1
|
Dong J, Lang Y, He J, Cui J, Liu X, Yuan H, Li L, Zhou M, Wang S. Phycocyanin-based multifunctional microspheres for treatment of infected radiation-induced skin injury. Biomaterials 2025; 317:123061. [PMID: 39742838 DOI: 10.1016/j.biomaterials.2024.123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
Radiation therapy is a primary modality for cancer treatment; however, it often leads to various degrees of skin injuries, ranging from mild rashes to severe ulcerations, for which no effective treatments are currently available. In this study, a multifunctional microsphere (PC@CuS-ALG) was synthesized by encapsulating phycocyanin-templated copper sulfide nanoparticles (PC@CuS) within alginate (ALG) using microfluidic technology. Phycocyanin, a natural protein derived from microalgae, shows abilities to scavenge reactive oxygen species, repair radiation-induced damage to skin cells, and ameliorate macrophage-related inflammatory responses. CuS contributes to photothermal conversion efficiency and exhibits antibacterial properties. The microspheres facilitate the sustained release of PC@CuS, retain moisture at the wound site, and provide a supportive environment for cell migration and growth. In a mouse model of infected radiation-induced skin injury, PC@CuS-ALG exhibited antibacterial and wound healing effects, resulting in accelerated epidermal tissue regeneration, increased thickness and maturation of dermal granulation tissue, and an ameliorated inflammatory response. This study presents a novel, effective, and safe approach for treating radiation-induced skin injuries complicated by bacterial infection.
Collapse
Affiliation(s)
- Jia Dong
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China
| | - Yutong Lang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jian He
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China
| | - Jiarong Cui
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoyang Liu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hongxia Yuan
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China
| | - Lele Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China
| | - Min Zhou
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China; The National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
2
|
Rajendran J, K J, M S S, Alluri LD, Giri J. Bioinspired silk protein modification to develop instant dissolvable microneedles with superior mechanical properties and long-term biomolecule stabilization. J Mater Chem B 2025. [PMID: 40390689 DOI: 10.1039/d4tb02836h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Dissolvable microneedles (DMNs) obtained from silk proteins have been considered most promising due to the biocompatibility, tuneable mechanical properties, and superior biomolecule stabilization properties of their silk matrix, required for cold chain-free storage and transport of therapeutic biomolecules and vaccines. However, despite their excellent potential, silk-based microneedles with instant dissolvability, superior mechanical properties, and storage stability have not yet been reported. Reported DMNs prepared with <5% silk concentration without β-sheets show poor mechanical and storage stability. Conversely, silk MNs prepared using <5% silk treated with an organic solvent or >5% silk may have sufficient mechanical properties but lose their instant dissolubility due to β-sheet formation during solvent treatment and storage, respectively. Thus, herein, we address these challenges for the first time via the biomimetic modification of silk proteins to mimic the molecular structure of human serum albumin (HSA) and silk protein molecules in the silk gland lumen of silkworms, resulting in high solubility and low viscosity. Our biomimetic modified silk (MS) allowed us to prepare DMNs in higher concentrations (>10% w/v up to 20% w/v) with a stabilizing agent (>10% w/v), exhibiting superior mechanical properties of >45 N and instant dissolvability even after 6 months of storage at RT without inducing β-sheet formation. Furthermore, MS-DMN facilitated the exceptional storage stability of platelet-rich plasma (PRP) with >80% retention for six months when stored at 4 °C or 25 °C and >90% at 40 °C at 75% RH for one month, as confirmed through in vitro cell proliferation assay, in ova (CAM assay), and in vivo diabetic wound studies. Thus, our novel biomimetic MS-DMN exhibits superior mechanical properties and exceptional biomolecule storage stability, enabling potential cold chain-free preservation and transportation for various biomedical applications.
Collapse
Affiliation(s)
- Jayakumar Rajendran
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Sujith M S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Lalitha Devi Alluri
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana, 500028, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| |
Collapse
|
3
|
He L, Zhao N, Chen X, Zhang W, Lv K, Xu Y. Platelet-rich plasma-derived exosomes accelerate the healing of diabetic foot ulcers by promoting macrophage polarization toward the M2 phenotype. Clin Exp Med 2025; 25:163. [PMID: 40372505 PMCID: PMC12081558 DOI: 10.1007/s10238-025-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/25/2025] [Indexed: 05/16/2025]
Abstract
Diabetic foot ulcers (DFUs) impose a significant clinical and socioeconomic burden on patients and healthcare systems. Although platelet-rich plasma (PRP) and platelet-rich plasma-derived exosomes (PRP-Exos) have emerged as promising therapeutic agents in tissue regeneration, the mechanisms underlying the immunomodulatory effects of PRP and PRP-Exos-particularly their role in macrophage polarization-remain poorly understood. In this study, we isolated and characterized PRP-Exos and systematically evaluated their therapeutic potential in diabetic wound healing via comprehensive in vivo and in vitro experiments. Our results revealed that both PRP-gel and PRP-Exos significantly enhanced diabetic wound healing by promoting macrophage polarization toward the anti-inflammatory M2 phenotype. These findings suggest that PRP-Exos represent a novel and effective therapeutic strategy for DFUs, providing a robust rationale for future clinical translation.
Collapse
Affiliation(s)
- Ling He
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui, China
- Blood transfusion department of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Nan Zhao
- Academy of Laboratory Medicine, Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xiaoling Chen
- Blood transfusion department of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Wenjie Zhang
- Blood transfusion department of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Kun Lv
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| |
Collapse
|
4
|
Zhang Q, Qin D, Liu C, Chen Z, Gong X, Wang S, Gao R, Yu S, Qi J, Niu Y, Xing S, Bi S, Tang B. Injectable Hydrogel Loaded with Plasma-Rich Platelets Repairing Endometrial Injury and Remodeling Reproductive Function by Regulating PI3K/AKT Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412177. [PMID: 40165776 DOI: 10.1002/smll.202412177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/18/2025] [Indexed: 04/02/2025]
Abstract
Infertility resulting from uterine damage has emerged as a significant challenge confronting the development of modern society. Existing therapeutic approaches frequently encounter limitations due to the intricate physical and physiological environment of uterus. Platelet-rich plasma (PRP), a concentrate of platelets enriched with various growth factors, has been used in uterine injury repair. However, the rapid release of activating factors from PRP limits its timeliness in therapeutic applications. This work involves the synthesis of a biodegradable hydrogel based on natural polysaccharides through dynamic Schiff base. The hydrogel demonstrates tissue adhesion, self-healing, and injectability. Furthermore, its internal porous architecture facilitates the loading and sustained release of PRP. In vitro experiments, the hydrogel loaded with RPR (HOHP) exhibits a significant enhancement in cell proliferation and migration and promotes vascular regeneration by upregulating the expression of VEGFA and further activating the intracellular phosphatidylinositol kinase (PI3K)/protein kinase B (AKT) pathway. In vivo experiments on uterine endometrial injury model, HOHP restores endometrial thickness and gland number, reduces collagen deposition, promotes angiogenesis to repair uterine damage and restore fertility, which provides reinforced endorsement for the clinical management of uterine injury and enhances fertility.
Collapse
Affiliation(s)
- Qing Zhang
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Di Qin
- Shandong Second Medical University, Bao Tong West Street, Weifang, Shandong Province, 7166, China
| | - Chengyang Liu
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Zeqiang Chen
- Women and Children's Hospital, Qingdao University, 6th Tongfu Road, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Xuelin Gong
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Shuang Wang
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Ruipeng Gao
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Sun Yu
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Jiaojiao Qi
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Yusheng Niu
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Shichao Xing
- Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
- Qingdao Municipal Center for Disease Control and Prevention, 175th Shandong Road, Qingdao, Shandong, 266033, China
| | - Shichao Bi
- Laoshan Laboratory, 168 Wenhai Middle Road, Qingdao, Shandong, 266237, China
| | - Bo Tang
- Laoshan Laboratory, 168 Wenhai Middle Road, Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
Shang X, Zhang Z, Mao K, Tang H, Zhou G, Mao Y, Li Y, Luo Z, Zhao P, Wang C, Ma H. The clinical value of autologous platelet-rich plasma extraction and injection as an adjunct to urethroplasty in the treatment of penile hypospadias in children. Front Pediatr 2025; 13:1470092. [PMID: 40370973 PMCID: PMC12075130 DOI: 10.3389/fped.2025.1470092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Objective To evaluate the clinical efficacy and safety of autologous platelet-rich plasma (PRP) as an adjunctive treatment for penile hypospadias repair in children, and to explore its independent role in reducing postoperative complications. Methods We retrospectively analyzed clinical data from 103 pediatric patients undergoing penile hypospadias repair between December 2019 and December 2021 at the Affiliated Hospital of Zunyi Medical University. All patients received standard penile straightening and tubularized incised plate (TIP) urethroplasty. Patients in the study group (n = 53) additionally received intraoperative autologous PRP injections, whereas the control group (n = 50) did not. Outcomes analyzed included operation time, postoperative ambulation time, pain scores, length of hospital stay, incision infection rates at postoperative day 7, surgical success rates, and incidence of complications within 2 years postoperatively. Statistical analyses incorporated 95% confidence intervals (CIs), effect sizes (Cohen's d and relative risk, RR), and multivariate logistic regression analyses adjusting for potential confounders such as patient age and hypospadias severity. Results No significant differences were observed between groups regarding operation time, postoperative ambulation time, or length of hospital stay (p > 0.05). Patients in the PRP group experienced significantly reduced postoperative pain (mean difference -2.14; 95% CI: -2.46 to -1.81; p < 0.001; Cohen's d = 2.35) and notably lower incision infection rates on postoperative day 7 (RR = 0.13; 95% CI: 0.03-0.60; p = 0.006). Surgical success rates were significantly higher in the PRP group compared to controls (94.3% vs. 72.0%; RR = 1.31; 95% CI: 1.09-1.58; p = 0.002). Multivariate logistic regression analysis confirmed that PRP injection remained independently associated with a significant reduction in postoperative complications after adjusting for age and severity of hypospadias (adjusted OR = 0.14; 95% CI: 0.04-0.52; p = 0.003). Conclusion Adjunctive autologous PRP treatment in pediatric penile hypospadias repair effectively alleviates postoperative pain, enhances wound healing, significantly reduces short-term complications, and improves surgical success rates. Future randomized, multicenter trials with extended follow-up periods are required to further evaluate long-term outcomes and to compare PRP efficacy directly with other biomaterials used in urethroplasty.
