1
|
Mohseni Taromsari S, Salari M, Shi HH, Habibpour S, Saadatnia Z, Tafreshi OA, Yu A, Park CB, Naguib HE. PEDOT:PSS-Facilitated Directionally 3-D Assembled MXene-Based Aerogel for High-Performance Chemoresistive Sensing & Breath Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406349. [PMID: 39707652 DOI: 10.1002/adma.202406349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/13/2024] [Indexed: 12/23/2024]
Abstract
MXene has garnered growing interest in the field of electrochemistry, thanks to its unique electrical and surface characteristics. Nonetheless, significant challenges persist in realizing its full potential in chemoresistive sensing applications. In this study, a novel unidirectional freeze-casting approach for fabricating a Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-facilitated vertically aligned MXene-based aerogel with enhanced chemoresistive sensing properties was introduced. Firstly, the persistent challenge of poor gelation in MXene was addressed by formulating a nanohybrid of MXene and PEDOT:PSS, which acted as flexible conductive nanobinder. Employing a unique freeze-casting method, MXene flakes interconnected by PEDOT:PSS, were stabilized into a flexible, vertically aligned structure, leading to maximum surface exposure and enhanced robustness. The resulting 3-dimentional (3-D) aerogel exhibited a fast, heightened chemoresistive response of 7 to 50 parts per million (ppm) acetone and expanded the working range to between 10 parts per billion (ppb)-8000 ppm. Interfacial heterostructures formed between MXene and PEDOT:PSS, provided active sites, reduced activation energy, and enhanced selectivity. Modulated MXene bandgap, and its electron mobility further facilitated electron transfer, and enhanced signal strength. The sensor showed excellent biocompatibility and was also successfully employed as a breathalyzing tool, for on-demand alcohol consumption monitoring.
Collapse
Affiliation(s)
- Sara Mohseni Taromsari
- Department of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Meysam Salari
- Department of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Saeed Habibpour
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zia Saadatnia
- Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
| | - Omid Aghababaei Tafreshi
- Department of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Chul B Park
- Department of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Hani E Naguib
- Department of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario, M5S 3G8, Canada
- Department of Materials Science & Engineering (MSE), University of Toronto, Toronto, Ontario, M5S 3E4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E3, Canada
| |
Collapse
|
2
|
Liu YL, Zhu TY, Wang Q, Huang ZJ, Sun DX, Yang JH, Qi XD, Wang Y. Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth. NANO-MICRO LETTERS 2024; 17:97. [PMID: 39724460 DOI: 10.1007/s40820-024-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization. The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays. Due to the upwardly grown PPy nanowire arrays, the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00° and outstanding stability under various harsh environments. Meanwhile, the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays. Furthermore, taking advantage of the high conductivity (128.2 S m-1), the MF@PPy foam exhibited rapid Joule heating under 3 V, resulting in dynamic infrared stealth and thermal camouflage effects. More importantly, the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm2 g-1. Strong EMI shielding was put down to the hierarchically porous PPy structure, which offered outstanding impedance matching, conduction loss, and multiple attenuations. This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays, showing great applications in both military and civilian fields.
Collapse
Affiliation(s)
- Yu-Long Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ting-Yu Zhu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Qin Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Zi-Jie Huang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - De-Xiang Sun
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jing-Hui Yang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Xiao-Dong Qi
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Yong Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| |
Collapse
|
3
|
Tang X, Lu Y, Li S, Zhu M, Wang Z, Li Y, Hu Z, Zheng P, Wang Z, Liu T. Hierarchical Polyimide Nonwoven Fabric with Ultralow-Reflectivity Electromagnetic Interference Shielding and High-Temperature Resistant Infrared Stealth Performance. NANO-MICRO LETTERS 2024; 17:82. [PMID: 39625547 PMCID: PMC11615167 DOI: 10.1007/s40820-024-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024]
Abstract
Designing and fabricating a compatible low-reflectivity electromagnetic interference (EMI) shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military. Hence, a hierarchical polyimide (PI) nonwoven fabric is fabricated by alkali treatment, in-situ growth of magnetic particles and "self-activated" electroless Ag plating process. Especially, the hierarchical impedance matching can be constructed by systematically assembling Fe3O4/Ag-loaded PI nonwoven fabric (PFA) and pure Ag-coated PI nonwoven fabric (PA), endowing it with an ultralow-reflectivity EMI shielding performance. In addition, thermal insulation of fluffy three-dimensional (3D) space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance. More importantly, the strong bonding interaction between Fe3O4, Ag, and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance. Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy, and inhibit external infrared detection.
