1
|
Liu X, Zhou Z, Zhang Y, Zhong H, Cai X, Guan R. Recent progress on the organoids: Techniques, advantages and applications. Biomed Pharmacother 2025; 185:117942. [PMID: 40043462 DOI: 10.1016/j.biopha.2025.117942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
Organoids are a cutting-edge technology in the life sciences field, with applications in precision medicine, bionic organs, and toxicological evaluations of chemicals. Their 3D structure closely resembles that of real organs, allowing more accurate functional mimicry. The 3D organoid culture system can simulate the growth state of cells in vivo and establish a suspension culture system for organoid 3D culture by using scaffold-less or scaffold technology to avoid direct contact between cells and plastic culture vessels. Furthermore, organoids can simulate the pathophysiological state of tissues and organs in vitro. This paper primarily discusses the construction methodologies, as well as the advantages and disadvantages of 3D culture systems for both scaffold-free organoids and scaffolded organoids. This review also summarizes the application of organoid models in chemical toxicology evaluation, drug screening and functional evaluation, establishment of in vitro disease models, and research on disease occurrence and potential mechanisms. The aim is to provide a reference for the research and practical applications of organoid-related scientific fields.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiyuan Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiulei Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China.
| |
Collapse
|
2
|
Kagan BJ, Habibollahi F, Watmuff B, Azadi A, Doensen F, Loeffler A, Byun SH, Servais B, Desouza C, Abu-Bonsrah KD, Kerlero de Rosbo N. Harnessing Intelligence from Brain Cells In Vitro. Neuroscientist 2025:10738584251321438. [PMID: 40079153 DOI: 10.1177/10738584251321438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Harnessing intelligence from brain cells in vitro requires a multidisciplinary approach integrating wetware, hardware, and software. Wetware comprises the in vitro brain cells themselves, where differentiation from induced pluripotent stem cells offers ethical scalability; hardware typically involves a life support system and a setup to record the activity from and deliver stimulation to the brain cells; and software is required to control the hardware and process the signals coming from and going to the brain cells. This review provides a broad summary of the foundational technologies underpinning these components, along with outlining the importance of technology integration. Of particular importance is that this new technology offers the ability to extend beyond traditional methods that assess primarily the survival and spontaneous activity of neural cultures. Instead, the focus returns to the core function of neural tissue: the neurocomputational ability to process information and respond accordingly. Therefore, this review also covers work that, despite the relatively early state of current technology, has provided novel and meaningful understandings in the field of neuroscience along with opening exciting avenues for future research.
Collapse
Affiliation(s)
- Brett J Kagan
- Cortical Labs, Melbourne, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | - Bram Servais
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
3
|
Brofiga M, Callegari F, Cerutti L, Tedesco M, Massobrio P. Cortical, striatal, and thalamic populations self-organize into a functionally connected circuit with long-term memory properties. Biosens Bioelectron 2025; 267:116840. [PMID: 39423706 DOI: 10.1016/j.bios.2024.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
The human brain is a complex organ with an intricate neuronal connectivity and diverse functional regions. Neurological disorders often disrupt the delicate balance among these anatomical compartments, resulting in severe impairments. The available therapeutic options constitute an incomplete solution as many patients respond partially, highlighting the need for continued research into causes and treatments. Bottom-up approaches, like in vitro models, offer insights into brain functions as they recreate the in vivo microenvironment that allows studying how specific features affect physiological and pathological conditions. In this work, we engineered the cortical-striatal-thalamic (CST) circuit, involved in many brain functions such as action initiation and selection, using a three-compartment polymeric device. We characterized the emerging spontaneous electrophysiological activity by using Micro-Electrode Arrays (MEAs). Cortical neurons exhibited complex bursting activity, which influenced the entire circuit. Striatal and thalamic neurons displayed predominantly tonic firing when isolated, while interconnections with the cortex synchronized and organized their neuronal activity, highlighting the cortical pivotal role in bursting activity and information processing. The CST circuit demonstrated self-organization abilities and displayed high entropy values, indicative of dynamic richness and information encoding potential. Furthermore, we proved the CST's involvement in learning and memory. Our CST model provides a platform for further exploration into brain circuitry and potential therapeutic interventions, underscoring the necessity of realistic in vitro models to fully understand neurological diseases' pathophysiology.
Collapse
Affiliation(s)
- Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy; ScreenNeuroPharm, Sanremo, Italy; Neurofacility, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca Callegari
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Letizia Cerutti
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy; National Institute for Nuclear Physics (INFN), Genova, Italy.