Collapse
Affiliation(s)
- Xianhui Shang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Zhendong Zhang
- Department of Gynaecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kaiyi Mao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Hongyanng Tang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Guangxu Zhou
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Yuchen Mao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Yingbo Li
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Zhen Luo
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Peng Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Cao Wang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Hong Ma
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| |
Collapse
|
6
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Zheng X, Huang R, Yin L, Yao M, Chu J, Yang F, Dong Y, Zhao M, Ma T. Injectable antioxidant hyaluronan/chitosan hydrogel as a platelet-rich plasma and stem cell carrier to promote endometrial regeneration and fertility restoration. Acta Biomater 2025; 195:201-215. [PMID: 39894327 DOI: 10.1016/j.actbio.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Severe damage to the uterine endometrium can lead to thin endometrium and intrauterine adhesions (IUAs), resulting in infertility or complications during pregnancy. Therapies utilizing mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent promising strategies for restoring thin endometrium. However, the low homing rate and functionality of transplanted cells, along with the rapid release of PRP growth factors, limit their therapeutic efficacy. In this study, we developed an in-situ formable and redox-responsive hydrogel composed of thiolated hyaluronan (tHA) and thiolated chitosan (tChi) (tHA-tChi) for encapsulating PRP and mouse adipose-derived stem cells (ADSCs). Our results demonstrate that the tHA-tChi hydrogel exhibits appropriate swelling, injectability, self-healing, and antioxidant properties, alongside a sustained release of PRP growth factors. In vitro experiments indicated that the PRP and ADSCs encapsulated within the hydrogel (ADSCs/tHA-tChi/PRP) stimulated angiogenesis in endothelial cells. In a mouse model of thin endometrium, the ADSCs/tHA-tChi/PRP significantly enhanced endometrial regeneration, as evidenced by increased endometrial thickness and reduced fibrosis. This improvement markedly enhanced endometrial receptivity and pregnancy rates in damaged endometria, correlating with increased angiogenesis and endometrial cell proliferation via activation of the VEGF/AKT/BAD pathway, as shown by Western blotting assays. Overall, the combination of antioxidant hydrogel, PRP, and ADSCs demonstrates promising potential for promoting endometrial regeneration and restoring fertility, offering new minimally invasive therapeutic options for endometrial diseases. STATEMENT OF SIGNIFICANCE: This research presents a potent approach to the treatment of thin endometrium, employing an injectable, biodegradable and antioxidant hydrogel comprising thiolated hyaluronic acid (tHA) and thiolated chitosan (tChi). The antioxidant capacity of the hydrogel improves the oxidative microenvironment of the injured uterus, while the hydrogel is designed to release adipose-derived stem cells (ADSCs) and growth factors from platelet-rich plasma (PRP) sustainably, promoting tissue regeneration by enhancing angiogenesis and endometrium cell proliferation. Demonstrated efficacy in a mouse model of thin endometrium indicates its great potential to significantly improve fertility restoration treatments. The administration of antioxidant hydrogel containing ADSCs and PRP represents a promising therapeutic strategy for patients with endometrial disease.
Collapse
Affiliation(s)
- Xiudan Zheng
- Department of Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China; Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China
| | - Rui Huang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China
| | - Lanlan Yin
- Department of Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China
| | - Meihua Yao
- Department of Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China
| | - Fengkai Yang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China; Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China
| | - Yeying Dong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China; Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China
| | - Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China.
| | - Tianzhong Ma
- Department of Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, PR China.
| |
Collapse
|
8
|
Rong Y, Zhao Z, Lv D, Yin R, Lu L, Xu Z, Ren L, Zhao P, Hu Z, Tao J, Cao X, Tang B. Tailored Metal-Phenolic Network with Hypoglycemic Polyphenol for Promoting Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15163-15176. [PMID: 40025657 DOI: 10.1021/acsami.4c22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Diabetic foot ulcer is a common and serious complication of diabetes, with a high risk of amputation, recurrence, and mortality. Aiming at the characteristics of diabetic wounds and based on the result of network pharmacology, a tailored ligand cyanidin-3-O-glucoside (C3G) was selected to construct a metal-phenolic network (CM) through the self-assembly reaction with manganese ions. CM integrates the pharmacological advantages of C3G in antidiabetes and the anti-inflammatory activity of metal-phenolic networks by simulating the metal coordination structure of antioxidant enzymes. Reasonably, the wound areas of db/db mice with CM treatment rapidly decreased to 3.06% at day 14, accompanied by the improvement of tissue microenvironment. Mechanism investigation indicated that CM can not only reduce inflammation activation and immunoreaction but also increase gene transcripts in glucose metabolism, response to hypoxia, and angiogenesis. It is believed that this work opens a way for designing disease-specific metal-phenolic networks, and the CM with high biosafety promotes the clinical treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yanchao Rong
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zirui Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongming Lv
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Yin
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongye Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lei Ren
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhicheng Hu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoling Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bing Tang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
9
|
Yu Z, Min Y, Ouyang Q, Fu Y, Mao Y, Xiang S, Hu X, Jiang L. Study on an Injectable Chitosan-Lignin/Poloxamer Hydrogel Loaded with Platelet-Rich Plasma for Intrauterine Adhesion Treatment. Polymers (Basel) 2025; 17:474. [PMID: 40006136 PMCID: PMC11858913 DOI: 10.3390/polym17040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
It is a great challenge to obtain an ideal hydrogel for the clinical treatment of intrauterine adhesion (IUA) disease. Here, a novel injectable chitosan-lignin/poloxamer hydrogel loaded with platelet-rich plasma (CL-PF127@PRP) was prepared by self-assembly at room temperature. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), rheological analysis, and injectable writing were used to characterize the structure of the hydrogel. The results confirmed that the amino group of chitosan and the sulfonic group of sodium lignosulfonate were ionic-crosslinked by electrostatic attraction, which stabilized the three-dimensional structure of the PF127 hydrogel loaded with PRP, and PRP made the porous structure gradually become tight. Moreover, the CL-PF127@PRP hydrogel displayed good injectability and a solid state. The soaking experiment showed that the CL-PF127@PRP hydrogel had suitable degradation at pH = 7 and a good PRP release rate (PRP release 70% at 96 h). Cell experiments in vitro demonstrated that the CL-PF127@PRP hydrogel possessed good biocompatibility, an anti-inflammatory function, and pro-angiogenic activity. Furthermore, an animal experiment of skin wound and IUA confirmed that the skin wound closure rate of the CL-PF127@PRP hydrogel was over 50% on the seventh day. PRP improved the thickness of the endometrium and uterus receptivity, suggesting that the CL-PF127@PRP hydrogel offers great promise for the clinical treatment of IUA.
Collapse
Affiliation(s)
- Zhipeng Yu
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, China (Y.F.)
| | - Yang Min
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, China (Y.F.)
| | - Qi Ouyang
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, China (Y.F.)
| | - Yuting Fu
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, China (Y.F.)
| | - Ying Mao
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, China (Y.F.)
| | - Shuanglin Xiang
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, China (Y.F.)
| | - Xiang Hu
- State Key Laboratory Developmental Biology of Freshwater Fish, School Life Science, Hunan Normal University, Changsha 410081, China (Y.F.)
