1
|
Li CY, He Q, Yan CZ, Wu SH, Liu Y, Ren HT, Han X. Smart Antibacterial Fabric Response to Sweat: Constructing Reversibly Switchable Surface by Zwitterionic Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10526-10538. [PMID: 40249001 DOI: 10.1021/acs.langmuir.5c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Although various antibacterial fabrics have been extensively developed, smart antibacterial fabrics that can achieve stimulus responses have not been developed under high humidity conditions. In this study, a smart sweat-responsive antibacterial fabric has been designed by grafting zwitterionic PTMSPMA-co-PTMAO copolymer on cotton fabric (CF) to achieve "active attack" and "passive defense" against bacteria. It exhibits desirable antibacterial properties in both H2O and dry environments with the killing rates against Escherichia coli and Staphylococcus aureus reaching over 99.97%. Additionally, the fabric exhibits significant antiadhesion effects in sweat environments, with an antiadhesion rate above 99.95%. Various characterizations of PTMSPMA-co-PTMAO-CF reveal its smart responses in killing and antiadhesion of bacteria in high-humidity environments. In H2O, the oxygen-containing anions in PTMSPMA-co-PTMAO-CF interact with H2O via the hydrogen bond, exposing more -(CH3)2-N+ to kill the bacteria and enhance the "active attack." In sweat, ions (such as Na+ and Cl-) will be electrically neutralized with the quaternary ammonium cations (-(CH3)2-N+) and oxygen-containing anions in PTMSPMA-co-PTMAO-CF, thereby significantly enhancing the antiadhesion and exhibiting "passive defense" in high-humidity environments. PTMSPMA-co-PTMAO-CF can also achieve reversible conversion of killing and antiadhesion, according to variations in the external environments. This study provides new insight on smart antibacterial fabrics in the fields of health monitoring, sports equipment, and medical protection.
Collapse
Affiliation(s)
- Chun-Yan Li
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Qing He
- Instrument Analysis and Testing Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chen-Zheng Yan
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
2
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
3
|
Li W, Li Y, Shan M, Lan L, Hu M, Li J, Xuan W, Wang F, Wang L, Mao J. Durable Flexible Conductive Fiber Based on Cross-Linking Network Tannic Acid/Polypyrrole for Wearable Thermotherapy Monitoring System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48329-48341. [PMID: 39189954 DOI: 10.1021/acsami.4c10302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Intelligent wearable textiles have garnered attention and advancement, particularly in the realms of thermotherapy and health monitoring. As a critical component of intelligent wearable textiles, conductive fibers are expected to have long-term stable and durable conductivity. In this work, a highly stretchable and conductive fiber based on tannic acid/polypyrrole was developed. The conductive network was formed by doping TA into PPy, resulting in enhanced stretchability of PPy on the surface of PU. TA also improves the interface interaction between PPy and PU to gain more firm attachment of PPy, which achieves high conductivity (0.89 ± 0.23 S/cm) and durability. Furthermore, the stretchable conductive fiber also exhibited intelligent responses to electricity, light, and deformation. They can serve as heat sources under the action of electricity and light (temperature was raised to 42 °C under 4 V and 54 °C under solar radiation stimuli) and can also monitor the movements of humans, making them potential applications in thermotherapy textiles and intelligent sensing equipment. A PU/TA/PPy-based all-in-one smart wearable system was fabricated using textile molding technology capable of all-weather thermal therapy and motion detection. This fiber fabrication technology and integrated system offer insights for the future development of smart wearable devices.