| |
Collapse
|
4
|
Sharaf A, Frimat JP, Accardo A. Mechanical confinement matters: Unveiling the effect of two-photon polymerized 2.5D and 3D microarchitectures on neuronal YAP expression and neurite outgrowth. Mater Today Bio 2024; 29:101325. [PMID: 39569166 PMCID: PMC11576396 DOI: 10.1016/j.mtbio.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
The effect of mechanical cues on cellular behaviour has been reported in multiple studies so far, and a specific aspect of interest is the role of mechanotransductive proteins in neuronal development. Among these, yes-associated protein (YAP) is responsible for multiple functions in neuronal development such as neuronal progenitor cells migration and differentiation while myocardin-related transcription factor A (MRTFA) facilitates neurite outgrowth and axonal pathfinding. Both proteins have indirectly intertwined fates via their signalling pathways. There is little literature investigating the roles of YAP and MRTFA in vitro concerning neurite outgrowth in mechanically confined microenvironments. Moreover, our understanding of their relationship in immature neurons cultured within engineered confined microenvironments is still lacking. In this study, we fabricated, via two-photon polymerization (2PP), 2.5D microgrooves and 3D polymeric microchannels, with a diameter range from 5 to 30 μm. We cultured SH-SY5Y cells and differentiated them into immature neuron-like cells on both 2.5D and 3D microstructures to investigate the effect of mechanical confinement on cell morphology and protein expression. In 2.5D microgrooves, both YAP and MRTFA nuclear/cytoplasmic (N/C) ratios exhibited maxima in the 10 μm grooves indicating a strong relation with mechanical-stress-inducing confinement. In 3D microchannels, both proteins' N/C ratio exhibited minima in presence of 5 or 10 μm channels, a behaviour that was opposite to the ones observed in the 2.5D microgrooves and that indicates how the geometry and mechanical confinement of 3D microenvironments are unique compared to 2.5D ones due to focal adhesion, actin, and nuclear polarization. Further, especially in presence of 2.5D microgrooves, cells featured an inversely proportional relationship between YAP N/C ratio and the average neurite length. Finally, we also cultured human induced pluripotent stem cells (hiPSCs) and differentiated them into cortical neurons on the microstructures for up to 2 weeks. Interestingly, YAP and MRTFA N/C ratios also showed a maximum around the 10 μm 2.5D microgrooves, indicating the physiological relevance of our study. Our results elucidate the possible differences induced by 2.5D and 3D confining microenvironments in neuronal development and paves the way for understanding the intricate interplay between mechanotransductive proteins and their effect on neural cell fate within engineered cell microenvironments.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands
| | - Jean-Philippe Frimat
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands
| |
Collapse
|
5
|
Khalid A, Dremin V, El-Tamer A, Surnina M, Lancelot C, Rafailov E, Sokolovski S. Dual-mode OCT/fluorescence system for monitoring the morphology and metabolism of laser-printed 3D full-thickness skin equivalents. BIOMEDICAL OPTICS EXPRESS 2024; 15:6299-6312. [PMID: 39553855 PMCID: PMC11563319 DOI: 10.1364/boe.510610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024]
Abstract
The 3D structure of native human skin is fundamental for studying skin health, diseases, wound healing, and for testing the safety of skin care products, as well as personalized treatments for skin conditions. Tissue regeneration, driven by tissue engineering, often involves creating full-thickness skin equivalents (FSE), which are widely used for developing both healthy and diseased skin models. In this study, we utilized human skin cell lines to create FSE. We designed high-resolution 3D scaffolds to support the growth and maturation of these skin models. Additionally, we developed and validated a cost-effective, custom-built system combining fluorescence spectroscopy (FS) and optical coherence tomography (OCT) for non-destructive analysis of the metabolism and morphology of 3D FSEs. This system proved highly sensitive in detecting fluorescence from key metabolic co-enzymes (NADH and FAD) in solutions and cell suspensions, while OCT provided adequate resolution to observe the morphology of FSEs. As a result, both the 3D FSE model and the dual-mode optical system hold significant potential for use in 3D bioprinting of biological tissues, as well as in the development of cosmetics, drugs, and in monitoring their maturation over time.
Collapse
Affiliation(s)
- Arooj Khalid
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| | - Viktor Dremin
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| | | | | | - Celine Lancelot
- StratiCELL Ltd., Science Park Crealys, 5032 Les Isnes, Gembloux, Belgium
| | - Edik Rafailov
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| | - Sergei Sokolovski
- AIPT, College of Engineering and Physical Sciences, Aston University, B4 7 PH Birmingham, UK
| |
Collapse
|
6
|
Yoon D, Nam Y. A 3D neuronal network read-out interface with high recording performance using a neuronal cluster patterning on a microelectrode array. Biosens Bioelectron 2024; 261:116507. [PMID: 38905857 DOI: 10.1016/j.bios.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
In recent years, in vitro three-dimensional (3D) neuronal network models utilizing extracellular matrices have been advancing. To understand the network activity from these models, attempts have been made to measure activity in multiple regions simultaneously using a microelectrode array (MEA). Although there hve been many attempts to measure the activity of 3D networks using 2-dimensional (2D) MEAs, the physical coupling between the 3D network and the microelectrodes was not stable and needed to be improved. In this study, we proposed a neuronal cluster interface that improves the active channel ratio of commercial 2D MEAs, enabling reliable measurement of 3D network activity. To achieve this, neuronal clusters, which consist of a small number of neurons, were patterned on microelectrodes and used as mediators to transmit the signal between the 3D network and the microelectrodes. We confirmed that the patterned neuronal clusters enhanced the active channel ratio and SNR(signal-to-noise-ratio) about 3D network recording and stimulation for a month. Our interface was able to functionally connect with 3D networks and measure the 3D network activity without significant alternation of activity characteristics. Finally, we demonstrated that our interface can be used to analyze the differences in the dynamics of 3D and 2D networks and to construct the 3D clustered network. This method is expected to be useful for studying the functional activity of various 3D neuronal network models, offering broad applications for the use of these models.
Collapse
Affiliation(s)
- Dongjo Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Bocheng X, França R. Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review. Biomed Phys Eng Express 2024; 10:062002. [PMID: 39260389 DOI: 10.1088/2057-1976/ad795c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The rapid advancements in 3D printing technology have revolutionized the field of tissue engineering, particularly in the development of neural tissues for the treatment of nervous system diseases. Brain neural tissue, composed of neurons and glial cells, plays a crucial role in the functioning of the brain, spinal cord, and peripheral nervous system by transmitting nerve impulses and processing information. By leveraging 3D bioprinting and bioinks, researchers can create intricate neural scaffolds that facilitate the proliferation and differentiation of nerve cells, thereby promoting the repair and regeneration of damaged neural tissues. This technology allows for the precise spatial arrangement of various cell types and scaffold materials, enabling the construction of complex neural tissue models that closely mimic the natural architecture of the brain. Human-induced pluripotent stem cells (hiPSCs) have emerged as a groundbreaking tool in neuroscience research and the potential treatment of neurological diseases. These cells can differentiate into diverse cell types within the nervous system, including neurons, astrocytes, microglia, oligodendrocytes, and Schwann cells, providing a versatile platform for studying neural networks, neurodevelopment, and neurodegenerative disorders. The use of hiPSCs also opens new avenues for personalized medicine, allowing researchers to model diseases and develop targeted therapies based on individual patient profiles. Despite the promise of direct hiPSC injections for therapeutic purposes, challenges such as poor localization and limited integration have led to the exploration of biomaterial scaffolds as supportive platforms for cell delivery and tissue regeneration. This paper reviews the integration of 3D bioprinting technologies and bioink materials in neuroscience applications, offering a unique platform to create complex brain and tissue architectures that mimic the mechanical, architectural, and biochemical properties of native tissues. These advancements provide robust tools for modelling, repair, and drug screening applications. The review highlights current research, identifies research gaps, and offers recommendations for future studies on 3D bioprinting in neuroscience. The investigation demonstrates the significant potential of 3D bioprinting to fabricate brain-like tissue constructs, which holds great promise for regenerative medicine and drug testing models. This approach offers new avenues for studying brain diseases and potential treatments.