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Cheng H, Li J, Zhao Y, Xia X, Li Y. In Vivo Assessment of Plasma Gel: Regenerative Potential and Limitations as a Filler. J Cosmet Dermatol 2025; 24:e16765. [PMID: 39918180 PMCID: PMC11804155 DOI: 10.1111/jocd.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Plasma gel, also known as plasma-rich in growth factors (PRGF) gel or platelet-rich gel, is a novel application of platelet-rich plasma (PRP), created by heating platelet-poor plasma (PPP) to induce denaturation, forming a gel-like substance. This gel is then combined with PRP to create a new injectable biomaterial that offers both the regenerative benefits of PRP and structural support due to its gel-like consistency. Plasma gel has been increasingly used not only for its biological regenerative properties but also as a cosmetic filler to enhance tissue volume and improve skin aesthetics. It shows promise in facial rejuvenation by improving skin texture and elasticity, and reducing the appearance of wrinkles. However, the detailed in vivo behavior of plasma gel, particularly its absorption rate and regenerative efficacy, remains underexplored. AIMS This study aims to investigate the in vivo behavior of plasma gel, focusing on its absorption rate and its ability to stimulate tissue regeneration. Specifically, we aim to assess how quickly plasma gel is absorbed after subcutaneous injection and to evaluate its effects on collagen production and neovascularization using a nude mouse model. METHODS Plasma gel was prepared by heating PPP to create a gel-like substance, which was then mixed with PRP. This mixture was injected subcutaneously into nude mice. The absorption of the gel was monitored over time by measuring the remaining volume at different time points. Tissue samples were analyzed using Masson's trichrome staining to detect collagen and CD31 immunohistochemical staining to assess neovascularization to understand the regenerative effects induced by plasma gel. RESULTS The study found that plasma gel is absorbed rapidly, with approximately 50% of the volume disappearing within the first week and almost complete absorption by eight weeks. Despite this rapid absorption, significant increases in collagen deposition and new blood vessel formation were observed, indicating strong regenerative properties even after the gel had been largely absorbed. CONCLUSIONS The main findings of this study suggest that while plasma gel is quickly absorbed and may not be suitable for long-term volumizing effects, it shows significant potential for temporary volume enhancement and as a biostimulatory agent. Plasma gel's ability to promote collagen production and neovascularization makes it valuable in clinical applications where temporary support and long-term tissue regeneration are desired. Future research should focus on ways to extend the retention time of plasma gel and enhance its regenerative effects, potentially through modifications to its formulation or combination with other bioactive substances.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Medical AestheticsThe First Affiliated Hospital of Chengdu Medical CollegeChengduSichuan ProvinceChina
| | - Ju Li
- Department of StomatologyThe First Affiliated Hospital of Chengdu Medical CollegeChengduSichuan ProvinceChina
| | - Yong Zhao
- Department of Medical AestheticsThe First Affiliated Hospital of Chengdu Medical CollegeChengduSichuan ProvinceChina
| | - Xun Xia
- Department of NeurosurgeryThe First Affiliated Hospital of Chengdu Medical CollegeChengduSichuan ProvinceChina
| | - Yan Li
- Department of Medical AestheticsThe First Affiliated Hospital of Chengdu Medical CollegeChengduSichuan ProvinceChina
| |
Collapse
|
11
|
Wang L, Lei X, Lan Z, He R, Jiang Z. Ultrasound-Guided Thoracic Paravertebral Injection of Platelet-Rich Plasma for the Treatment of Thoracic Herpes Zoster-Related Pain: A Study Protocol. Pain Ther 2025; 14:425-436. [PMID: 39665856 PMCID: PMC11751198 DOI: 10.1007/s40122-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Herpes zoster (HZ), triggered by the reactivation of the varicella-zoster virus, manifests as a painful rash known as zoster-associated pain (ZAP), which can progress to postherpetic neuralgia (PHN). This study evaluates the efficacy and safety of ultrasound-guided thoracic paravertebral injections of platelet-rich plasma (PRP) in managing acute ZAP and preventing PHN. METHODS This is a prospective, randomized, controlled, open-label, endpoint-blinded, single-center trial involving 128 participants suffering from zoster-associated pain. Participants will be randomly assigned to the PRP treatment in combination with antiviral therapy group or the antiviral therapy group at a 1:1 ratio. Pain intensity (NRS-11), quality of life (SF-12), sleep quality (PSQI), pain characteristics, skin lesion recovery, average weekly consumption of rescue analgesics, and adverse events will be assessed. Follow-up assessments will be conducted at 1, 3, 6, and 12 months post-intervention to evaluate the incidence rate of PHN, pain intensity, quality of life, sleep quality, and safety. ETHICS AND DISSEMINATION Adhering to the 2013 SPIRIT statement and the Declaration of Helsinki, this study has received ethical approval from the relevant committee. Results will be disseminated through scientific journals and conferences, contributing to global data on managing ZAP. CONCLUSIONS By comparing PRP with antiviral therapy, this trial seeks to establish a more effective treatment paradigm for reducing acute zoster-associated pain and the incidence of PHN, potentially setting a new standard in therapeutic strategies for HZ. TRIAL REGISTRATION This clinical trial is registered with the Chinese Clinical Trial Registry (ChiCTR) at https://www.chictr.org.cn/index.html (Registration Number: ChiCTR2400087248, Registration Date: 2024-07-23).
Collapse
Affiliation(s)
- Liu Wang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Xinyu Lei
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zhixuan Lan
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Ruilin He
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Zongbin Jiang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
12
|
Huang L, Chen H, Nie J, Zhao Y, Miao J. Advanced dressings based on novel biological targets for diabetic wound healing: A review. Eur J Pharmacol 2025; 987:177201. [PMID: 39667426 DOI: 10.1016/j.ejphar.2024.177201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The diabetic wound is one of the most common complications of diabetes in clinic. The existing diabetic wound dressings all have bottlenecks in decreasing inflammation, stopping peripheral neuropathy, relieving local ischemia and hypoxia in diabetic wounds. These challenges are intricately linked to the roles of various growth factors, as well as matrix metalloproteinases. Thus, a comprehensive understanding of growth factors-particularly their dynamic interactions with the extracellular matrix (ECM) and cellular components-is essential. Cells and proteins that influence the synthesis of growth factors and matrix metalloproteinases emerge as potential therapeutic targets for diabetic wound management. This review discusses the latest advancements in the pathophysiology of diabetic wound healing, highlights novel biological targets, and evaluates new wound dressing strategies designed for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hangbo Chen
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Ashour NA, El-Masry TA, El-Mahdy NA, E Khodier A, Elmorshedy KE, Gaballa MMS, Negm WA. A novel combination therapy using Dapagliflozin and Cycas media extract in experimentally induced diabetic wounds by targeting novel pathways in wound healing. Int Immunopharmacol 2025; 144:113618. [PMID: 39615109 DOI: 10.1016/j.intimp.2024.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Diabetes mellitus, a globally prevalent condition, often complicates wound healing, leading to chronic, non-healing wounds. This study explores a novel combination therapy using Dapagliflozin and Cycas media extract for treating experimentally induced diabetic wounds in rats. By targeting the Notch signaling pathway, a critical pathway in wound healing, this research investigates the efficacy of this combination therapy in accelerating wound repair. Forty-two male Wistar albino rats were divided into control and treatment groups, receiving various Dapagliflozin and Cycas media gel combinations. The study evaluated wound healing, biochemical markers, gene expression, and histopathological changes. The findings suggest that the combination therapy significantly enhances wound healing, modulates oxidative stress, alters inflammatory responses, and influences key genes in the Notch pathway. This research provides a new perspective on diabetic wound management and underlines the potential of combining Dapagliflozin and Cycas media as a therapeutic approach.
Collapse
Affiliation(s)
- Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Nageh A El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed E Khodier
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Kadreya E Elmorshedy
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; Department of Anatomy, Faculty of Medicine, King Khaled University, Saudi Arabia
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
14
|
Tang H, Ling T, Zhao E, You M, Chen X, Chen G, Zhou K, Zhou Z. The efficacy of core decompression combined with regenerative therapy in early femoral head necrosis: a systematic review and meta-analysis involving 954 subjects. Front Pharmacol 2025; 15:1501590. [PMID: 39840080 PMCID: PMC11747542 DOI: 10.3389/fphar.2024.1501590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background The debate continues on whether combining core decompression (CD) with regenerative therapy provides a more effective treatment for early femoral head necrosis than CD alone. This systematic review and meta-analysis endeavored to assess its efficacy. Methods We systematically searched PubMed, Web of Science, and Cochrane Library through July 2024 for RCTs and cohort studies evaluating the impact of core decompression (CD) with regenerative therapy versus CD alone in early-stage osteonecrosis (ARCO I, II or IIIa or Ficat I or II) of the femoral head (ONFH). Bias was evaluated using the Cochrane ROB 2.0 for RCTs and the Newcastle-Ottawa Scale (NOS) for cohort studies. The primary outcome was disease progression, measured by the incidence of staging advancement and total hip arthroplasty (THA) conversion. Clinical outcomes, including VAS, HHS, WOMAC, and Lequesne index, were secondary measures. Subgroup analyses were performed for variables such as age, BMI, follow-up period, and dosage in the bone marrow aspirate concentrate (BMAC) group, with results depicted in forest plots. Results This study represented a total of seven RCTs (mean follow-up time 36.57 months) and eight cohort trials (mean follow-up time 74.18 months) involving 954 hips. CD, when combined with agents, exhibited considerably enhanced efficacy over CD alone (risk ratio (RR) = 0.55 (95% CI 0.39-0.77), p < 0.001, I 2 = 54%) and 0.59 (95% CI 0.43-0.81), p = 0.001, I 2 = 51%), respectively). However, a significant difference was exclusive to the CD combined with BMAC group in terms of stage progression outcomes (stage progression, RR = 0.47 (95% CI 0.28-0.78), p = 0.004, I 2 = 67%); THA conversions, RR = 0.41 (95% CI 0.32-0.52), p < 0.001, I 2 = 43%). Secondary outcomes (VAS, HHS, WOMAC score and Lequesne index) showed improved results when CD was combined with other regenerative agents, such as bone mesenchymal stem cells (BMSCs) and bone morphogenetic proteins (BMPs), etc. In the reported data, the regenerative group demonstrated significantly higher rates of subjective improvement in pain and functional outcomes compared to those in the CD group (71.74% (66/92) vs. 56.38% (53/94). Subgroup analysis revealed superior outcomes in the low-dose (less than 20 mL) BMAC group and patients aged under 40 years old in stage progression rate and THA conversion rate. Conclusion CD, when combined with regenerative therapy, can diminish hip pain and enhance functionality, but its ability to slow disease progression remains uncertain. BMAC presents a more substantiated efficacy evidence than other agents, with low-doses of BMAC in patients under 40 years potentially slowing ONFH progression. Nonetheless, the high heterogeneity and relatively short follow-up time of these studies make it difficult to draw accurate conclusions, which necessitates verification through future trials comparing CD versus CD combined with regenerative therapy, with a focus on extended follow-up periods. Systematic Review Registration identifier CRD42023467873.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406439. [PMID: 39444066 PMCID: PMC11707583 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
- Intervention DepartmentThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dan Yao
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Mengsi Cai
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Fangfu Ye
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| |
Collapse
|
16
|
Xu J, Chang L, Xiong Y, Peng Q. Chitosan-Based Hydrogels as Antibacterial/Antioxidant/Anti-Inflammation Multifunctional Dressings for Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2401490. [PMID: 39036852 DOI: 10.1002/adhm.202401490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Due to repeated microbial infection, persistent inflammation, excessive oxidative stress, and cell dysfunction, chronic wounds are difficult to heal, posing a serious threat to public health. Therefore, developing multifunctional wound dressings that can regulate the complex microenvironment of chronic wounds and enhance cellular function holds great significance. Recently, chitosan has emerged as a promising biopolymer for wound healing due to its excellent biocompatibility, biodegradability, and versatile bioactivity. The aim of this review is to provide a comprehensive understanding of the mechanisms of delayed chronic wound healing and discuss the healing-promoting properties of chitosan and its derivatives, such as good biocompatibility, antibacterial activity, hemostatic capacity, and the ability to promote tissue regeneration. On this basis, the potential applications of chitosan-based hydrogels are summarized in chronic wound healing, including providing a suitable microenvironment, eliminating bacterial infections, promoting hemostasis, inhibiting chronic inflammation, alleviating oxidative stress, and promoting tissue regeneration. In addition, the concerns and perspectives for the clinical application of chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuhuan Xiong
- Department of Stomatology, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Zhang W, Geng X, Qin S, Xie Z, Li W, Li J. Research progress and application of chitosan dressings in hemostasis: A review. Int J Biol Macromol 2024; 282:136421. [PMID: 39389479 DOI: 10.1016/j.ijbiomac.2024.136421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Hemorrhage affects human health, and severe bleeding remains a leading contributor to trauma-related mortality. The speed and effectiveness of the application of hemostatic materials are critical. Conventional hemostatic dressings such as bandages and gauze are gradually being replaced by new types of hemostatic dressings due to their poor hemostatic and antibacterial properties. Chitosan, a biopolymer, is biodegradable and nontoxic and possesses hemostatic and antibacterial properties. Chitosan induces hemostasis through direct contact with red corpuscles and platelets, independent of the coagulation pathways of the host, rendering it an optimal hemostatic dressing. It is widely used in wound care, particularly to stop bleeding, promote wound healing, and provide antimicrobial properties. This article reviews the recent research and development of chitosan-based hemostatic dressings, focusing on trauma hemostasis, burn hemostasis, diabetic skin ulcer hemostasis and other aspects. It also emphasizes the significance of chitosan dressings in wound hemostasis and healing, identifies their research opportunities in hemostasis and wound healing, and explores new research directions.