Collapse
Affiliation(s)
- Xinwei Tang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yezi Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Shuangshuang Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Mingyang Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zixuan Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan Li
- Jiangsu Ferrotec Semiconductor Technology Co., Ltd., Yancheng, 214000, Jiangsu, People's Republic of China
| | - Zaiyin Hu
- Guizhou Aerospace Wujiang Electro-Mechanical Equipment Co., Ltd., No. 20-5, Dalian Road Aerospace Industrial Park, Huichuan District, Zunyi City, 563000, Guizhou, People's Republic of China
| | - Penglun Zheng
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, 618307, Sichuan, People's Republic of China
| | - Zicheng Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Quan W, Shi J, Zeng M, Li B, Liu Z, Lv W, Fan C, Wu J, Liu X, Yang J, Hu N, Yang Z. Quantum Confinement and End-Sealing Effects for Highly Sensitive and Stable Nitrogen Dioxide Detection: Homogeneous Integration of Ti 3C 2T x-Based Flexible Gas Sensors. ACS Sens 2024; 9:4578-4590. [PMID: 39223701 DOI: 10.1021/acssensors.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The real-time and room-temperature detection of nitrogen dioxide (NO2) holds significant importance for environmental monitoring. However, the performance of NO2 sensors has been hampered by the trade-off between the high sensitivity and stability of conventional sensitive materials. Here, we present a novel fully flexible paper-based gas sensing structure by combining a homogeneous screen-printed titanium carbide (Ti3C2Tx) MXene-based nonmetallic electrode with a MoS2 quantum dots/Ti3C2Tx (MoS2 QDs/Ti3C2Tx) gas-sensing film. These precisely designed gas sensors demonstrate an improved response value (16.3% at 5 ppm) and a low theoretical detection limit of 12.1 ppb toward NO2, which exhibit a remarkable 3.5-fold increase in sensitivity compared to conventional Au interdigital electrodes. The outstanding performance can be attributed to the integration of the quantum confinement effect of MoS2 QDs and the conductivity of Ti3C2Tx, establishing the main active adsorption sites and enhanced charge transport pathways. Furthermore, an end-sealing effect strategy was applied to decorate the defect sites with naturally oxygen-rich tannic acid and conductive polymer, and the formed hydrogen bonding network at the interface effectively mitigated the oxidative degradation of the Ti3C2Tx-based gas sensors. The exceptional stability has been achieved with only a 1.8% decrease in response over 4 weeks. This work highlights the innovative design of high-performance gas sensing materials and homogeneous gas sensor techniques.
Collapse
Affiliation(s)
- Wenjing Quan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shi
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Li
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhou Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Lv
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Fan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianhua Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nantao Hu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Isari AA, Ghaffarkhah A, Hashemi SA, Wuttke S, Arjmand M. Structural Design for EMI Shielding: From Underlying Mechanisms to Common Pitfalls. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310683. [PMID: 38467559 DOI: 10.1002/adma.202310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/11/2024] [Indexed: 03/13/2024]
Abstract
Modern human civilization deeply relies on the rapid advancement of cutting-edge electronic systems that have revolutionized communication, education, aviation, and entertainment. However, the electromagnetic interference (EMI) generated by digital systems poses a significant threat to the society, potentially leading to a future crisis. While numerous efforts are made to develop nanotechnological shielding systems to mitigate the detrimental effects of EMI, there is limited focus on creating absorption-dominant shielding solutions. Achieving absorption-dominant EMI shields requires careful structural design engineering, starting from the smallest components and considering the most effective electromagnetic wave attenuating factors. This review offers a comprehensive overview of shielding structures, emphasizing the critical elements of absorption-dominant shielding design, shielding mechanisms, limitations of both traditional and nanotechnological EMI shields, and common misconceptions about the foundational principles of EMI shielding science. This systematic review serves as a scientific guide for designing shielding structures that prioritize absorption, highlighting an often-overlooked aspect of shielding science.