Collapse
Affiliation(s)
- Xu Bocheng
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, R3E 0W2, Canada
| | - Rodrigo França
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, R3E 0W2, Canada
- Rady Faculty of Health Science, Dental Biomaterials Research Lab, University of Manitoba, Winnipeg, R3E 0W2, Canada
| |
Collapse
|
8
|
Callegari F, Brofiga M, Tedesco M, Massobrio P. Electrophysiological features of cortical 3D networks are deeply modulated by scaffold properties. APL Bioeng 2024; 8:036112. [PMID: 39193551 PMCID: PMC11348497 DOI: 10.1063/5.0214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Three-dimensionality (3D) was proven essential for developing reliable models for different anatomical compartments and many diseases. However, the neuronal compartment still poses a great challenge as we still do not understand precisely how the brain computes information and how the complex chain of neuronal events can generate conscious behavior. Therefore, a comprehensive model of neuronal tissue has not yet been found. The present work was conceived in this framework: we aimed to contribute to what must be a collective effort by filling in some information on possible 3D strategies to pursue. We compared directly different kinds of scaffolds (i.e., PDMS sponges, thermally crosslinked hydrogels, and glass microbeads) in their effect on neuronal network activity recorded using micro-electrode arrays. While the overall rate of spiking activity remained consistent, the type of scaffold had a notable impact on bursting dynamics. The frequency, density of bursts, and occurrence of random spikes were all affected. The examination of inter-burst intervals revealed distinct burst generation patterns unique to different scaffold types. Network burst propagation unveiled divergent trends among configurations. Notably, it showed the most differences, underlying that functional variations may arise from a different 3D spatial organization. This evidence suggests that not all 3D neuronal constructs can sustain the same level of richness of activity. Furthermore, we commented on the reproducibility, efficacy, and scalability of the methods, where the beads still offer superior performances. By comparing different 3D scaffolds, our results move toward understanding the best strategies to develop functional 3D neuronal units for reliable pre-clinical studies.
Collapse
Affiliation(s)
- Francesca Callegari
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | | | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | | |
Collapse
|
9
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 2024; 31:260-274.e7. [PMID: 38306994 PMCID: PMC10883639 DOI: 10.1016/j.stem.2023.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/01/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Probing how human neural networks operate is hindered by the lack of reliable human neural tissues amenable to the dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate into neurons and form functional neural circuits within and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents, and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
Affiliation(s)
- Yuanwei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xueyan Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakthikumar Mathivanan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Linghai Kong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yi Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiang Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore, Singapore; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815.
| |
Collapse
|
10
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D Bioprinting of Human Neural Tissues with Functional Connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576289. [PMID: 38328181 PMCID: PMC10849546 DOI: 10.1101/2024.01.18.576289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Probing how the human neural networks operate is hindered by the lack of reliable human neural tissues amenable for dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate to neurons and form functional neural circuits in and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
|
11
|
Jahreis K, Brüge A, Borsdorf S, Müller FE, Sun W, Jia S, Kang DM, Boesen N, Shin S, Lim S, Koroleva A, Satała G, Bojarski AJ, Rakuša E, Fink A, Doblhammer-Reiter G, Kim YK, Dityatev A, Ponimaskin E, Labus J. Amisulpride as a potential disease-modifying drug in the treatment of tauopathies. Alzheimers Dement 2023; 19:5482-5497. [PMID: 37218673 DOI: 10.1002/alz.13090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Hyperphosphorylation and aggregation of the microtubule-associated protein tau cause the development of tauopathies, such as Alzheimer's disease and frontotemporal dementia (FTD). We recently uncovered a causal link between constitutive serotonin receptor 7 (5-HT7R) activity and pathological tau aggregation. Here, we evaluated 5-HT7R inverse agonists as novel drugs in the treatment of tauopathies. METHODS Based on structural homology, we screened multiple approved drugs for their inverse agonism toward 5-HT7R. Therapeutic potential was validated using biochemical, pharmacological, microscopic, and behavioral approaches in different cellular models including tau aggregation cell line HEK293 tau bimolecular fluorescence complementation, primary mouse neurons, and human induced pluripotent stem cell-derived neurons carrying an FTD-associated tau mutation as well as in two mouse models of tauopathy. RESULTS Antipsychotic drug amisulpride is a potent 5-HT7R inverse agonist. Amisulpride ameliorated tau hyperphosphorylation and aggregation in vitro. It further reduced tau pathology and abrogated memory impairment in mice. DISCUSSION Amisulpride may be a disease-modifying drug for tauopathies.
Collapse
Affiliation(s)
- Kathrin Jahreis
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Alina Brüge
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Saskia Borsdorf
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Franziska E Müller
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dong Min Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Nicolette Boesen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Shin
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sungsu Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Anastasia Koroleva
- Department of Nanoengineering, Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Elena Rakuša
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anne Fink
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | | | - Yun Kyung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Josephine Labus
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Perez JE, Jan A, Villard C, Wilhelm C. Surface Tension and Neuronal Sorting in Magnetically Engineered Brain-Like Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302411. [PMID: 37544889 PMCID: PMC10520685 DOI: 10.1002/advs.202302411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Indexed: 08/08/2023]
Abstract
Engineered 3D brain-like models have advanced the understanding of neurological mechanisms and disease, yet their mechanical signature, while fundamental for brain function, remains understudied. The surface tension for instance controls brain development and is a marker of cell-cell interactions. Here, 3D magnetic brain-like tissue spheroids composed of intermixed primary glial and neuronal cells at different ratios are engineered. Remarkably, the two cell types self-assemble into a functional tissue, with the sorting of the neuronal cells toward the periphery of the spheroids, whereas the glial cells constitute the core. The magnetic fingerprint of the spheroids then allows their deformation when placed under a magnetic field gradient, at a force equivalent to a 70 g increased gravity at the spheroid level. The tissue surface tension and elasticity can be directly inferred from the resulting deformation, revealing a transitional dependence on the glia/neuron ratio, with the surface tension of neuronal tissue being much lower. The results suggest an underlying mechanical contribution to the exclusion of the neurons toward the outer spheroid region, and depict the glia/neuron organization as a sophisticated mechanism that should in turn influence tissue development and homeostasis relevant in the neuroengineering field.