Collapse
Affiliation(s)
- Wenxin Li
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yimeng Li
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - Mengqi Shan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lizhen Lan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Meiqi Hu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jifu Mao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Chen H, Wang Y, Chen X, Wang Z, Wu Y, Dai Q, Zhao W, Wei T, Yang Q, Huang B, Li Y. Research Progress on Ti 3C 2T x-Based Composite Materials in Antibacterial Field. Molecules 2024; 29:2902. [PMID: 38930967 PMCID: PMC11206357 DOI: 10.3390/molecules29122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The integration of two-dimensional Ti3C2Tx nanosheets and other materials offers broader application options in the antibacterial field. Ti3C2Tx-based composites demonstrate synergistic physical, chemical, and photodynamic antibacterial activity. In this review, we aim to explore the potential of Ti3C2Tx-based composites in the fabrication of an antibiotic-free antibacterial agent with a focus on their systematic classification, manufacturing technology, and application potential. We investigate various components of Ti3C2Tx-based composites, such as metals, metal oxides, metal sulfides, organic frameworks, photosensitizers, etc. We also summarize the fabrication techniques used for preparing Ti3C2Tx-based composites, including solution mixing, chemical synthesis, layer-by-layer self-assembly, electrostatic assembly, and three-dimensional (3D) printing. The most recent developments in antibacterial application are also thoroughly discussed, with special attention to the medical, water treatment, food preservation, flexible textile, and industrial sectors. Ultimately, the future directions and opportunities are delineated, underscoring the focus of further research, such as elucidating microscopic mechanisms, achieving a balance between biocompatibility and antibacterial efficiency, and investigating effective, eco-friendly synthesis techniques combined with intelligent technology. A survey of the literature provides a comprehensive overview of the state-of-the-art developments in Ti3C2Tx-based composites and their potential applications in various fields. This comprehensive review covers the variety, preparation methods, and applications of Ti3C2Tx-based composites, drawing upon a total of 171 English-language references. Notably, 155 of these references are from the past five years, indicating significant recent progress and interest in this research area.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yilun Wang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Xuguang Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Zihan Wang
- Department of Computer Science and Technology, China Three Gorges University, Yichang 443002, China
| | - Yue Wu
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qiongqiao Dai
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Wenjing Zhao
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Tian Wei
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qingyuan Yang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
5
|
Repon MR, Mikučionienė D, Paul TK, Al-Humaidi JY, Rahman MM, Islam T, Shukhratov S. Architectural design and affecting factors of MXene-based textronics for real-world application. RSC Adv 2024; 14:16093-16116. [PMID: 38769956 PMCID: PMC11103351 DOI: 10.1039/d4ra01820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Today, textile-based wearable electronic devices (textronics) have been developed by taking advantage of nanotechnology and textile substrates. Textile substrates offer flexibility, air permeability, breathability, and wearability, whereas, using nanomaterials offers numerous functional properties, like electrical conductivity, hydrophobicity, touch sensitivity, self-healing properties, joule heating properties, and many more. For these reasons, textronics have been extensively used in many applications. Recently, new emerging two-dimensional (2D) transition metal carbide and nitride, known as MXene, nanomaterials have been highly considered for developing textronics because the surface functional groups and hydrophilicity of MXene nanoflakes allow the facile fabrication of MXene-based textronics. In addition, MXene nanosheets possess excellent electroconductivity and mechanical properties as well as large surface area, which also give numerous opportunities to develop novel functional MXene/textile-based wearable electronic devices. Therefore, this review summarizes the recent advancements in the architectural design of MXene-based textronics, like fiber, yarn, and fabric. Regarding the fabrication of MXene/textile composites, numerous factors affect the functional properties (e.g. fabric structure, MXene size, etc.). All the crucial affecting parameters, which should be chosen carefully during the fabrication process, are critically discussed here. Next, the recent applications of MXene-based textronics in supercapacitors, thermotherapy, and sensors are elaborately delineated. Finally, the existing challenges and future scopes associated with the development of MXene-based textronics are presented.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- Department of Textile Engineering, Daffodil International University Dhaka-1216 Bangladesh +88-37066227098
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | - Daiva Mikučionienė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | | | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials Sherpur-2100 Bangladesh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Sharof Shukhratov
- Department of Technological Education, Fergana State University Fergana 150100 Uzbekistan
| |
Collapse
|
6
|
Ye S, Zhang H, Lai H, Xu J, Yu L, Ye Z, Yang L. MXene: A wonderful nanomaterial in antibacterial. Front Bioeng Biotechnol 2024; 12:1338539. [PMID: 38361792 PMCID: PMC10867285 DOI: 10.3389/fbioe.2024.1338539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.