Collapse
Affiliation(s)
- Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Stefan Wuttke
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
6
|
Rahmati R, Salari M, Ashouri-Sanjani M, Salehi A, Hamidinejad M, Park CB. Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308320. [PMID: 38105422 DOI: 10.1002/smll.202308320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Indexed: 12/19/2023]
Abstract
The urgent need for the development of micro-thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm-thick MXene films, gaseous transformations of oxygen-containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat-treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high-performance, non-metallic EMI shielding materials.
Collapse
Affiliation(s)
- Reza Rahmati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Meysam Salari
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Mehran Ashouri-Sanjani
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Amirmehdi Salehi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Mahdi Hamidinejad
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G1H9, Canada
| | - Chul B Park
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| |
Collapse
|
7
|
Bi D, Qu N, Sheng W, Lin T, Huang S, Wang L, Li R. Tough and Strain-Sensitive Organohydrogels Based on MXene and PEDOT/PSS and Their Effects on Mechanical Properties and Strain-Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11914-11929. [PMID: 38383343 DOI: 10.1021/acsami.3c18631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Conductive hydrogels have shown promising application prospects in the field of flexible sensors, but they often suffer from poor mechanical properties, low sensitivity, and lack of frost resistance. Herein, we report a tough, highly sensitive, and antifreeze strain sensor assembled from a conductive organohydrogel composed of a dual-cross-linked polyacrylamide and poly(vinyl alcohol) (PVA) network, as well as MXene nanosheets as nanofillers and poly(3,4-ethylenedioxythiophene)-doped poly(styrenesulfonate) (PEDOT/PSS) as the main conducting component (PPMP-OH organohydrogel). The tensile strength and toughness of PPMP-OH had been greatly enhanced by MXene nanosheets due to the mechanical reinforcement of MXene nanosheets, as well as various strong noncovalent interactions formed in the organohydrogels. The PPM1P-OH organohydrogels showed a tensile strength of 1.48 MPa at 772% and a toughness of 5.59 MJ/m3. Moreover, the conductivity and strain-sensing performance of PPMP-OH were significantly improved by PEDOT/PSS, which can form hydrogen bonds with PVA and electrostatic interactions with MXene. This was greatly beneficial for constructing a uniformly distributed and stable 3D conductive network and helped to obtain strain-dependent resistance of PPMP-OH. The strain sensors assembled from PPMP1-OH exhibited a high sensitivity of 5.16, a wide range of detectable strains up to 500%, and a short response time of 122 ms, which can effectively detect various physiological activities of the human body with high stability. In addition, the corresponding pressure sensor array also showed high sensitivity in identifying pressure magnitude and position.
Collapse
Affiliation(s)
- Dejin Bi
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Na Qu
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Weiqin Sheng
- School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Tenghao Lin
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Sanqing Huang
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lie Wang
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Renhong Li
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
8
|
Li P, Wang H, Ju Z, Jin Z, Ma J, Yang L, Zhao X, Xu H, Liu Y. Ti 3C 2T x MXene- and Sulfuric Acid-Treated Double-Network Hydrogel with Ultralow Conductive Filler Content for Stretchable Electromagnetic Interference Shielding. ACS NANO 2024; 18:2906-2916. [PMID: 38252027 DOI: 10.1021/acsnano.3c07233] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Hydrogels are emerging as stretchable electromagnetic interference (EMI) shielding materials because of their tissue-like mechanical properties and water-rich porous cellular structures. However, achieving high-performance hydrogel shields remains a challenge because enhancing conductivity often results in a compromise in deformation adoptability. This work proposes a treatment strategy involving sulfuric acid/titanium carbide MXene, which can simultaneously enhance the conductivity and stretchability of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(vinyl alcohol) (PVA) double-network hydrogels. Multiple spectroscopic characterizations reveal that sulfuric acid promotes the linear conformation transition of the PEDOT molecular chain, while MXene increases charge delocalization and hydrogen bond cross-linking sites. The hydrogels, synthesized with a combined content of 0.6 wt % of MXene and PEDOT:PSS, exhibit an average X-band EMI SE of 41 dB. This performance is sustained at 94.5%, even following stretching and release at a strain of 200%. Interestingly, the EMI SE is found to linearly increase, reaching a value of 99 dB as the frequency is increased to 26.5 GHz. This increase is attributed to the enhanced water molecular polarization process, as supported by theoretical calculations of the impedance and attenuation constant. This work introduces a post-treatment technique that optimizes double-network hydrogels, providing deep insights into their EMI shielding mechanism and enabling high-performance EMI shielding with an ultralow conductive filler content.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Henan Wang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongshi Ju