Collapse
Affiliation(s)
- Jose E. Perez
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
| | - Audric Jan
- Institut Pierre‐Gilles de GennesIPGG Technology PlatformUMS 3750 CNRSParis75005France
| | - Catherine Villard
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
- Laboratoire Interdisciplinaire des Énergies de DemainUniversité Paris CitéUMR 8236 CNRSParis75013France
| | - Claire Wilhelm
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
| |
Collapse
|
13
|
Sharlow ER, Llaneza DC, Grever WE, Mingledorff GA, Mendelson AJ, Bloom GS, Lazo JS. High content screening miniaturization and single cell imaging of mature human feeder layer-free iPSC-derived neurons. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:275-283. [PMID: 36273809 PMCID: PMC10119332 DOI: 10.1016/j.slasd.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-derived neurons are being increasingly used for high content imaging and screening. However, iPSC-derived neuronal differentiation and maturation is time-intensive, often requiring >8 weeks. Unfortunately, the differentiating and maturing iPSC-derived neuronal cultures also tend to migrate and coalesce into ganglion-like clusters making single-cell analysis challenging, especially in miniaturized formats. Using our defined extracellular matrix and low oxygen culturing conditions for the differentiation and maturation of human cortical neurons, we further modified neuronal progenitor cell seeding densities and feeder layer-free culturing conditions in miniaturized formats (i.e., 96 well) to decrease neuronal clustering, enhance single-cell identification and reduce edge effects usually observed after extended neuronal cell culture. Subsequent algorithm development refined capabilities to distinguish and identify single mature neurons, as identified by NeuN expression, from large cellular aggregates, which were excluded from image analysis. Incorporation of astrocyte conditioned medium during differentiation and maturation periods significantly increased the percentage (i.e., ∼10% to ∼30%) of mature neurons (i.e., NeuN+) detected at 4-weeks post-differentiation. Pilot, proof of concept studies using this optimized assay system yielded negligible edge effects and robust Z-factors in population-based as well as image-based neurotoxicity assay formats. Moreover, moxidectin, an FDA-approved drug with documented neurotoxic adverse effects, was identified as a hit using both screening formats. This miniaturized, feeder layer-free format and image analysis algorithm provides a foundational imaging and screening platform, which enables quantitative single-cell analysis of differentiated human neurons.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, 340 Jefferson Park Avenue, Pinn Hall, 5th Floor, P.O. Box 800735, Charlottesville, VA 22908-0735, USA.
| | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, 340 Jefferson Park Avenue, Pinn Hall, 5th Floor, P.O. Box 800735, Charlottesville, VA 22908-0735, USA
| | | | - Garnett A Mingledorff
- Department of Pharmacology, University of Virginia, 340 Jefferson Park Avenue, Pinn Hall, 5th Floor, P.O. Box 800735, Charlottesville, VA 22908-0735, USA
| | - Anna J Mendelson
- Department of Pharmacology, University of Virginia, 340 Jefferson Park Avenue, Pinn Hall, 5th Floor, P.O. Box 800735, Charlottesville, VA 22908-0735, USA
| | - George S Bloom
- Department of Biology, University of Virginia, 420 Gilmer Hall, 485 McCormick Road, P.O. Box 400328, Charlottesville VA 22904, USA; Department of Cell Biology, University of Virginia, 420 Gilmer Hall, 485 McCormick Road, P.O. Box 400328, Charlottesville VA 22904, USA; Department of Neuroscience, University of Virginia, 420 Gilmer Hall, 485 McCormick Road, P.O. Box 400328, Charlottesville VA 22904, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, 340 Jefferson Park Avenue, Pinn Hall, 5th Floor, P.O. Box 800735, Charlottesville, VA 22908-0735, USA
| |
Collapse
|
14
|
Callegari F, Brofiga M, Tedesco M, Massobrio P. How 3D scaffolds with different mechanical properties affect the activity of neuronal networks in in vitro models . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083594 DOI: 10.1109/embc40787.2023.10340624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Three-dimensionality has been proven extensively to be critical in the development of a reliable model for different anatomical compartments and for many diseases. Currently, we can produce implantable structures that help in the regeneration of different tissues such as bone and heart. Different is the situation when we consider the neuronal compartment. As it is still difficult to understand exactly how the brain computes, to conceive how the complex chain of neuronal events can generate conscious behavior, a comprehensive and workable model of neuronal tissue still has to be found. In this perspective, in the present work, we developed and compared different 3D scaffolds to understand the effects produced by the mechanical and material properties of four different scaffolds on a 3D neuronal network. To help in preclinical testing procedure, the scalability and ease-of-use of the different approaches were also taken into consideration.Clinical Relevance- By comparing different 3D scaffolds for the creation of neuronal constructs, the results in this paper move towards understanding the best strategy to develop functional 3D neuronal units for reliable pre-clinical studies.
Collapse
|
15
|
Neuronal Cultures: Exploring Biophysics, Complex Systems, and Medicine in a Dish. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Neuronal cultures are one of the most important experimental models in modern interdisciplinary neuroscience, allowing to investigate in a control environment the emergence of complex behavior from an ensemble of interconnected neurons. Here, I review the research that we have conducted at the neurophysics laboratory at the University of Barcelona over the last 15 years, describing first the neuronal cultures that we prepare and the associated tools to acquire and analyze data, to next delve into the different research projects in which we actively participated to progress in the understanding of open questions, extend neuroscience research on new paradigms, and advance the treatment of neurological disorders. I finish the review by discussing the drawbacks and limitations of neuronal cultures, particularly in the context of brain-like models and biomedicine.