Collapse
Affiliation(s)
- Wenwen Zhang
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xinrong Geng
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wenjun Li
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jie Li
- Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
18
|
Fan L, Zhang Y, Yin X, Chen S, Wu P, Huyan T, Wang Z, Ma Q, Zhang H, Wang W, Gu C, Tie L, Zhang L. The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair. Tissue Eng Regen Med 2024; 21:1255-1267. [PMID: 39400879 PMCID: PMC11589050 DOI: 10.1007/s13770-024-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE Surgical wounds that can't complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing. APPROACH The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function. RESULTS PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate > 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells. INNOVATION Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds. CONCLUSION Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
Collapse
Affiliation(s)
- Lu Fan
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Zhang
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
- Department of Dermatology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiankun Yin
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Silu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Ziyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Qun Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Wenhui Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, 100191, China
| | - Chunyan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Long Zhang
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
19
|
Zhao N, Yuan W. Injectable and self-healable hydrogel based on pullulan polysaccharide loading platelet-rich plasma and metal-phenol network nanoparticles for infectious wound healing. Int J Biol Macromol 2024; 279:135361. [PMID: 39244111 DOI: 10.1016/j.ijbiomac.2024.135361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Due to elevated glucose levels, oxidative stress, weakened immune function, and delayed angiogenesis, diabetic wounds are difficult to heal. However, current dressings often do not successfully achieve the desired therapeutic outcome for diabetic wounds. Platelet rich plasma (PRP) is widely used in the treatment of diabetic wounds. Even so, the sudden release of growth factors or proteins in PRP frequently hampers the therapeutic efficacy. Therefore, it is of considerable clinical value to achieve long-term release of active molecules in PRP and to create more effective diabetic wound dressings. Here, PRP was combined with pullulan polysaccharide derivatives (OPD) and polylysine derivatives (EPL-BA) to form a multifunctional hydrogel backbone. Tea polyphenols (TP), gallic acid (GA), and metal ions (Cu2+) were utilized to prepare metal-phenol network nanoparticles (TGMPN) which were encapsulated in the hydrogel system. The EPL-BA/OPD/PRP/TGMPN (EOPM) composite hydrogel showed injectable and self-healing properties. The hydrogel system could effectively remove reactive oxygen species (ROS) and showed excellent antibacterial properties against different bacteria. The results showed that EOPM hydrogel was effective in reducing the inflammatory response and promoting the regeneration of blood vessels and neoplastic tissues, thus greatly accelerating the repair of infected wounds.
Collapse
Affiliation(s)
- Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
20
|
Mondal A, Nongbri DL, Achariya K, Haque M, Aguan K, Bhattacharya A, Singha Roy A. A chitosan-α-naphthaldehyde hydrogel film containing pineapple leaf fibers for wound dressing applications. J Mater Chem B 2024; 12:10934-10948. [PMID: 39344521 DOI: 10.1039/d4tb01318b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In recent decades, polysaccharide-based hydrogels have gained significant attention due to their natural biocompatibility, biodegradability, and non-toxicity. The potential for using polysaccharides to synthesize hydrogels is due to their ability to support cell proliferation, which is important for practical applications, particularly in the biomedical field. In this study, we have synthesized a chitosan-α-naphthal hydrogel film using a cost-effective one-step synthesis approach. The prepared hydrogel film exhibited high encapsulation efficiency for antibacterial drugs such as ciprofloxacin and lomefloxacin, with the ability to release the antibiotics in a controlled manner over an extended period and prevent long-term bacterial infections. Moreover, the Korsmeyer and Peppas power law, based on Fickian diffusion, was employed to model the entire complex drug release process and predict the drug release behavior. The hydrogel film also shows pH-induced swelling ability due to the presence of an imine bond in the hydrogel network, which is degradable at acidic pH. The incorporated therapeutic agents having antibacterial activity were effective against Gram-negative (Escherichia coli DH5α) and Gram-positive (Staphylococcus aureus subsp. aureus) bacterial strains. A wound dressing material should possess mechanical strength, but the prepared hydrogel film has low mechanical strength. To increase the mechanical strength, we have infused pineapple leaf fibers (PLFs) in the film network, resulting in a mechanical strength of 1.12 ± 0.89 MPa. In addition to its mechanical strength, significant cell viability against human embryonic kidney (HEK-293) cells was observed from in vitro cell culture experiments for this PLF-hydrogel film. As a result, the prepared therapeutic agent-loaded hydrogel film under study meets the requirements to be considered for use as a wound dressing material.
Collapse
Affiliation(s)
- Amarjyoti Mondal
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong-793003, India.
| | | | - Kusumita Achariya
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata-700126, India
| | - Mahabul Haque
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong-793003, India.
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong-793022, India
| | - Arijit Bhattacharya
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata-700126, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong-793003, India.
| |
Collapse
|
21
|
Kamaraj M, Moghimi N, McCarthy A, Chen J, Cao S, Chethikkattuveli Salih AR, Joshi A, Jucaud V, Panayi A, Shin SR, Noshadi I, Khademhosseini A, Xie J, John JV. Granular Porous Nanofibrous Microspheres Enhance Cellular Infiltration for Diabetic Wound Healing. ACS NANO 2024; 18:28335-28348. [PMID: 39356827 DOI: 10.1021/acsnano.4c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities. The proposed technology combines electrospinning and electrospraying to develop a therapeutic option for DFUs. Specifically, porous NMs were constructed using electrospun poly(lactic-co-glycolic acid) (PLGA):gelatin short nanofibers, followed by gelatin cross-linking. These NMs demonstrated enhanced cell adhesion to human dermal fibroblasts (HDF) during an in vitro cytocompatibility assessment. Notably, porous NMs displayed superior performance owing to their interconnected pores compared to nonporous NMs. Cell-laden NMs demonstrated higher Young's modulus values than NMs without loaded cells, suggesting improved material resiliency attributed to the reinforcement of cells and their secreted extracellular matrix. Dynamic injection studies on cell-laden NMs further elucidated their capacity to safeguard loaded cells under pressure. In addition, porous NMs promoted host cell infiltration, neovascularization, and re-epithelialization in a diabetic mouse wound model, signifying their effectiveness in healing diabetic wounds. Taken together, porous NMs hold significant potential as minimally invasive, injectable treatments that effectively promote tissue integration and regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Selena Cao
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | | | - Akshat Joshi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Adriana Panayi
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg 69117, Germany
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V John
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| |
Collapse
|
22
|
Zhang P, Yang J, Wang Z, Wang H, An M, Yakufu M, Wang W, Liu Y, Liu W, Li C. An injectable self-lubricating supramolecular polymer hydrogel loaded with platelet lysate to boost osteoarthritis treatment. J Control Release 2024; 376:20-36. [PMID: 39362609 DOI: 10.1016/j.jconrel.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Globally, osteoarthritis (OA) is the most prevalent joint disease and is characterized by infiltration of M1 macrophages in the synovium, anabolic-catabolic imbalance of the extracellular matrix (ECM), increased articular shear force and overproduction of reactive oxygen species (ROS). Disease-modifying OA drugs are not yet available, and treatments for OA focus solely on reducing pain and inflammation and have limited therapeutic effect. Herein, we developed an injectable self-lubricating poly(N-acryloyl alaninamide) (PNAAA) hydrogel loaded with platelet lysate (PL) (termed "PNAAA@PL") for treating OA. Tribological and drug release tests revealed suitable lubrication properties and sustained release of bioactive factors in PNAAA@PL. In vitro experiments showed that PNAAA@PL alleviated interleukin-1β (IL-1β)-induced anabolic-catabolic imbalance of chondrocytes and repolarized pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype via intracellular ROS scavenging. Additionally, the PNAAA@PL hydrogel enhanced the migratory capacity and chemotaxis ability of stem cells, which are essential for chondrogenesis. In vivo, the functionalized PNAAA@PL hydrogel acted like synovial fluid following intra-articular injection into a rat OA model with anterior cruciate ligament transection, ultimately attenuating cartilage degeneration and synovitis. According to molecular mechanism studies, PNAAA@PL repairs cartilage in the OA model by inhibiting the NF-ĸB pathway. Overall, this self-lubricating PNAAA@PL hydrogel offers a comprehensive strategy for preventing OA progression by engineering a biophysiochemical microenvironment to generate high-quality hyaline cartilage.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Mingyang An
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihemuti Yakufu
- Department of Orthopedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, China
| | - Wenliang Wang
- Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yujie Liu
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chunbao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
23
|
Gunjan, Himanshu, Pandey RP, Mukherjee R, Chang CM. Advanced meta-analysis on therapeutic strategies of mesenchymal derived exosome for diabetic chronic wound healing and tissue remodeling. Mol Cell Probes 2024; 77:101974. [PMID: 39038766 DOI: 10.1016/j.mcp.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Exosome (EXOs) are rapidly being identified as key mediators of cell-to-cell communication. They convey biologically active molecules to target cells, serve important roles in a range of physiological and pathological processes, and have enormous potential as novel therapeutic strategies. METHODS Preclinical research published between 2019 and 2023 provided the study's data searched on different medline search engine, and clinicaltrials.gov was searched for clinical data. These papers were chosen because they are relevant to the research of mesenchymal stem cell-derived exosomes (MSC-EXOs). Thematic synthesis and meta-analysis were used to perform the meta-analysis of diabetic wound healing. RESULTS For data extraction, a total of 18 preclinical and 4 clinical trials were selected. Preclinical investigations involving EXOs across various animal wound healing models showed promising potential for treatment. Specifically, following EXO treatment, there was a notable correlation with wound closure rates, with a pooled proportion of 46 % (95 % CI: 0.34; 0.59) and τ2 of 0.0593 after 3 ± 2 days, 54 % (95 % CI: 0.43; 0.65) and τ2 of 0.0465 after 7 ± 2 days, and 69 % (95 % CI: 0.62; 0.76) and τ2 of 0.0221 after 14 ± 2 days, with an egger's test p-value of <0.01. Further investigation into heterogeneity was conducted through subgroup analysis based on the source of EXO and the animal model utilized in the study. CONCLUSIONS EXOs are proving to be viable platforms for the treatment of a wide range of disorders in clinical trials. MSC-EXOs exhibited significant diabetic wound healing capabilities across diverse outcomes including wound closure, increase angiogenesis, immunomodulatory ability and skin regeneration with its typical structure and functions.