Collapse
Affiliation(s)
- Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Stomatology College of Chifeng University, Chifeng, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, and Discipline of Intelligent Instrument and Equipment, Xiamen, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
7
|
Lee GS, Kim JG, Kim JT, Lee CW, Cha S, Choi GB, Lim J, Padmajan Sasikala S, Kim SO. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307689. [PMID: 37777874 DOI: 10.1002/adma.202307689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Recent consecutive discoveries of various 2D materials have triggered significant scientific and technological interests owing to their exceptional material properties, originally stemming from 2D confined geometry. Ever-expanding library of 2D materials can provide ideal solutions to critical challenges facing in current technological trend of the fourth industrial revolution. Moreover, chemical modification of 2D materials to customize their physical/chemical properties can satisfy the broad spectrum of different specific requirements across diverse application areas. This review focuses on three particular emerging application areas of 2D materials: smart fibers, soft robotics, and single atom catalysts (SACs), which hold immense potentials for academic and technological advancements in the post-artificial intelligence (AI) era. Smart fibers showcase unconventional functionalities including healthcare/environmental monitoring, energy storage/harvesting, and antipathogenic protection in the forms of wearable fibers and textiles. Soft robotics aligns with future trend to overcome longstanding limitations of hard-material based mechanics by introducing soft actuators and sensors. SACs are widely useful in energy storage/conversion and environmental management, principally contributing to low carbon footprint for sustainable post-AI era. Significance and unique values of 2D materials in these emerging applications are highlighted, where the research group has devoted research efforts for more than a decade.
Collapse
Affiliation(s)
- Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sujin Cha
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Go Bong Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonwon Lim
- Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
- Materials Creation, Seoul, 06179, Republic of Korea
| |
Collapse
|
8
|
Xing L, Wang Y, Cheng J, Chen G, Xing T. Robust and flexible smart silk/PEDOT conductive fibers as wearable sensor for personal health management and information transmission. Int J Biol Macromol 2023; 248:125870. [PMID: 37473889 DOI: 10.1016/j.ijbiomac.2023.125870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/01/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Flexible highly conductive fibers have attracted much attention due to their great potential in the field of wearable electronic devices. In this work, silk/PEDOT conductive fibers with a resistivity of 1.73 Ω·cm were obtained by oxidizing Ce3+ with H2O2 under alkaline conditions to produce CeO2 and further promote the in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) on the surface of silk fibers. The morphology and chemical composition of the silk/PEDOT conductive fibers were characterized and the results confirmed that a large amount of polythiophene was synthesized and deposited on the surface of silk fibers. The conductivity and electrochemical property stability of the silk/PEDOT conductive fibers were evaluated by soaping and organic solvent immersion, and the conductive silk fibers exhibited excellent environmental stability and durability. The silk/PEDOT conductive fibers show good pressure sensing and strain sensing performance, which exhibits high sensitivity, fast response and cyclability, and have excellent applications in personal health monitoring, human-machine information transmission, etc.
Collapse
Affiliation(s)
- Lili Xing
- National Engineering Laboratory of Modern Silk, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Yirong Wang
- National Engineering Laboratory of Modern Silk, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Jin Cheng
- National Engineering Laboratory of Modern Silk, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- National Engineering Laboratory of Modern Silk, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Tieling Xing
- National Engineering Laboratory of Modern Silk, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Seidi F, Arabi Shamsabadi A, Dadashi Firouzjaei M, Elliott M, Saeb MR, Huang Y, Li C, Xiao H, Anasori B. MXenes Antibacterial Properties and Applications: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206716. [PMID: 36604987 DOI: 10.1002/smll.202206716] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes' unique combination of properties, including multifarious elemental compositions, 2D-layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | | | - Mostafa Dadashi Firouzjaei
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mark Elliott
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, Gdańsk, 11/12 80-233, Poland
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Lai QT, Zhao XH, Sun QJ, Tang Z, Tang XG, Roy VAL. Emerging MXene-Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300283. [PMID: 36965088 DOI: 10.1002/smll.202300283] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human-machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.