Collapse
|
16
|
O'Halloran S, Pandit A, Heise A, Kellett A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204072. [PMID: 36585380 PMCID: PMC9982557 DOI: 10.1002/advs.202204072] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Two-photon polymerization (TPP) has become a premier state-of-the-art method for microscale fabrication of bespoke polymeric devices and surfaces. With applications ranging from the production of optical, drug delivery, tissue engineering, and microfluidic devices, TPP has grown immensely in the past two decades. Significantly, the field has expanded from standard acrylate- and epoxy-based photoresists to custom formulated monomers designed to change the hydrophilicity, surface chemistry, mechanical properties, and more of the resulting structures. This review explains the essentials of TPP, from its initial conception through to standard operating principles and advanced chemical modification strategies for TPP materials. At the outset, the fundamental chemistries of radical and cationic polymerization are described, along with strategies used to tailor mechanical and functional properties. This review then describes TPP systems and introduces an array of commonly used photoresists including hard polyacrylic resins, soft hydrogel acrylic esters, epoxides, and organic/inorganic hybrid materials. Specific examples of each class-including chemically modified photoresists-are described to inform the understanding of their applications to the fields of tissue-engineering scaffolds, micromedical, optical, and drug delivery devices.
Collapse
Affiliation(s)
- Seán O'Halloran
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
| | - Abhay Pandit
- CÚRAMthe SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Andreas Heise
- RCSIUniversity of Medicine and Health SciencesDepartment of Chemistry123 St. Stephens GreenDublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI University of Medicine and Health Sciences and Trinity College DublinDublinDublin 2Ireland
- CÚRAMthe SFI Research Centre for Medical DevicesRCSI University of Medicine and Health SciencesDublin and National University of Ireland GalwayGalwayH91 W2TYIreland
| | - Andrew Kellett
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
- SSPCthe SFI Research Centre for PharmaceuticalsDublin City UniversityGlasnevinDublinDublin 9Ireland
| |
Collapse
|
17
|
Chen Z, Liang Q, Wei Z, Chen X, Shi Q, Yu Z, Sun T. An Overview of In Vitro Biological Neural Networks for Robot Intelligence. CYBORG AND BIONIC SYSTEMS 2023; 4:0001. [PMID: 37040493 PMCID: PMC10076061 DOI: 10.34133/cbsystems.0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 01/12/2023] Open
Abstract
In vitro biological neural networks (BNNs) interconnected with robots, so-called BNN-based neurorobotic systems, can interact with the external world, so that they can present some preliminary intelligent behaviors, including learning, memory, robot control, etc. This work aims to provide a comprehensive overview of the intelligent behaviors presented by the BNN-based neurorobotic systems, with a particular focus on those related to robot intelligence. In this work, we first introduce the necessary biological background to understand the 2 characteristics of the BNNs: nonlinear computing capacity and network plasticity. Then, we describe the typical architecture of the BNN-based neurorobotic systems and outline the mainstream techniques to realize such an architecture from 2 aspects: from robots to BNNs and from BNNs to robots. Next, we separate the intelligent behaviors into 2 parts according to whether they rely solely on the computing capacity (computing capacity-dependent) or depend also on the network plasticity (network plasticity-dependent), which are then expounded respectively, with a focus on those related to the realization of robot intelligence. Finally, the development trends and challenges of the BNN-based neurorobotic systems are discussed.
Collapse
Affiliation(s)
- Zhe Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Liang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihou Wei
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xie Chen
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiqiang Yu
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Sun
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Le TT, Oudin MJ. Understanding and modeling nerve-cancer interactions. Dis Model Mech 2023; 16:dmm049729. [PMID: 36621886 PMCID: PMC9844229 DOI: 10.1242/dmm.049729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The peripheral nervous system plays an important role in cancer progression. Studies in multiple cancer types have shown that higher intratumoral nerve density is associated with poor outcomes. Peripheral nerves have been shown to directly regulate tumor cell properties, such as growth and metastasis, as well as affect the local environment by modulating angiogenesis and the immune system. In this Review, we discuss the identity of nerves in organs in the periphery where solid tumors grow, the known mechanisms by which nerve density increases in tumors, and the effects these nerves have on cancer progression. We also discuss the strengths and weaknesses of current in vitro and in vivo models used to study nerve-cancer interactions. Increased understanding of the mechanisms by which nerves impact tumor progression and the development of new approaches to study nerve-cancer interactions will facilitate the discovery of novel treatment strategies to treat cancer by targeting nerves.
Collapse
Affiliation(s)
- Thanh T. Le
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
19
|
Long-term calcium imaging reveals functional development in hiPSC-derived cultures comparable to human but not rat primary cultures. Stem Cell Reports 2022; 18:205-219. [PMID: 36563684 PMCID: PMC9860124 DOI: 10.1016/j.stemcr.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Models for human brain-oriented research are often established on primary cultures from rodents, which fails to recapitulate cellular specificity and molecular cues of the human brain. Here we investigated whether neuronal cultures derived from human induced pluripotent stem cells (hiPSCs) feature key advantages compared with rodent primary cultures. Using calcium fluorescence imaging, we tracked spontaneous neuronal activity in hiPSC-derived, human, and rat primary cultures and compared their dynamic and functional behavior as they matured. We observed that hiPSC-derived cultures progressively changed upon development, exhibiting gradually richer activity patterns and functional traits. By contrast, rat primary cultures were locked in the same dynamic state since activity onset. Human primary cultures exhibited features in between hiPSC-derived and rat primary cultures, although traits from the former predominated. Our study demonstrates that hiPSC-derived cultures are excellent models to investigate development in neuronal assemblies, a hallmark for applications that monitor alterations caused by damage or neurodegeneration.