Collapse
Affiliation(s)
- Gunjan
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C)
| | - Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C)
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun, 248007, Uttarakhand, India
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C)
| | - Chung-Ming Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C); Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C); Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C).
| |
Collapse
|
24
|
Zhang J, Li J, Zhang Y, Zhao Y, Shen J, Du F, Chen Y, Li M, Wu X, Chen M, Xiao Z, Deng S. Bilayer hydrogel with a protective film and a regenerative hydrogel for effective diabetic wound treatment. Biomater Sci 2024; 12:5036-5051. [PMID: 39189321 DOI: 10.1039/d4bm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Diabetic foot ulcers (DFUs) are one of the most serious complications of diabetes, often leading to necrosis and amputation. DFU is caused by the intricate diabetic microenvironment, including ischemia, hypoxia, hyperinflammation, reduced angiogenesis, and persistent infection. Traditional wound dressings made of single or mixed materials often struggle to meet all the requirements for effective diabetic wound healing. In contrast, multilayer dressings comprising more than single layers have the potential to address these challenges by combining their diverse chemical and physical properties. In this study, we developed a bilayer hydrogel comprising a GelMA-ALG-nano-ZnO protective film and a COL1-PRP regenerative hydrogel for facilitating diabetic wound healing. We demonstrated the protective properties against bacterial infection of the protective film, while highlighting the regenerative potential of the COL1-PRP hydrogel in promoting fibroblast and MUVEC migration, extracellular matrix secretion and deposition, and angiogenesis. Importantly, the bilayer hydrogel exhibited superior efficacy in promoting full-thickness wound healing in a diabetic rat model compared to its single-layer hydrogel counterparts. This multi-layer approach offers a promising strategy for addressing the complexities of diabetic foot treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yang Zhang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
25
|
Li Z, Li Q, Ahmad A, Yue Z, Wang H, Wu G. Highly concentrated collagen/chondroitin sulfate scaffold with platelet-rich plasma promotes bone-exposed wound healing in porcine. Front Bioeng Biotechnol 2024; 12:1441053. [PMID: 39380894 PMCID: PMC11458455 DOI: 10.3389/fbioe.2024.1441053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
In the case of wounds with exposed bone, it is essential to provide not only scaffolds with sufficient mechanical strength for protection, but also environments that are conducive to the regeneration of tissues and blood vessels. Despite the excellent biocompatibility and biodegradability of collagen and chondroitin sulfate, they display poor mechanical strength and rapid degradation rates. In contrast to previous methodologies that augmented the mechanical properties of biomaterials through the incorporation of additional substances, this investigation exclusively enhanced the mechanical strength of collagen/chondroitin sulfate scaffolds by modulating collagen concentrations. Furthermore, platelet-rich plasma (PRP) was employed to establish optimal conditions for vascular and tissue regeneration at the wound site. High-concentration collagen/chondroitin sulfate (H C-S) scaffolds were synthesized using high-speed centrifugation and combined with PRP, and their effects on endothelial cell proliferation were assessed. A porcine model of bone-exposed wounds was developed to investigate the healing effects and mechanisms. The experimental results indicated that scaffolds with increased collagen concentration significantly enhanced both tensile and compressive moduli. The combination of H C-S scaffolds with PRP markedly promoted endothelial cell proliferation. In vivo experiments demonstrated that this combination significantly accelerated the healing of porcine bone-exposed wounds and promoted vascular regeneration. This represents a promising strategy for promoting tissue regeneration that is worthy of further exploration and clinical application.
Collapse
Affiliation(s)
- Zhihao Li
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Qian Li
- Medical Laboratory of Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Akhlaq Ahmad
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhongjie Yue
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Hongxia Wang
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Guofeng Wu
- Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Qi J, Li X, Cao Y, Long Y, Lai J, Yao Y, Meng Y, Wang Y, Chen XD, Vankelecom H, Bian X, Cui W, Sun Y. Locationally activated PRP via an injectable dual-network hydrogel for endometrial regeneration. Biomaterials 2024; 309:122615. [PMID: 38759486 DOI: 10.1016/j.biomaterials.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Enhancing the effectiveness of platelet-rich plasma (PRP) for endometrial regeneration is challenging, due to its limited mechanical properties and burst release of growth factors. Here, we proposed an injectable interpenetrating dual-network hydrogel that can locationally activate PRP within the uterine cavity, sustained release growth factors and further address the insufficient therapeutic efficacy. Locational activation of PRP is achieved using the dual-network hydrogel. The phenylboronic acid (PBA) modified methacrylated hyaluronic acid (HAMA) dispersion chelates Ca2+ by carboxy groups and polyphenol groups, and in situ crosslinked with PRP-loaded polyvinyl alcohol (PVA) dispersion by dynamic borate ester bonds thus establishing the soft hydrogel. Subsequently, in situ photo-crosslinking technology is employed to enhance the mechanical performance of hydrogels by initiating free radical polymerization of carbon-carbon double bonds to form a dense network. The PRP-hydrogel significantly promoted the endometrial cell proliferation, exhibited strong pro-angiogenic effects, and down-regulated the expression of collagen deposition genes by inhibiting the TGF-β1-SMAD2/3 pathway in vitro. In vivo experiments using a rat intrauterine adhesion (IUA) model showed that the PRP-hydrogel significantly promoted endometrial regeneration and restored uterine functionality. Furthermore, rats treated with the PRP-hydrogel displayed an increase in the number of embryos, litter size, and birth rate, which was similar to normal rats. Overall, this injectable interpenetrating dual-network hydrogel, capable of locational activation of PRP, suggests a new therapeutic approach for endometrial repair.
Collapse
Affiliation(s)
- Jia Qi
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxiao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yumeng Cao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yijing Long
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Junliang Lai
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yejie Yao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yiwen Meng
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuan Wang
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX, 78229, USA
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Xuejiao Bian
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Yun Sun
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
27
|
Ma S, Chen K, Ding Q, Zhang S, Lu Y, Yu T, Ding C, Liu W, Liu S. Quaternized oxidized sodium alginate injectable hydrogel with high antimicrobial and hemostatic efficacy promotes diabetic wound healing. Int J Pharm 2024; 661:124421. [PMID: 38972524 DOI: 10.1016/j.ijpharm.2024.124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
In this paper, a hydrogel material with efficient antibacterial, hemostatic, self-healing, and injectable properties was designed for the treatment of diabetic wounds. Firstly, quaternary ammonium salts were grafted with oxidized sodium alginate, and quaternized oxidized sodium alginate (QOSA) was synthesized. Due to the introduction of quaternary ammonium group it has antibacterial and hemostatic effects, at the same time, due to the presence of aldehyde group it can be reacted with carboxymethyl chitosan (CMCS) to form a hydrogel through the Schiff base reaction. Furthermore, deer antler blood polypeptide (DABP) was loaded into the hydrogel (QOSA&CMCS&DABP), showing good swelling ratio and bacteriostatic effect. In vitro and in vivo experiments demonstrated that the hydrogel not only quickly inhibited hepatic hemorrhage in mice and reduced coagulation index and clotting time in vitro, but also significantly enhanced collagen deposition at the wound site, accelerating wound healing. This demonstrates that the multifunctional hydrogel materials (QOSA&CMCS&DABP) have promising applications in the acceleration of skin wound healing and antibacterial promotion.
