical software, HSC Chemistry. A lattice strain-mediated mechanism has been proposed to explain the phase selective growth of 2D MoTe2, and different chemical kinetics-guided strategies have been developed to grow MoTe2 flakes and films. This study investigates the phase-controlled growth of flakes and films of 2D MoTe2 by atmospheric-pressure chemical vapor deposition and presents a thorough understanding on the growth mechanism.![]()
Collapse
Affiliation(s)
- Tej B Limbu
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA .,Department of Physical and Applied Sciences, University of Houston-Clear Lake Houston TX 77058 USA
| | - Bikram Adhikari
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| | - Seung Keun Song
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27695 USA
| | - Basant Chitara
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University Durham NC 27707 USA
| | - Gregory N Parsons
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27695 USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| |
Collapse
|
31
|
Xie Z, Zhang B, Ge Y, Zhu Y, Nie G, Song Y, Lim CK, Zhang H, Prasad PN. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chem Rev 2021; 122:1127-1207. [PMID: 34780169 DOI: 10.1021/acs.chemrev.1c00165] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The past decades have witnessed a rapid expansion in investigations of two-dimensional (2D) monoelemental materials (Xenes), which are promising materials in various fields, including applications in optoelectronic devices, biomedicine, catalysis, and energy storage. Apart from graphene and phosphorene, recently emerging 2D Xenes, specifically graphdiyne, borophene, arsenene, antimonene, bismuthene, and tellurene, have attracted considerable interest due to their unique optical, electrical, and catalytic properties, endowing them a broader range of intriguing applications. In this review, the structures and properties of these emerging Xenes are summarized based on theoretical and experimental results. The synthetic approaches for their fabrication, mainly bottom-up and top-down, are presented. Surface modification strategies are also shown. The wide applications of these emerging Xenes in nonlinear optical devices, optoelectronics, catalysis, biomedicine, and energy application are further discussed. Finally, this review concludes with an assessment of the current status, a description of existing scientific and application challenges, and a discussion of possible directions to advance this fertile field.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yanqi Ge
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - YuFeng Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo 14260-3000, United States
| |
Collapse
|
32
|
Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, Li T, Huang W, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zheng F, Al-Sehemi AG, Wang G, Xie Z, Zhang H. 2D materials for bone therapy. Adv Drug Deliv Rev 2021; 178:113970. [PMID: 34509576 DOI: 10.1016/j.addr.2021.113970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Due to their prominent physicochemical properties, 2D materials are broadly applied in biomedicine. Currently, 2D materials have achieved great success in treating many diseases such as cancer and tissue engineering as well as bone therapy. Based on their different characteristics, 2D materials could function in various ways in different bone diseases. Herein, the application of 2D materials in bone tissue engineering, joint lubrication, infection of orthopedic implants, bone tumors, and osteoarthritis are firstly reviewed comprehensively together. Meanwhile, different mechanisms by which 2D materials function in each disease reviewed below are also reviewed in detail, which in turn reveals the versatile functions and application of 2D materials. At last, the outlook on how to further broaden applications of 2D materials in bone therapies based on their excellent properties is also discussed.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Xianjing Han
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jindong Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chenshuo Wu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianzhong Li
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fei Zheng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Abdullah G Al-Sehemi
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Guiqing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, PR China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
33
|
Liu Q, Tan Y, Zhang R, Kang Y, Zeng G, Zhao X, Jiang T. Conformal Self-Assembly of Nanospheres for Light-Enhanced Airtightness Monitoring and Room-Temperature Gas Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1829. [PMID: 34361213 PMCID: PMC8308308 DOI: 10.3390/nano11071829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 12/02/2022]
Abstract
The fabrication of conformal nanostructures on microarchitectures is of great significance for diverse applications. Here a facile and universal method was developed for conformal self-assembly of nanospheres on various substrates including convex bumps and concave holes. Hydrophobic microarchitectures could be transferred into superhydrophilic ones using plasma treatment due to the formation of numerous hydroxyl groups. Because of superhydrophilicity, the nanosphere suspension spread on the microarchitectures quickly and conformal self-assembly of nanospheres can be realized. Besides, the feature size of the conformal nanospheres on the substrates could be further regulated by plasma treatment. After transferring two-dimensional tungsten disulfide sheets onto the conformal nanospheres, the periodic nanosphere array was demonstrated to be able to enhance the light harvesting of WS2. Based on this, a light-enhanced room-temperature gas sensor with a fast recovery speed (<35 s) and low detecting limit (500 ppb) was achieved. Moreover, the WS2-covered nanospheres on the microarchitectures were very sensitive to the changes in air pressure due to the formation of suspended sheets on the convex bumps and concave holes. A sensitive photoelectronic pressure sensor that was capable of detecting the airtightness of vacuum devices was developed using the WS2-decorated hierarchical architectures. This work provides a simple method for the fabrication of conformal nanospheres on arbitrary substrates, which is promising for three-dimensional microfabrication of multifunctional hierarchical microarchitectures for diverse applications, such as biomimetic compound eyes, smart wetting surfaces and photonic crystals.