Collapse
|
20
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
21
|
Juste-Dolz A, Delgado-Pinar M, Avella-Oliver M, Fernández E, Cruz JL, Andrés MV, Maquieira Á. Denaturing for Nanoarchitectonics: Local and Periodic UV-Laser Photodeactivation of Protein Biolayers to Create Functional Patterns for Biosensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41640-41648. [PMID: 36047566 PMCID: PMC9940103 DOI: 10.1021/acsami.2c12808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 05/02/2023]
Abstract
The nanostructuration of biolayers has become a paradigm for exploiting nanoscopic light-matter phenomena for biosensing, among other biomedical purposes. In this work, we present a photopatterning method to create periodic structures of biomacromolecules based on a local and periodic mild denaturation of protein biolayers mediated by UV-laser irradiation. These nanostructures are constituted by a periodic modulation of the protein activity, so they are free of topographic and compositional changes along the pattern. Herein, we introduce the approach, explore the patterning parameters, characterize the resulting structures, and assess their overall homogeneity. This UV-based patterning principle has proven to be an easy, cost-effective, and fast way to fabricate large areas of homogeneous one-dimensional protein patterns (2 min, 15 × 1.2 mm, relative standard deviation ≃ 16%). This work also investigates the implementation of these protein patterns as transducers for diffractive biosensing. Using a model immunoassay, these patterns have demonstrated negligible signal contributions from non-specific bindings and comparable experimental limits of detection in buffer media and in human serum (53 and 36 ng·mL-1 of unlabeled IgG, respectively).
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Martina Delgado-Pinar
- Department
of Applied Physics and Electromagnetism-ICMUV, Universitat de València, 46100 Burjassot, Spain
| | - Miquel Avella-Oliver
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Estrella Fernández
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Jose Luís Cruz
- Department
of Applied Physics and Electromagnetism-ICMUV, Universitat de València, 46100 Burjassot, Spain
| | - Miguel V. Andrés
- Department
of Applied Physics and Electromagnetism-ICMUV, Universitat de València, 46100 Burjassot, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| |
Collapse
|
22
|
Huang B, He Y, Rofaani E, Liang F, Huang X, Shi J, Wang L, Yamada A, Peng J, Chen Y. Automatic differentiation of human induced pluripotent stem cells toward synchronous neural networks on an arrayed monolayer of nanofiber membrane. Acta Biomater 2022; 150:168-180. [PMID: 35907558 DOI: 10.1016/j.actbio.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
Automatic differentiation of human-induced pluripotent stem cells (hiPSCs) facilitates the generation of cortical neural networks and studies of brain functions. Here, we present a method of directed differentiation of hiPSCs with a substrate made of a honeycomb microframe and a monolayer of crosslinked gelatin nanofibers in the form of an array of nanofiber membranes. Neural precursor cells (NPCs) were firstly derived from hiPSCs and then placed on the nanofiber membranes for automatically controlled neural differentiation over a long period. Due to the strong modulation of the substrate stiffness and permeability, most cells were found in the center area of the honeycomb compartments, giving rise to regular and inter-connected cortical neural clusters. More importantly, the neural activities of the clusters were synchronized proving the reliability of the method. Our results showed that the self-organization, as well as the neural activities of differentiating neural cells, were more efficient in the nanofiber membrane compared to the types of the substrate such as glass and nanofiber-covered glass. In addition to the inherent advantages such as manpower saving and fewer risks of contamination and human error, automatic differentiation avoided undesired shaking which might have critical effects on the formation of synchronous neural clusters. STATEMENT OF SIGNIFICANCE: : Synchronization of cortical neural activities is essential for information processing and human cognition. By automated differentiation of human induced pluripotent stem cells on arrayed monolayer of nanofiber membrane, synchronous neural clusters could be formed. Such an approach would allow creating a variety of neural networks with regular and interconnected clusters for systematic studies of human cortical functions.
Collapse
Affiliation(s)
- Boxin Huang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yong He
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Elrade Rofaani
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Feng Liang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Xiaochen Huang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Ayako Yamada
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Juan Peng
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Yong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
23
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Francesca P, Mauro P, Clerbaux LA, Leoni G, Ponti J, Bogni A, Brogna C, Cristoni S, Sanges R, Mendoza-de Gyves E, Fabbri M, Querci M, Soares H, Munoz Pineiro A, Whelan M, Van de Eede G. Effects of spike protein and toxin-like peptides found in COVID-19 patients on human 3D neuronal/glial model undergoing differentiation: possible implications for SARS-CoV-2 impact on brain development. Reprod Toxicol 2022; 111:34-48. [PMID: 35525527 PMCID: PMC9068247 DOI: 10.1016/j.reprotox.2022.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/28/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis. Apart from the possible direct involvement of SARS-CoV-2 or its specific viral components in the occurrence of neurological and neurodevelopmental manifestations, we recently reported the presence of toxin-like peptides in plasma, urine and fecal samples specifically from COVID-19 patients. In this study, we investigated the possible neurotoxic effects elicited upon 72-hour exposure to human relevant levels of recombinant spike protein, toxin-like peptides found in COVID-19 patients, as well as a combination of both in 3D human iPSC-derived neural stem cells differentiated for either 2 weeks (short-term) or 8 weeks (long-term, 2 weeks in suspension + 6 weeks on MEA) towards neurons/glia. Whole transcriptome and qPCR analysis revealed that spike protein and toxin-like peptides at non-cytotoxic concentrations differentially perturb the expression of SPHK1, ELN, GASK1B, HEY1, UTS2, ACE2 and some neuronal-, glia- and NSC-related genes critical during brain development. Additionally, exposure to spike protein caused a decrease of spontaneous electrical activity after two days in long-term differentiated cultures. The perturbations of these neurodevelopmental endpoints are discussed in the context of recent knowledge about the key events described in Adverse Outcome Pathways relevant to COVID-19, gathered in the context of the CIAO project (https://www.ciao-covid.net/).