Collapse
Affiliation(s)
- Shuang Ma
- School of Food and Pharmaceutical Engineering, Liupao Tea Modern Industry College, Wuzhou University, Wuzhou 543002, China
| | - Kecheng Chen
- Looking Up Starry Sky Medical Research Center, Siping 136001, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Taojing Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Liupao Tea Modern Industry College, Wuzhou University, Wuzhou 543002, China.
| | - Shuang Liu
- Jilin Jin Ziyuan Biotech Inc. Shuangliao 136400, Chian.
| |
Collapse
|
28
|
Duan W, Jin X, Zhao Y, Martin-Saldaña S, Li S, Qiao L, Shao L, Zhu B, Hu S, Li F, Feng L, Ma Y, Du B, Zhang L, Bu Y. Engineering injectable hyaluronic acid-based adhesive hydrogels with anchored PRP to pattern the micro-environment to accelerate diabetic wound healing. Carbohydr Polym 2024; 337:122146. [PMID: 38710570 DOI: 10.1016/j.carbpol.2024.122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Diabetic wounds remain a global challenge due to disordered wound healing led by inflammation, infection, oxidative stress, and delayed proliferation. Therefore, an ideal wound dressing for diabetic wounds not only needs tissue adhesiveness, injectability, and self-healing properties but also needs a full regulation of the microenvironment. In this work, adhesive wound dressings (HA-DA/PRP) with injectability were fabricated by combining platelet rich plasma (PRP) and dopamine-modified-hyaluronic acid (HA-DA). The engineered wound dressings exhibited tissue adhesiveness, rapid self-healing, and shape adaptability, thereby enhancing stability and adaptability to irregular wounds. The in vitro experiments demonstrated that HA-DA/PRP adhesives significantly promoted fibroblast proliferation and migration, attributed to the loaded PRP. The adhesives showed antibacterial properties against both gram-positive and negative bacteria. Moreover, in vitro experiments confirmed that HA-DA/PRP adhesives effectively mitigated oxidative stress and inflammation. Finally, HA-DA/PRP accelerated the healing of diabetic wounds by inhibiting bacterial growth, promoting granulation tissue regeneration, accelerating neovascularization, facilitating collagen deposition, and modulating inflammation through inducing M1 to M2 polarization, in an in vivo model of infected diabetic wounds. Overall, HA-DA/PRP adhesives with the ability to comprehensively regulate the microenvironment in diabetic wounds may provide a novel approach to expedite the diabetic wounds healing in clinic.
Collapse
Affiliation(s)
- Wanglin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xianzhen Jin
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Yiyang Zhao
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Shuaijun Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lina Qiao
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Liang Shao
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bin Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shibo Hu
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Furong Li
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Luyao Feng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao Ma
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Lining Zhang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Burns, Plastic and Wound Repair Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.
| |
Collapse
|
29
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
30
|
Kamayana JAS, Hamid ARRH, Mahadewa TGB, Sanjaya IGPH, Darmajaya IM, Dewi IGASM. Preconditioning Local Injection of Activated Platelet-Rich Plasma Increases Angiogenesis, VEGF Levels, and Viability of Modified McFarlane Flap in Diabetes-Induced Rats. Arch Plast Surg 2024; 51:432-440. [PMID: 39034974 PMCID: PMC11257746 DOI: 10.1055/a-2317-4520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/28/2024] [Indexed: 07/23/2024] Open
Abstract
Background The risk of flap necrosis in tissue reconstruction surgery is elevated in patients with vascular disorders, such as diabetes mellitus. Chronic hyperglycemia causes endothelial cell dysfunction and increases inflammatory process, causing vascular insufficiency. Platelet-rich plasma (PRP) contains high levels of platelets, growth factors, and fibrinogens. Its regenerative properties spark interest in supporting flap survival in relation to diabetic complications. Methods Thirty Wistar rats were divided into three groups. The first group included diabetic rats without PRP injection, which underwent flap procedure. The second group included diabetes-induced rats receiving PRP subcutaneous injection 1 day prior to flap procedure. The third group included nondiabetic rats receiving PRP injection 1 day prior to flap procedure. Flap tissue samples were taken on the seventh day to measure vascular endothelial growth factor (VEGF) levels using enzyme-linked immunosorbent assay method; angiogenesis and collagen density were measured from histopathology examination, and flap viability was analyzed using digital measurements. Results Analysis showed that flap viability, angiogenesis, and VEGF levels were significantly higher in the PRP-injected diabetic rats compared with diabetic rats that did not receive PRP. The levels of VEGF, angiogenesis, and viability of flaps in diabetic rats given PRP did not differ significantly compared with nondiabetic rats that received PRP. Conclusion Flap preconditioning through local injection of activated PRP enhances flap viability, VEGF levels and angiogenesis, in random skin flaps in diabetic rats, to the level where it does not differ significantly to nondiabetic rats that were given PRP.
Collapse
Affiliation(s)
| | | | | | - I. Gusti Putu Hendra Sanjaya
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, Udayana University, Bali, Indonesia
| | - I. Made Darmajaya
- Division of Paediatric Surgery, Department of Surgery, Udayana University, Bali, Indonesia
| | | |
Collapse
|
31
|
Xie X, Ao X, Xu R, Lv H, Tan S, Wu J, Zhao L, Wang Y. Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions. Int J Biol Macromol 2024; 270:132363. [PMID: 38754675 DOI: 10.1016/j.ijbiomac.2024.132363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
The combination of pharmacological and physical barrier therapy is a highly promising strategy for treating intrauterine adhesions (IUAs), but there lacks a suitable scaffold that integrates good injectability, proper mechanical stability and degradability, excellent biocompatibility, and non-toxic, non-rejection therapeutic agents. To address this, a novel injectable, degradable hydrogel composed of poly(ethylene glycol) diacrylate (PEGDA), sodium alginate (SA), and l-serine, and loaded with platelet-rich plasma (PRP) (referred to as PSL-PRP) is developed for treating IUAs. l-Serine induces rapid gelation within 1 min and enhances the mechanical properties of the hydrogel, while degradable SA provides the hydrogel with strength, toughness, and appropriate degradation capabilities. As a result, the hydrogel exhibits an excellent scaffold for sustained release of growth factors in PRP and serves as an effective physical barrier. In vivo testing using a rat model of IUAs demonstrates that in situ injection of the PSL-PRP hydrogel significantly reduces fibrosis and promotes endometrial regeneration, ultimately leading to fertility restoration. The combined advantages make the PSL-PRP hydrogel very promising in IUAs therapy and in preventing adhesions in other internal tissue wounds.
Collapse
Affiliation(s)
- Xiangyan Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xue Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijuan Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyi Lv
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shiqiao Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
32
|
Chen Y, Lu W, Zhou Y, Hu Z, Wu H, Gao Q, Shi J, Wu W, Lv S, Yao K, He Y, Xie Z. A Spatiotemporal Controllable Biomimetic Skin for Accelerating Wound Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310556. [PMID: 38386291 DOI: 10.1002/smll.202310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Skin injury repair is a dynamic process involving a series of interactions over time and space. Linking human physiological processes with materials' changes poses a significant challenge. To match the wound healing process, a spatiotemporal controllable biomimetic skin is developed, which comprises a three-dimensional (3D) printed membrane as the epidermis, a cell-containing hydrogel as the dermis, and a cytokine-laden hydrogel as the hypodermis. In the initial stage of the biomimetic skin repair wound, the membrane frame aids wound closure through pre-tension, while cells proliferate within the hydrogel. Next, as the frame disintegrates over time, cells released from the hydrogel migrate along the residual membrane. Throughout the process, continuous cytokines release from the hypodermis hydrogel ensures comprehensive nourishment. The findings reveal that in the rat full-thickness skin defect model, the biomimetic skin demonstrated a wound closure rate eight times higher than the blank group, and double the collagen content, particularly in the early repair process. Consequently, it is reasonable to infer that this biomimetic skin holds promising potential to accelerate wound closure and repair. This biomimetic skin with mechanobiological effects and spatiotemporal regulation emerges as a promising option for tissue regeneration engineering.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
33
|
Heydari P, Zargar Kharazi A, Shariati L. Enhanced wound regeneration by PGS/PLA fiber dressing containing platelet-rich plasma: an in vitro study. Sci Rep 2024; 14:12019. [PMID: 38797743 PMCID: PMC11128439 DOI: 10.1038/s41598-024-62855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Novel wound dressings with therapeutic effects are being continually designed to improve the wound healing process. In this study, the structural, chemical, physical, and biological properties of an electrospun poly glycerol sebacate/poly lactide acid/platelet-rich plasma (PGS/PLA-PRP) nanofibers were evaluated to determine its impacts on in vitro wound healing. Results revealed desirable cell viability in the Fibroblast (L929) and macrophage (RAW-264.7) cell lines as well as human umbilical vein endothelial cells (HUVEC). Cell migration was evident in the scratch assay (L929 cell line) so that it promoted scratch contraction to accelerate in vitro wound healing. Moreover, addition of PRP to the fiber structure led to enhanced collagen deposition (~ 2 times) in comparison with PGS/PLA scaffolds. While by addition PRP to PGS/PLA fibers not only decreased the expression levels of pro-inflammatory cytokines (IL-6 and TNF-α) in RAW-264.7 cells but also led to significantly increased levels of cytokine (IL-10) and the growth factor (TGF-β), which are related to the anti-inflammatory phase (M2 phenotype). Finally, PGS/PLA-PRP was found to induce a significant level of angiogenesis by forming branching points, loops, and tubes. Based on the results obtained, the PGS/PLA-PRP dressing developed might be a promising evolution in skin tissue engineering ensuring improved wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Laleh Shariati
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Huffer A, Ozdemir T. Substrate stiffness regulates type II diabetic fibroblast phenotype and metabolic activity. Biochem Biophys Res Commun 2024; 709:149833. [PMID: 38574608 DOI: 10.1016/j.bbrc.2024.149833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
In people living with diabetes, impaired wound healing is a major concern as the formation of ulcerated wounds can drastically reduce both the effectiveness of the healing process and the quality of life of the patient. The healing of dermal wounds in particular involves a patient's fibroblasts building up a strong extracellular matrix of mostly collagen I and collagen III fibers, which the cells of diabetic patients struggle to do. Extracellular matrix stiffness, and growth substrate stiffness in general, have already been shown to have a significant effect on the growth and development of already existent cells, and in diabetic dermal fibroblasts, morphological and physiological characteristics associated with the healing process appear to be altered from their healthy state. In this study we utilized a PDMS surface with a stiffness comparable to a wound environment (16 kPa) and a softer surface (0.2 kPa) to study the effects on diabetic and normal fibroblasts. We found diabetic fibroblast morphology became more fibroblast like when placed on the softer surfaces. This was demonstrated by a 15.6% decrease in the aspect ratio and a 16.4% increase in the circularity. The presence of the stress fibers was decreased by 19.4% in diabetic fibroblasts when placed on a softer surface. The proliferation rate of the diabetic fibroblasts was unaffected by the change in stiffness, but the metabolic activity greatly decreased (76%) on the softer surface. The results suggest that the softer surface may have a therapeutic effect on diabetic fibroblast metabolic activity. Further studies could focus on investigating this relationship and utilize it in tunable biomaterials to facilitate and accelerate the healing process for diabetic wounds.