Collapse
Affiliation(s)
- Qin-Teng Lai
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Xin-Hua Zhao
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. China
| | - Qi-Jun Sun
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Zhenhua Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Vellaisamy A L Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, 999077, P. R. China
| |
Collapse
|
13
|
Zou S, Li D, He C, Wang X, Cheng D, Cai G. Scalable Fabrication of an MXene/Cotton/Spandex Yarn for Intelligent Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10994-11003. [PMID: 36789744 DOI: 10.1021/acsami.2c18425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable sensors based on MXene have attracted attention, but the large-scale production of MXene-based textile materials is still a huge challenge. Hereby, we report a facile way of incorporating MXene into the traditional yarn manufacturing process by dipping and drying MXene into cotton rovings followed by fabricating an MXene/cotton/spandex yarn (MCSY) using friction spinning. The MXene in the MCSY brings electrical conductivity to the MCSY with well-preserved mechanical properties. Due to its wide sensing range from 408 Pa to 10.2 kPa, the MCSY can be used to monitor human motions in real time, such as writing, walking, and wrist bending. In addition, the MCSY exhibits a stable compression sensing performance even under different strains. Furthermore, the MCSY can be sewn into clothing or onto a mask as an embroidery pattern to develop sensing device prototypes capable of detecting touching or breathing. The reported manufacturing technology of the MCSY will lead to an industrial-scale development of MXene-based e-textiles for wearable applications.
Collapse
Affiliation(s)
- Sizhuo Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Daiqi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Chengen He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Xin Wang
- Centre for Materials Innovation and Future Fashion, School of Fashion and Textiles, RMIT University, Brunswick 3056, Australia
| | - Deshan Cheng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Guangming Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| |
Collapse
|
14
|
Dai Y, Qi K, Ou K, Song Y, Zhou Y, Zhou M, Song H, He J, Wang H, Wang R. Ag NW-Embedded Coaxial Nanofiber-Coated Yarns with High Stretchability and Sensitivity for Wearable Multi-Sensing Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11244-11258. [PMID: 36791272 DOI: 10.1021/acsami.2c20322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emerging intelligent piezoresistive yarn/textile-based sensors are of paramount importance for skin-interface electronics, owing to their unparalleled features including softness, breathability, and easy integration with functional devices. However, employing a facile way to fabricate 1D sensing yarns with mechanical robustness, multi-functional integration, and comfortability is still demanded for satisfying the practical applications. Herein, a facile one-step synchronous conjugated electrospinning and electrospraying technique is innovatively employed to continuously construct an Ag NW-embedded polyurethane (PU) nanofiber sensing yarn (AENSY) with hierarchical architecture. This 1D AENSY with weavability and stretchability can be woven into AENSY textile-based sensors integrated with functions of strain and pressure sensing. In this embedded multi-scale architecture, Ag NWs are evenly embedded and locked in the oriented and twisted PU nanofiber (PUNF) scaffold, forming the hierarchical mechanical sensing layer on the surface of the AENSY with favorable stability. Meanwhile, the presence of the elastic PUNFs enhances porosity, elasticity, and considerable deformation space, which in turn endow the AENSY textile-based sensor with a gauge factor (GF) up to 1010, a pressure sensitivity up to 16.7 N-1, high stretchability up to 160%, and high stability under long-term cycles. In addition, the AENSY textile-based sensor exhibits light weight and the unique advantage of skin-friendliness with the human body, which can be directly and conformally attached to the curved human skin to monitor the various human movements. Furthermore, the weavable AENSYs can be integrated into smart textiles with sensing arrays, which are capable for spatial pressure and strain mapping. Thus, the continuous one-step developing process and the stable embedded-twisted fiber structure provide a promising strategy to develop innovative smart yarns and textiles for personalized healthcare and human-machine interfaces.