Collapse
Affiliation(s)
| | - Petrillo Mauro
- Seidor Italy srl. Past affiliation (until 15/06/2021) European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Gabriele Leoni
- European Commission, Joint Research Centre (JRC), Ispra, Italy; International School for Advanced Studies (SISSA), Trieste, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alessia Bogni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Remo Sanges
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Marco Fabbri
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Helena Soares
- Human Immunobiology and Pathogenesis Group, CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisbon, Portugal
| | | | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Guy Van de Eede
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| |
Collapse
|
25
|
Brooks AK, Chakravarty S, Ali M, Yadavalli VK. Kirigami-Inspired Biodesign for Applications in Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109550. [PMID: 35073433 DOI: 10.1002/adma.202109550] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Mechanically flexible and conformable materials and integrated devices have found diverse applications in personalized healthcare as diagnostics and therapeutics, tissue engineering and regenerative medicine constructs, surgical tools, secure systems, and assistive technologies. In order to impart optimal mechanical properties to the (bio)materials used in these applications, various strategies have been explored-from composites to structural engineering. In recent years, geometric cuts inspired by the art of paper-cutting, referred to as kirigami, have provided innovative opportunities for conferring precise mechanical properties via material removal. Kirigami-based approaches have been used for device design in areas ranging from soft bioelectronics to energy storage. In this review, the principles of kirigami-inspired engineering specifically for biomedical applications are discussed. Factors pertinent to their design, including cut geometry, materials, and fabrication, and the effect these parameters have on their properties and configurations are covered. Examples of kirigami designs in healthcare are presented, such as, various form factors of sensors (on skin, wearable), implantable devices, therapeutics, surgical procedures, and cellular scaffolds for regenerative medicine. Finally, the challenges and future scope for the successful translation of these biodesign concepts to broader deployment are discussed.
Collapse
Affiliation(s)
- Anne Katherine Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Sudesna Chakravarty
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Maryam Ali
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
26
|
Hasan MF, Trushina E. Advances in Recapitulating Alzheimer's Disease Phenotypes Using Human Induced Pluripotent Stem Cell-Based In Vitro Models. Brain Sci 2022; 12:552. [PMID: 35624938 PMCID: PMC9138647 DOI: 10.3390/brainsci12050552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and the leading cause of death among older individuals. Available treatment strategies only temporarily mitigate symptoms without modifying disease progression. Recent studies revealed the multifaceted neurobiology of AD and shifted the target of drug development. Established animal models of AD are mostly tailored to yield a subset of disease phenotypes, which do not recapitulate the complexity of sporadic late-onset AD, the most common form of the disease. The use of human induced pluripotent stem cells (HiPSCs) offers unique opportunities to fill these gaps. Emerging technology allows the development of disease models that recapitulate a brain-like microenvironment using patient-derived cells. These models retain the individual's unraveled genetic background, yielding clinically relevant disease phenotypes and enabling cost-effective, high-throughput studies for drug discovery. Here, we review the development of various HiPSC-based models to study AD mechanisms and their application in drug discovery.
Collapse
Affiliation(s)
- Md Fayad Hasan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Nunes C, Gorczyca G, Mendoza-deGyves E, Ponti J, Bogni A, Carpi D, Bal-Price A, Pistollato F. Upscaling biological complexity to boost neuronal and oligodendroglia maturation and improve in vitro developmental neurotoxicity (DNT) evaluation. Reprod Toxicol 2022; 110:124-140. [PMID: 35378221 DOI: 10.1016/j.reprotox.2022.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-derived neuronal and glial cell models are suitable to assess the effects of environmental chemicals on the developing brain. Such test systems can recapitulate several key neurodevelopmental features, such as neural stem cell formation and differentiation towards different neuronal subtypes and astrocytes, neurite outgrowth, synapse formation and neuronal network formation and function, which are crucial for brain development. While monolayer, two-dimensional (2D) cultures of human iPSC-neuronal or glial derivatives are generally suited for high-throughput testing, they also show some limitations. In particular, differentiation towards myelinating oligodendrocytes can only be achieved after extended periods in differentiation. In recent years, the implementation of three-dimensional (3D) neuronal and glial models obtained from human iPSCs has been shown to compensate for such limitations, enabling robust differentiation towards both neuronal and glial cell populations, myelination and formation of more mature neuronal network activity. Here we compared the differentiation capacity of human iPSC-derived neural stem cells cultured either as 2D monolayer or as 3D neurospheres, and assessed chlorpyrifos (CPF) effects. Data indicate that 3D neurospheres differentiate towards neurons and oligodendroglia more rapidly than 2D cultures; however, the 2D model is more suitable to assess neuronal functionality by analysis of spontaneous electrical activity using multielectrode array. Moreover, 2D and 3D test systems are diversely susceptible to CPF treatment. In conclusion, the selection of the most suitable in vitro test system (either 2D or 3D) should take into account the context of use and intended research goals ('fit for purpose' principle).
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Gabriela Gorczyca
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Kraków, Poland
| | | | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alessia Bogni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
28
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
29
|
Dogan AA, Dufva M. Customized 3D-printed stackable cell culture inserts tailored with bioactive membranes. Sci Rep 2022; 12:3694. [PMID: 35256703 PMCID: PMC8901659 DOI: 10.1038/s41598-022-07739-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
There is a high demand in various fields to develop complex cell cultures. Apart from titer plates, Transwell inserts are the most popular device because they are commercially available, easy to use, and versatile. While Transwell inserts are standardized, there are potential gains to customize inserts in terms of the number of layers, height between the layers and the size and composition of the bioactive membrane. To demonstrate such customization, we present a small library of 3D-printed inserts and a robust method to functionalize the inserts with hydrogel and synthetic membrane materials. The library consists of 24- to 96-well sized inserts as whole plates, strips, and singlets. The density of cultures (the number of wells per plate) and the number of layers was decided by the wall thickness, the capillary forces between the layers and the ability to support fluid operations. The highest density for a two-layer culture was 48-well plate format because the corresponding 96-well format could not support fluidic operations. The bottom apertures were functionalized with hydrogels using a new high-throughput dip-casting technique. This yielded well-defined hydrogel membranes in the apertures with a thickness of about 500 µm and a %CV (coefficient of variance) of < 10%. Consistent intestine barrier was formed on the gelatin over 3-weeks period. Furthermore, mouse intestinal organoid development was compared on hydrogel and synthetic filters glued to the bottom of the 3D-printed inserts. Condensation was most pronounced in inserts with filters followed by the gelatin membrane and the control, which were organoids cultured at the bottom of a titer plate well. This showed that the bottom of an insert should be chosen based on the application. All the inserts were fabricated using an easy-to-use stereolithography (SLA) printer commonly used for dentistry and surgical applications. Therefore, on demand printing of the customized inserts is realistic in many laboratory settings.