Collapse
Affiliation(s)
- Amelia Huffer
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| |
Collapse
|
35
|
Zheng X, Ouyang Y, Fan H, Zhang L, Wang S, Zeng Y, Hu L, Zhao J. Molybdesum selenide-based platelet-rich plasma containing carboxymethyl chitosan/polyvinyl pyrrolidone composite antioxidant hydrogels dressing promotes the wound healing. J Nanobiotechnology 2024; 22:217. [PMID: 38725012 PMCID: PMC11080249 DOI: 10.1186/s12951-024-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Excess free radicals at the wound site can cause an inflammatory response, which is not conducive to wound healing. Hydrogels with antioxidant properties can prevent inflammatory storms by scavenging free radicals from the wound site and inhibiting the release of inflammatory factors. In this study, we prepared the carboxymethyl chitosan (CMCS)/polyvinyl pyrrolidone (PVP)/Molybdenum (IV) Selenide (MoSe2), and platelet-rich plasma (PRP) (CMCS/PVP/MoSe2/PRP) hydrogels for accelerating the repair of wounds. In the hydrogels, the MoSe2 can scavenge various free radicals to reduce oxidative stress at the site of inflammation, endowed the hydrogels with antioxidant properties. Interestingly, growth factors released by PRP assisted the tissue repair by promoting the formation of new capillaries. CMCS as a backbone not only showed good biocompatibility and biodegradability but also played a significant role in maintaining the sustained release of growth factors. In addition, incorporating PVP enhanced the tissue adhesion and mechanical properties. The multifunctional composite antioxidant hydrogels have good swelling properties and biodegradability, which is completely degraded within 28 days. Thus, the antioxidant CMCS/PVP/MoSe2/PRP hydrogels provide a new idea for designing ideal multifunctional wound dressings.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China
| | - Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
| | - Hengwei Fan
- Department of Hepatic Surgery Department, the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, No. 225 Changhai Road, Shanghai, 200438, P. R. China
| | - Liying Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
| | - Yanbo Zeng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China.
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China.
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China.
| |
Collapse
|
36
|
Jiang Z, Huang C, Guo E, Zhu X, Li N, Huang Y, Wang P, Shan H, Yin Y, Wang H, Huang L, Han Z, Ouyang K, Sun L. Platelet-Rich Plasma in Young and Elderly Humans Exhibits a Different Proteomic Profile. J Proteome Res 2024; 23:1788-1800. [PMID: 38619924 DOI: 10.1021/acs.jproteome.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peihe Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
37
|
Zhao C, Wu Z, Pan B, Zhang R, Golestani A, Feng Z, Ge Y, Yang H. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int J Biol Macromol 2024; 267:131650. [PMID: 38636756 DOI: 10.1016/j.ijbiomac.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.
Collapse
Affiliation(s)
- Chenyu Zhao
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Zhaoqi Wu
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Boyue Pan
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Avin Golestani
- Faculty of Life Science and Medicine, King's College London, London SE1 1UL, UK
| | - Ziyi Feng
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of Plastic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yi Ge
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
38
|
Martorana A, Lenzuni M, Contardi M, Palumbo FS, Cataldo S, Pettignano A, Catania V, Schillaci D, Summa M, Athanassiou A, Fiorica C, Bertorelli R, Pitarresi G. Schiff Base-Based Hydrogel Embedded with In Situ Generated Silver Nanoparticles Capped by a Hyaluronic Acid-Diethylenetriamine Derivative for Wound Healing Application. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603548 DOI: 10.1021/acsami.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.
Collapse
Affiliation(s)
- Annalisa Martorana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Fabio S Palumbo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Cataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Alberto Pettignano
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Valentina Catania
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Calogero Fiorica
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanna Pitarresi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
39
|
Xu J, Lin Y, Wang Y, Gao H, Li Y, Zhang C, Chen Q, Chen S, Peng Q. Multifunctional Regeneration Silicon-Loaded Chitosan Hydrogels for MRSA-Infected Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303501. [PMID: 37956229 DOI: 10.1002/adhm.202303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Repeated microbial infection, excess reactive oxygen species (ROS) accumulation, cell dysfunction, and impaired angiogenesis under hyperglycemia severely inhibit diabetic wound healing. Therefore, developing multifunctional wound dressings accommodating the complex microenvironment of diabetic wounds is of great significance. Here, a multifunctional hydrogel (Regesi-CS) is prepared by loading regeneration silicon (Regesi) in the non-crosslinked chitosan (CS) solution, followed by freeze-drying and hydration. As expected, the blank non-crosslinked CS hydrogel (1%) shows great antibacterial activity against Escherichia coli, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA), improves fibroblast migration, and scavenges intracellular ROS. Interestingly, after loading 1% Regesi, the Regesi-CS (1%-1%) hydrogel shows greater antibacterial activity, significantly promotes fibroblasts proliferation and migration, scavenges much more ROS, and substantially protects fibroblasts under oxidative stress, yet Regesi alone has no or even negative effects. In the MRSA-infected diabetic wound model, Regesi-CS (1%-1%) hydrogel effectively promotes wound healing by eliminating bacterial infection, enhancing granulation tissue formation, promoting collagen deposition, and improving angiogenesis. In conclusion, Regesi-CS hydrogel may be a potential wound dressing for the effective treatment and management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuanhong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
40
|
Zhou L, Liu F, You J, Zhou B, Guo W, Qu W, Ren X, Gao G. A Novel Self-Pumping Janus Dressing for Promoting Wound Immunomodulation and Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303460. [PMID: 37957786 DOI: 10.1002/adhm.202303460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 11/15/2023]
Abstract
Self-pumping dressings become one of the optimal solutions for the controlled management of chronic diabetic wound exudate and wound healing. However, present self-pumping dressings are not only prone to breakage of the loose hydrophobic layer but also have cumbersome and complicated preparation steps, which hinder the application of self-pumping dressings in diabetic wound treatment. Herein, a novel self-pumping structure of superabsorbent Janus dressing is designed to improve the strength of the hydrophobic layer and promote diabetic wound healing. The Janus dressing consists of a hydrophobic layer with a drainage agent (drainage layer) and a fluffy 3D nanofiber cotton (absorbent layer). Regardless of the thickness of the drainage layer, the drainage agent in the drainage layer provides the fluid to penetrate the drainage layer to the absorbent layer for unidirectional fluid draining. In design proof, the superabsorbent Janus dressing provides unidirectional drainage of inflammatory exudate and regulation of macrophage polarization, resulting in faster diabetic wound healing than single-layer dressings. Thus, the Janus dressing demonstrates important clinical implications to offer a novel design and preparation strategy for accelerating diabetic wound healing.
Collapse
Affiliation(s)
- Lubin Zhou
- Polymeric and Soft Materials Laboratory, Advanced Institute of Materials Science, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Fan Liu
- Polymeric and Soft Materials Laboratory, Advanced Institute of Materials Science, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Junyuan You
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130041, P. R. China
| | - Bo Zhou
- Polymeric and Soft Materials Laboratory, Advanced Institute of Materials Science, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory, Advanced Institute of Materials Science, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, Advanced Institute of Materials Science, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| |
Collapse
|
41
|
Omidian H, Wilson RL, Gill EJ. Advancements and Challenges in Self-Healing Hydrogels for Wound Care. Gels 2024; 10:241. [PMID: 38667660 PMCID: PMC11048759 DOI: 10.3390/gels10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript explores self-healing hydrogels as innovative solutions for diverse wound management challenges. Addressing antibiotic resistance and tailored wound care, these hydrogels exhibit promising outcomes, including accelerated wound closure and tissue regeneration. Advancements in multifunctional hydrogels with controlled drug release, antimicrobial properties, and real-time wound assessment capabilities signal a significant leap toward patient-centered treatments. However, challenges such as scalability, long-term safety evaluation, and variability in clinical outcomes persist. Future directions emphasize personalized medicine, manufacturing innovation, rigorous evaluation through clinical trials, and interdisciplinary collaboration. This manuscript features the ongoing pursuit of effective, adaptable, and comprehensive wound care solutions to transform medical treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (E.J.G.)
| | | | | |
Collapse
|
42
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 115] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
43
|
He Y, Yang W, Zhang C, Yang M, Yu Y, Zhao H, Guan F, Yao M. ROS/pH dual responsive PRP-loaded multifunctional chitosan hydrogels with controlled release of growth factors for skin wound healing. Int J Biol Macromol 2024; 258:128962. [PMID: 38145691 DOI: 10.1016/j.ijbiomac.2023.128962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.
Collapse
Affiliation(s)
- Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Weijuan Yang
- Shandong Qilu Stem Cell Engineering Co. LTD, Jinan 250102, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
44
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
45
|
Ma S, Ding Q, Xia G, Li A, Li J, Sun P, Ding C, Liu W. Multifunctional biomaterial hydrogel loaded with antler blood peptide effectively promotes wound repair. Biomed Pharmacother 2024; 170:116076. [PMID: 38147738 DOI: 10.1016/j.biopha.2023.116076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Diabetes is an epidemic in contemporary society, which seriously affects people's health. Therefore, it is imperative to develop a multifunctional wound dressing that can expedite the healing of diabetic wounds. In this study, quaternized oxidized sodium alginate (QOSA) and carboxymethyl chitosan (CMCS) formed hydrogel through Schiff base reaction, and the composite hydrogel was prepared by adding the antioxidant activity of deer antler blood polypeptide (D). The hydrogel exhibits favorable attributes, including a high swelling ratio, biocompatibility, and noteworthy antioxidant, antibacterial, and hemostatic properties. Finally, it was used to evaluate its effectiveness in repairing diabetic wounds. Upon evaluation, this hydrogel can effectively promote diabetic wound healing. It facilitates cell proliferation at the wound site, mitigates inflammatory responses, and enhances the expression of growth factors at the wound site. This suggests that this hydrogel holds significant promise as an ideal candidate for advanced wound dressings.