Collapse
Affiliation(s)
- Yunling Dai
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Kun Qi
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Kangkang Ou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, P.R. China
| | - Yutang Song
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Yuman Zhou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Meiling Zhou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Hongjing Song
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Jianxin He
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Hongbo Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Rongwu Wang
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| |
Collapse
|
15
|
Innocent MT, Zhang Z, Cao R, Dai H, Zhang Y, Geng Y, Zhang Z, Jia G, Zhai M, Hu Z, Boland CS, Xiang H, Zhu M. Piezoresistive Fibers with Large Working Factors for Strain Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2277-2288. [PMID: 36576915 DOI: 10.1021/acsami.2c19830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Piezoresistive fibers with large working factors remain of great interest for strain sensing applications involving large strains, yet difficult to achieve. Here, we produced strain-sensitive fibers with large working factors by dip-coating nanocomposite piezoresistive inks on surface-modified polyether block amide (PEBA) fibers. Surface modification of neat PEBA fibers was carried out with polydopamine (PDA) while nanocomposite conductive inks consisted of styrene-ethylene-butylene-styrene (SEBS) elastomer and carbon black (CB). As such, the deposition of piezoresistive coatings was enabled through nonconventional hydrogen-bonding interactions. The resultant fibers demonstrated well-defined piezoresistive linear relationships, which increased with CB filler loading in SEBS. In addition, gauge factors decreased with increasing CB mass fractions from ∼15 to ∼7. Furthermore, we used the fatigue theory to predict the endurance limit (Ce) of our fibers toward resistance signal stability. Such a piezoresistive performance allowed us to explore the application of our fibers as strain sensors for monitoring the movement of finger joints.
Collapse
Affiliation(s)
- Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Ziling Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Hongmei Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Yuxuan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Yaqi Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Zhihao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Mian Zhai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Conor S Boland
- School of Mathematical and Physical Sciences, University of Sussex, BrightonBN19QH, U.K
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| |
Collapse
|
16
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
17
|
Hao S, Han H, Yang Z, Chen M, Jiang Y, Lu G, Dong L, Wen H, Li H, Liu J, Wu L, Wang Z, Wang F. Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. NANO-MICRO LETTERS 2022; 14:178. [PMID: 36001173 PMCID: PMC9402885 DOI: 10.1007/s40820-022-00901-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/26/2022] [Indexed: 05/04/2023]
Abstract
HIGHLIGHTS Fabrication, characterizations and photothermal properties of MXenes are systematically described. Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed. Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated. ABSTRACT The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes. [Image: see text]
Collapse
Affiliation(s)
- Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Mengting Chen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| | - Guixia Lu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
18
|
Shen X, Gao P, Jin T, Ding Y, Bao C. An Investigation into the Adsorption Mechanism of Organic Anions on a New Spandex. Polymers (Basel) 2022; 14:polym14153108. [PMID: 35956622 PMCID: PMC9371182 DOI: 10.3390/polym14153108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, there has been significant interest in the study of spandex in high-elasticity sensors. As a new kind of special spandex, dyeable spandex shows strong adsorption capacity for anions. In this study, neutral red G was used as an anion adsorption simulator to study the adsorption mechanism of dyeable spandex on anionic materials. The structure of dyeable spandex was characterized by the modern instrumental analysis method, and the adsorption kinetics and thermodynamics of neutral red G on dyeable spandex were discussed. The results show that the use of mixed amines as chain extenders for dyeable spandex reduced the regularity of molecules and the crystallinity of spandex, which was beneficial to the diffusion adsorption of anions. On the other hand, the number of secondary amino groups increased, providing more adsorption sites under acidic conditions. The adsorption of neutral red G on dyeable spandex satisfied the quasi-second-order kinetics and the Langmuir adsorption model, indicating that dye adsorption on spandex was mainly electrostatic. The diffusion coefficient and equilibrium adsorption capacity of neutral red G on dyeable spandex increased significantly, whereas enthalpy and entropy decreased.