Collapse
Affiliation(s)
- Asli Aybike Dogan
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
30
|
Samanta S, Ylä-Outinen L, Rangasami VK, Narkilahti S, Oommen OP. Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold. Acta Biomater 2022; 140:314-323. [PMID: 34902615 DOI: 10.1016/j.actbio.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022]
Abstract
Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology. STATEMENT OF SIGNIFICANCE: Developing a brain mimetic 3D scaffold that supports neuronal growth could potentially be useful to study neurobiology, disease pathology, and disease modeling. However, culturing human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (ESCs) derived neurons in a 3D matrix is extremely challenging as neurons are very sensitive cells and require tailored composition, viscoelasticity, and chemical cues. This article identified the key chemical cues necessary for designing neuronal matrix that trap the cell-produced ECM and neurotrophic factors and remodel the matrix and supports neurite outgrowth. The tailored injectable scaffold possesses self-healing/shear-thinning property which is useful to design injectable gels for regenerative medicine and disease modeling that provides biomimetic neurophysiology.
Collapse
Affiliation(s)
- Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Laura Ylä-Outinen
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Vignesh Kumar Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
31
|
Mitrečić D, Hribljan V, Jagečić D, Isaković J, Lamberto F, Horánszky A, Zana M, Foldes G, Zavan B, Pivoriūnas A, Martinez S, Mazzini L, Radenovic L, Milasin J, Chachques JC, Buzanska L, Song MS, Dinnyés A. Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. Int J Mol Sci 2022; 23:855. [PMID: 35055039 PMCID: PMC8776151 DOI: 10.3390/ijms23020855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.
Collapse
Affiliation(s)
- Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | | | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
| | - Gabor Foldes
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lidija Radenovic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Laboratory for Stem Cell Research, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan Carlos Chachques
- Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris, 75006 Paris, France
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Min Suk Song
- Omnion Research International Ltd., 10000 Zagreb, Croatia
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
- HCEMM-USZ Stem Cell Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
32
|
Direct Current Stimulation in Cell Culture Systems and Brain Slices-New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021; 10:cells10123583. [PMID: 34944091 PMCID: PMC8700319 DOI: 10.3390/cells10123583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.
Collapse
|
33
|
Huang B, Peng J, Huang X, Liang F, Wang L, Shi J, Yamada A, Chen Y. Generation of Interconnected Neural Clusters in Multiscale Scaffolds from Human-Induced Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55939-55952. [PMID: 34788005 DOI: 10.1021/acsami.1c18465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of in vitro neural networks depends to a large extent on the scaffold properties, including the scaffold stiffness, porosity, and dimensionality. Herein, we developed a method to generate interconnected neural clusters in a multiscale scaffold consisting of a honeycomb microframe covered on both sides with a monolayer of cross-linked gelatin nanofibers. Cortical neural precursor cells were first produced from human-induced pluripotent stem cells and then loaded into the scaffold for a long period of differentiation toward cortical neural cells. As a result, neurons and astrocytes self-organized in the scaffold to form clusters in each of the honeycomb compartments with remarkable inter-cluster connections. These cells highly expressed neuron- and astrocyte-specific proteins, including NF200, tau, synapsin I, and glial fibrillary acidic protein, and showed spatially correlated neural activities. Two types of neural clusters, that is, spheroid-like and hourglass-like clusters, were found, indicating the complexity of neural-scaffold interaction and the variability of three-dimensional neural organization. Furthermore, we incorporated a reconstituted basement membrane into the scaffold and performed co-culture of the neural network with brain microvascular endothelial cells. As a proof of concept, an improved neurovascular unit model was tested, showing large astrocytic end-feet on the back side of the endothelium.
Collapse
Affiliation(s)
- Boxin Huang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Juan Peng
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Xiaochen Huang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Feng Liang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
34
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
35
|
Micro-scaffolds as synthetic cell niches: recent advances and challenges. Curr Opin Biotechnol 2021; 73:290-299. [PMID: 34619481 DOI: 10.1016/j.copbio.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023]
Abstract
Micro-fabrication and nano-fabrication provide useful approaches to address fundamental biological questions by mimicking the physiological microenvironment in which cells carry out their functions. In particular, 2D patterns and 3D scaffolds obtained via lithography, direct laser writing, and other techniques allow for shaping hydrogels, synthetic polymers and biologically derived materials to create structures for (single) cell culture. Applications of micro-scaffolds mimicking cell niches include stem cell self-renewal, differentiation, and lineage specification. This review moves from technological aspects of scaffold microfabrication for cell biological applications to a broad overview of advances in (stem) cell research: achievements for embryonic, induced pluripotent, mesenchymal, and neural stem cells are treated in detail, while a particular section is dedicated to micro-scaffolds used to study single cells in basic cell biology.
Collapse
|
36
|
Otuka AJG, Tomazio NB, Paula KT, Mendonça CR. Two-Photon Polymerization: Functionalized Microstructures, Micro-Resonators, and Bio-Scaffolds. Polymers (Basel) 2021; 13:polym13121994. [PMID: 34207089 PMCID: PMC8234590 DOI: 10.3390/polym13121994] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
The direct laser writing technique based on two-photon polymerization (TPP) has evolved considerably over the past two decades. Its remarkable characteristics, such as 3D capability, sub-diffraction resolution, material flexibility, and gentle processing conditions, have made it suitable for several applications in photonics and biosciences. In this review, we present an overview of the progress of TPP towards the fabrication of functionalized microstructures, whispering gallery mode (WGM) microresonators, and microenvironments for culturing microorganisms. We also describe the key physical-chemical fundamentals underlying the technique, the typical experimental setups, and the different materials employed for TPP.
Collapse
Affiliation(s)
- Adriano J. G. Otuka
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Correspondence: (A.J.G.O.); (C.R.M.)
| | - Nathália B. Tomazio
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Device Research Laboratory, “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
| | - Kelly T. Paula
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
| | - Cleber R. Mendonça
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Correspondence: (A.J.G.O.); (C.R.M.)
| |
Collapse
|