Collapse
Affiliation(s)
- Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guofeng Xia
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Jilin 132101, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
46
|
Wang X, Li R, Zhao H. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomed Pharmacother 2024; 170:116035. [PMID: 38113622 DOI: 10.1016/j.biopha.2023.116035] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Diabetic wounds (DW) constitute a substantial burden on global healthcare owing to their widespread occurrence as a complication of diabetes. Angiogenesis, a crucial process, plays a pivotal role in tissue recovery by supplying essential oxygen and nutrients to the injury site. Unfortunately, in diabetes mellitus, various factors disrupt angiogenesis, hindering wound healing. While biomaterials designed to enhance angiogenesis hold promise for the treatment of DWs, there is an urgent need for more in-depth investigations to fully unlock their potential in clinical management. In this review, we explore the intricate mechanisms of angiogenesis that are crucial for DW recovery. We introduce a rational design for angiogenesis-enhancing drug delivery systems (DDS) and provide a comprehensive summary and discussion of diverse biomaterials that enhance angiogenesis for facilitating DW healing. Lastly, we address emerging challenges and prospects in angiogenesis-enhancing DDS for facilitating DW healing, aiming to offer a comprehensive understanding of this critical healthcare issue and potential solutions.
Collapse
Affiliation(s)
- Xuan Wang
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Runmin Li
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Hongmou Zhao
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
47
|
Fareez IM, Liew FF, Widera D, Mayeen NF, Mawya J, Abu Kasim NH, Haque N. Application of Platelet-Rich Plasma as a Stem Cell Treatment - an Attempt to Clarify a Common Public Misconception. Curr Mol Med 2024; 24:689-701. [PMID: 37171013 DOI: 10.2174/1566524023666230511152646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
In recent years, there has been a significant increase in the practice of regenerative medicine by health practitioners and direct-to-consumer businesses globally. Among different tools of regenerative medicine, platelet-rich plasma (PRP) and stem cell-based therapies have received considerable attention. The use of PRP, in particular, has gained popularity due to its easy access, simple processing techniques, and regenerative potential. However, it is important to address a common misconception amongst the general public equating to PRP and stem cells due to the demonstrated efficacy of PRP in treating musculoskeletal and dermatological disorders. Notably, PRP promotes regeneration by providing growth factors or other paracrine factors only. Therefore, it cannot replenish or replace the lost cells in conditions where a large number of cells are required to regenerate tissues and/or organs. In such cases, cellbased therapies are the preferred option. Additionally, other tools of regenerative medicine, such as bioprinting, organoids, and mechanobiology also rely on stem cells for their success. Hence, healthcare and commercial entities offering direct-to-customer regenerative therapies should not mislead the public by claiming that the application of PRP is a stem cell-based therapy. Furthermore, it is important for regulatory bodies to strictly monitor these profit-driven entities to prevent them from providing unregulated regenerative treatments and services that claim a broad variety of benefits with little proof of efficacy, safety concerns, and obscure scientific justification.
Collapse
Affiliation(s)
- Ismail M Fareez
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, 42610, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Naiyareen Fareeza Mayeen
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Planegg- Martinsried, 82152, Germany
- TotiCell Limited, Dhaka, 1209, Bangladesh
| | | | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | | |
Collapse
|
48
|
Keshavarz R, Olsen S, Almeida B. Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds. Bioeng Transl Med 2024; 9:e10598. [PMID: 38193114 PMCID: PMC10771568 DOI: 10.1002/btm2.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 01/10/2024] Open
Abstract
Historically, treatment of chronic, nonhealing wounds has focused on managing symptoms using biomaterial-based wound dressings, which do not adequately address the underlying clinical issue. Mesenchymal stem cells (MSCs) are a promising cell-based therapy for the treatment of chronic, nonhealing wounds, yet inherent cellular heterogeneity and susceptibility to death during injection limit their clinical use. Recently, researchers have begun to explore the synergistic effects of combined MSC-biomaterial therapies, where the biomaterial serves as a scaffold to protect the MSCs and provides physiologically relevant physicochemical cues that can direct MSC immunomodulatory behavior. In this review, we highlight recent progress in this field with a focus on the most commonly used biomaterials, classified based on their source, including natural biomaterials, synthetic biomaterials, and the combination of natural and synthetic biomaterials. We also discuss current challenges regarding the clinical translation of these therapies, as well as a perspective on the future outlook of the field.
Collapse
Affiliation(s)
- Romina Keshavarz
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Sara Olsen
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Bethany Almeida
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| |
Collapse
|
49
|
Izzo P, De Intinis C, Molle M, Polistena A, Sibio S, Codacci-Pisanelli M, Biacchi D, Di Cello P, Santini D, Izzo L, Izzo S. Case report: The use of PRP in the treatment of diabetic foot: case series and a review of the literature. Front Endocrinol (Lausanne) 2023; 14:1286907. [PMID: 38170077 PMCID: PMC10760803 DOI: 10.3389/fendo.2023.1286907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background Diabetes mellitus is a prevalent chronic condition that significantly impacts global health. Diabetic foot complications, such as foot ulcers, pose a substantial burden on individuals with diabetes and can lead to serious consequences, including amputation. Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach for enhancing the healing of diabetic foot ulcers. Methods In our study, we treated 12 patients with chronic diabetic ulcers using PRP injections administered at three-week intervals. Our objective was to assess the reduction in wound size and the rate of complete healing at 6 months after the start of the treatment. Additionally, we conducted a comprehensive literature review to contextualize our findings. Results Out of the 12 patients, 8 achieved complete healing of their diabetic foot ulcers, while the remaining four showed significant improvement with more than 50% reduction in the initial lesion size. 3 patients developed mild irritation at the inoculation site. These outcomes, combined with the evidence from published studies, highlight the effectiveness of PRP in promoting the healing of diabetic foot ulcers. Conclusion In conclusion, our study demonstrates the potential of platelet-rich plasma (PRP) as a successful therapeutic option for enhancing the healing process of chronic diabetic foot ulcers. The favorable outcomes observed, including a high rate of complete healing and significant wound size reduction, underscore the value of PRP treatment in managing this challenging complication. Further research and larger studies may provide additional insights into the mechanisms and long-term benefits of PRP in diabetic wound healing.
Collapse
Affiliation(s)
- Paolo Izzo
- Department of Surgery “Pietro Valdoni”, Policlinico “Umberto I”, Sapienza University of Rome, Rome, RM, Italy
| | - Claudia De Intinis
- Department of Surgery “Pietro Valdoni”, Policlinico “Umberto I”, Sapienza University of Rome, Rome, RM, Italy
| | - Marcello Molle
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Plastic Surgery Unit, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Andrea Polistena
- Department of Surgery “Pietro Valdoni”, Policlinico “Umberto I”, Sapienza University of Rome, Rome, RM, Italy
| | - Simone Sibio
- Department of Surgery “Pietro Valdoni”, Policlinico “Umberto I”, Sapienza University of Rome, Rome, RM, Italy
| | - Massimo Codacci-Pisanelli
- Department of Surgery “Pietro Valdoni”, Policlinico “Umberto I”, Sapienza University of Rome, Rome, RM, Italy
| | - Daniele Biacchi
- Department of Surgery “Pietro Valdoni”, Policlinico “Umberto I”, Sapienza University of Rome, Rome, RM, Italy
| | - Pierfrancesco Di Cello
- Department of General Surgery, Unità Operativa Complessa (UOC) General Surgery Frosinone-Alatri at ASL Frosinone, Frosinone, Italy
| | - Daniele Santini
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, Rome, Italy
| | - Luciano Izzo
- Department of Surgery “Pietro Valdoni”, Policlinico “Umberto I”, Sapienza University of Rome, Rome, RM, Italy
| | - Sara Izzo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Plastic Surgery Unit, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
50
|
Wu YD, Jiang HJ, Zhou HH, Xu JY, Liu Q, Sun XH, Wu YH, Lin ZY. PRP significantly promotes the adhesion and migration of vascular smooth muscle cells on stent material. Eur J Med Res 2023; 28:581. [PMID: 38071348 PMCID: PMC10710707 DOI: 10.1186/s40001-023-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The adhesion and survival state of cells on scaffold material is a major problem in tissue-engineered blood vessel (TEBV) culture. Platelet-rich plasma (PRP) contains a large amount of biologically active factors and fibrin, which is expected to play an important role in TEBV culture. PURPOSE To combine PRP with cells and scaffold material to promote cell adhesion and biological activity on the scaffold material. METHODS The adhesion status and migration of SMCs under the optimal concentration suitable for SMC growth and the optimal concentration of PRP were examined by scanning electron microscopy, HE staining, CCK-8 assays, qPCR, WB, and other experimental methods and compared with those under the conventional culture (20% FBS); finally, the effect of PRP on the deposition of ECM in vascular tissue engineering culture was verified by three-dimensional culture. RESULTS PRP at 20% is a suitable concentration for SMCs. Compared with the control group, the 20% PRP group had better migration, and the number of SMC adhesions was significantly higher than that of the control group. In addition, collagen deposition in the experimental group was significantly higher than that in the control group. CONCLUSION PRP (20%) can promote SMC adhesion, migration, and collagen deposition on the scaffold material.
Collapse
Affiliation(s)
- Yin-Di Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China
| | - Hao-Hao Zhou
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, 528200, Guangdong, China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Qing Liu
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yue-Heng Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China
| | - Zhan-Yi Lin
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|