Collapse
|
19
|
Wang H, Zhou L, Qin J, Chen J, Stewart C, Sun Y, Huang H, Xu L, Li L, Han J, Li F. One-Component Multichannel Sensor Array for Rapid Identification of Bacteria. Anal Chem 2022; 94:10291-10298. [PMID: 35802909 DOI: 10.1021/acs.analchem.2c02236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial infections routinely cause serious problems to public health. To mitigate the impact of bacterial infections, sensing systems are urgently required for the detection and subsequent epidemiological control of pathogenic organisms. Most conventional approaches are time-consuming and highly instrument- and professional operator-dependent. Here, we developed a novel one-component multichannel array constructed with complex systems made from three modified polyethyleneimine as well as negatively charged graphene oxide, which provided an information-rich multimode response to successfully identify 10 bacteria within minutes via electrostatic interactions and hydrophobic interactions. Furthermore, the concentration of bacteria (from OD600 = 0.025 to 1) and the ratio of mixed bacteria were successfully achieved with our smart sensing system. Our designed sensor array also exhibited huge potential in biological samples, such as in urine (OD600 = 0.125, 94% accuracy). The way to construct a sensor array with minimal sensor element with abundant signal outputs tremendously saves cost and time, providing a powerful tool for the diagnosis and assessment of bacterial infections in the clinic.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Lingjia Zhou
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jiaojiao Qin
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jiahao Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Callum Stewart
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Yimin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211109, China
| | - Hui Huang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
20
|
Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022; 283:121435. [DOI: 10.1016/j.biomaterials.2022.121435] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
|
21
|
Li S, Gu B, Li X, Tang S, Zheng L, Ruiz‐Hitzky E, Sun Z, Xu C, Wang X. MXene-Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Adv Healthc Mater 2022; 11:e2102367. [PMID: 35285165 DOI: 10.1002/adhm.202102367] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/02/2022] [Indexed: 12/13/2022]
Abstract
This study shows the effective use of MXene-based nanomaterials to improve the performance of biocomposite sponges in wound healing. In this way, diverse chitin/MXene composite sponges are fabricated by incorporating MXene-based nanomaterials with various morphology (accordion-shaped, intercalated, single-layer, gold nanoparticles (AuNPs)-loaded single-layer) into the network of chitin sponge (CH), which can prevent massive blood losses and promote the healing process of bacterial-infected wounds. With the addition of MXene-based nanomaterials, the hemostatic efficacy of CH is enhanced due to the improved hemophilicity and accelerated blood coagulation kinetics. Furthermore, the composite sponges show a predominant antibacterial activity through the synergy between the capture and the photothermal effects. Importantly, the addition of AuNPs to composite sponges further improves hemostatic performance and promotes normal skin cell migration to heal the infected wound, achieving wound closure rates of 84% on day 9. These initial studies expand the applications of MXene-based nanomaterials in biomedical fields.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Bin Gu
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Shuwei Tang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Lu Zheng
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Eduardo Ruiz‐Hitzky
- Materials Science Institute of Madrid CSIC Calle Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Zeyu Sun
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor Nanjing University of Chinese Medicine Jiangsu 210023 China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
22
|
Zong Y, Tan S, Ma J. Flame-Retardant PEDOT:PSS/LDHs/Leather Flexible Strain Sensor for Human Motion Detection. Macromol Rapid Commun 2022; 43:e2100873. [PMID: 35247275 DOI: 10.1002/marc.202100873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/30/2022] [Indexed: 11/09/2022]
Abstract
Flexible piezoresistive sensors have demonstrated great potential in human-motion-detection applications. However, it still remains a challenge to fabricate strain sensors with high sensitivity, broad sensing range and good linear response to strain. In this report, a simple and scalable fabrication strategy is developed to construct high performance strain sensors by using leather as the substrates to filtrate poly(3,4-ethylenedioxythiophene ): : poly(styrenesulfonate) (PEDOT:PSS) modified layered double hydroxides (LDHs) suspensions. The naturally aligned collagen fibers in leather enable size selection for the 2-D conductive materials and as such dual-conductive pathways are effectively formed on the surface and in the matrix of leather. Due to the unique design of conductive networks, the prepared sensor possesses high gauge factor (maximum value of 2326.84), tunable strain range (0∼70%), fast tensile response time (160 ms), and good stability in 1000 stretching-relaxing/compression-relaxing cycles, making it suitable for various human motion detections including coughing and large-scale motions of joint bending. In addition, the incorporated LDHs is a non-toxic flame retardant, which is helpful to reduce electronic fire risk and can bring added value to the sensor. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Zong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.,Xi'an key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