Collapse
Affiliation(s)
- Qirui Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (Q.L.); (R.Z.); (Y.K.); (G.Z.)
| | - Yinlong Tan
- Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
| | - Renyan Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (Q.L.); (R.Z.); (Y.K.); (G.Z.)
| | - Yan Kang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (Q.L.); (R.Z.); (Y.K.); (G.Z.)
| | - Ganying Zeng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (Q.L.); (R.Z.); (Y.K.); (G.Z.)
| | - Xiaoming Zhao
- State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;
| | - Tian Jiang
- Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
| |
Collapse
|
34
|
Chen Z, Zhang F, Li H, Jiang P, Chen X, Yu J. High sensitive and selective toxic gas sensor based on monolayer Tetra-MoN2 for sensing NO: A first-principles study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Marjani A, Ghambarian M, Ghashghaee M. Alkali metal doping of black phosphorus monolayer for ultrasensitive capture and detection of nitrogen dioxide. Sci Rep 2021; 11:842. [PMID: 33436873 PMCID: PMC7804848 DOI: 10.1038/s41598-020-80343-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
Black phosphorus nanostructures have recently sparked substantial research interest for the rational development of novel chemosensors and nanodevices. For the first time, the influence of alkali metal doping of black phosphorus monolayer (BP) on its capabilities for nitrogen dioxide (NO2) capture and monitoring is discussed. Four different nanostructures including BP, Li-BP, Na-BP, and K-BP were evaluated; it was found that the adsorption configuration on Li-BP was different from others such that the NO2 molecule preferred a vertical stabilization rather than a parallel configuration with respect to the surface. The efficiency for the detection increased in the sequence of Na-BP < BP < K-BP < Li-BP, with the most significant improvement of + 95.2% in the case of Li doping. The Na-BP demonstrated the most compelling capacity (54 times higher than BP) for NO2 capture and catalysis (− 24.36 kcal/mol at HSE06/TZVP). Furthermore, the K-doped device was appropriate for both nitrogen dioxide adsorption and sensing while also providing the highest work function sensitivity (55.4%), which was much higher than that of BP (10.4%).
Collapse
Affiliation(s)
- Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Mehdi Ghambarian
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
| | - Mohammad Ghashghaee
- Department of Petrochemical Synthesis, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
| |
Collapse
|
36
|
Zhu B, Zheng K, Chen X, Qiu J, Guo H, Zhang F, Lang L, Yu J, Bao J. Monolayer Janus Te2Se-based gas sensor to detect SO2 and NOx: a first-principles study. Phys Chem Chem Phys 2021; 23:1675-1683. [DOI: 10.1039/d0cp05750a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, the adsorption of gas molecules, such as O2, NH3, CO, CO2, H2O, NOx (x = 1, 2) and SO2, on Janus Te2Se monolayer has been investigated by means of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Bao Zhu
- Faculty of Mechanical and Electrical Engineering
- Guilin University of Electronic Technology
- Guilin 541004
- China
- Key Laboratory of Optoelectronic Technology & Systems
| | - Kai Zheng
- Key Laboratory of Optoelectronic Technology & Systems
- Education Ministry of China
- Chongqing University and College of Optoelectronic Engineering
- Chongqing University
- 400044 Chongqing
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems
- Education Ministry of China
- Chongqing University and College of Optoelectronic Engineering
- Chongqing University
- 400044 Chongqing
| | - Jian Qiu
- Faculty of Mechanical and Electrical Engineering
- Guilin University of Electronic Technology
- Guilin 541004
- China
- Key Laboratory of Optoelectronic Technology & Systems
| | - Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems
- Education Ministry of China
- Chongqing University and College of Optoelectronic Engineering
- Chongqing University
- 400044 Chongqing
| | - Fusheng Zhang
- Key Laboratory of Optoelectronic Technology & Systems
- Education Ministry of China
- Chongqing University and College of Optoelectronic Engineering
- Chongqing University
- 400044 Chongqing
| | - Lei Lang
- Key Laboratory of Optoelectronic Technology & Systems
- Education Ministry of China
- Chongqing University and College of Optoelectronic Engineering
- Chongqing University
- 400044 Chongqing
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems
- Education Ministry of China
- Chongqing University and College of Optoelectronic Engineering
- Chongqing University
- 400044 Chongqing
| | - Jiading Bao
- Faculty of Mechanical and Electrical Engineering
- Guilin University of Electronic Technology
- Guilin 541004
- China
| |
Collapse
|
37
|
Rao Y, Zhang F, Zhu B, Li H, Zheng K, Zou Y, Feng X, Guo H, Qiu J, Chen X, Yu J. A C 2N/ZnSe heterostructure with type-II band alignment and excellent photocatalytic water splitting performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj02366g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A type-II C2N/ZnSe heterostructure with strong light-absorption ability, high carrier mobility and low exciton binding energy, exhibits excellent photocatalytic water splitting performance
Collapse
|