| | - Sha Tan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.,Xi'an key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.,Xi'an key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
| |
Collapse
|
23
|
Medinger J, Nedyalkova M, Furlan M, Lüthi T, Hofmann J, Neels A, Lattuada M. Preparation and Machine-Learning Methods of Nacre-like Composites from the Self-Assembly of Magnetic Colloids Exposed to Rotating Magnetic Fields. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48040-48052. [PMID: 34597504 DOI: 10.1021/acsami.1c13324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Composite materials designed by nature, such as nacre, can display unique mechanical properties and have therefore been often mimicked by scientists. In this work, we prepared composite materials mimicking the nacre structure in two steps. First, we synthesized a silica gel skeleton with a layered structure using a bottom-up approach by modifying a sol-gel synthesis. Magnetic colloids were added to the sol solution, and a rotating magnetic field was applied during the sol-gel transition. When exposed to a rotating magnetic field, magnetic colloids organize in layers parallel to the plane of rotation of the field and template the growing silica phase, resulting in a layered anisotropic silica network mimicking the nacre's inorganic phase. Heat treatment has been applied to further harden the silica monoliths. The final nacre-inspired composite is created by filling the porous structure with a monomer, leading to a soft elastomer upon polymerization. Compression tests of the platelet-structured composite show that the mechanical properties of the nacre-like composite material far exceed those of nonstructured composite materials with an identical chemical composition. Increased toughness and a nearly 10-fold increase in Young's modulus were achieved. The natural brittleness and low elastic deformation of silica monoliths could be overcome by mimicking the natural architecture of nacre. Pattern recognition obtained with a classification of machine learning algorithms was applied to achieve a better understanding of the physical and chemical parameters that have the highest impact on the mechanical properties of the monoliths. Multivariate statistical analysis was performed to show that the structural control and the heat treatment have a very strong influence on the mechanical properties of the monoliths.
Collapse
Affiliation(s)
- Joelle Medinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Miroslava Nedyalkova
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Marco Furlan
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
- eCO2 SA, Via Brüsighell 6, 6807 Taverne, Switzerland
| | - Thomas Lüthi
- Center for X-ray Analytics, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Jürgen Hofmann
- Center for X-ray Analytics, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Antonia Neels
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
- Center for X-ray Analytics, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
24
|
Wang J, Qiu M, Liu Z, He C. Fabrication of a Dual-Action Membrane with Both Antibacterial and Anticoagulant Properties via Cationic Polyelectrolyte-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14938-14950. [PMID: 33775092 DOI: 10.1021/acsami.1c00256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of microorganisms and formation of thrombus on a biomaterial surface can seriously lead to device failure and threaten human health. Nonetheless, a surface that has both antibacterial and anticoagulant properties has scarcely been developed. Herein, a novel dual-action membrane composed of polyethersulfone (PES) bulk material and a hydrophilic anionic poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS) polymer has been prepared via the cationic antibacterial agent poly(hexamethylene biguanide) (PHMB)-induced phase separation technique. Interestingly, the resultant membrane can offer tunable antibacterial and anticoagulant properties, while maintaining satisfactory permeability and greatly increasing selectivity. The membrane also shows excellent hydrophilicity, a well-defined porous surface, and cross section with a sponge gradient structure. Furthermore, the PHMB-PAMPS complex formed on the membrane surface displays outstanding long-term stability, which is crucial for further practical applications. More importantly, the hollow fiber membrane fabricated by the cationic polyelectrolyte-induced phase separation technique confirms its capability to control the membrane permeability (257.4 L·m-2·h-1·bar-1) and selectivity (95.9%) without destroying the membrane structure. The present work opens a straightforward and efficient avenue for the rational design of a functional surface to fight biomedical material-associated infections.
Collapse
Affiliation(s)
- Jianxiu Wang
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ming Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Ziyuan Liu
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chunju He
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|