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongzheng Jin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jiangang Ma
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lin Yang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoning Zhao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
9
|
Kuang C, Chen S, Luo M, Zhang Q, Sun X, Han S, Wang Q, Stanishev V, Darakchieva V, Crispin R, Fahlman M, Zhao D, Wen Q, Jonsson MP. Switchable Broadband Terahertz Absorbers Based on Conducting Polymer-Cellulose Aerogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305898. [PMID: 37997181 PMCID: PMC10797431 DOI: 10.1002/advs.202305898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Terahertz (THz) technologies provide opportunities ranging from calibration targets for satellites and telescopes to communication devices and biomedical imaging systems. A main component will be broadband THz absorbers with switchability. However, optically switchable materials in THz are scarce and their modulation is mostly available at narrow bandwidths. Realizing materials with large and broadband modulation in absorption or transmission forms a critical challenge. This study demonstrates that conducting polymer-cellulose aerogels can provide modulation of broadband THz light with large modulation range from ≈ 13% to 91% absolute transmission, while maintaining specular reflection loss < -30 dB. The exceptional THz modulation is associated with the anomalous optical conductivity peak of conducting polymers, which enhances the absorption in its oxidized state. The study also demonstrates the possibility to reduce the surface hydrophilicity by simple chemical modifications, and shows that broadband absorption of the aerogels at optical frequencies enables de-frosting by solar-induced heating. These low-cost, aqueous solution-processable, sustainable, and bio-friendly aerogels may find use in next-generation intelligent THz devices.
Collapse
Affiliation(s)
- Chaoyang Kuang
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
| | - Shangzhi Chen
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
| | - Min Luo
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduSichuan610 054P. R. China
| | - Qilun Zhang
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
- Wallenberg Wood Science CenterLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Xiao Sun
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduSichuan610 054P. R. China
| | - Shaobo Han
- School of Textile Material and EngineeringWuyi University22 DongchengcunJiangmenGuangdong529 020P. R. China
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
| | - Vallery Stanishev
- Terahertz Materials Analysis Center (THeMAC) and Center for III‐N Technology, C3NiT‐Janzèn, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSE‐581 83Sweden
- Solid State Physics and NanoLundLund UniversityLundSE‐221 00Sweden
| | - Vanya Darakchieva
- Terahertz Materials Analysis Center (THeMAC) and Center for III‐N Technology, C3NiT‐Janzèn, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSE‐581 83Sweden
- Solid State Physics and NanoLundLund UniversityLundSE‐221 00Sweden
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
- Wallenberg Wood Science CenterLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
- Wallenberg Wood Science CenterLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Dan Zhao
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
| | - Qiye Wen
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduSichuan610 054P. R. China
- Yangtze Delta Region Institute (Huzhou)University of Electronic Science and Technology of ChinaHuzhouZhejiang313 001P. R. China
| | - Magnus P. Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
- Wallenberg Wood Science CenterLinköping UniversityNorrköpingSE‐601 74Sweden
- Stellenbosch Institute for Advanced Study (STIAS)Wallenberg Research Center at Stellenbosch UniversityStellenbosch7600South Africa
| |
Collapse
|
10
|
Amini M, Hosseini H, Dutta S, Wuttke S, Kamkar M, Arjmand M. Surfactant-Mediated Highly Conductive Cellulosic Inks for High-Resolution 3D Printing of Robust and Structured Electromagnetic Interference Shielding Aerogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54753-54765. [PMID: 37787508 DOI: 10.1021/acsami.3c10596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Technological fusion of emerging three-dimensional (3D) printing of aerogels with gel processing enables the fabrication of lightweight and functional materials for diverse applications. However, 3D-printed constructs via direct ink writing for fabricating electrically conductive structured biobased aerogels suffer several limitations, including poor electrical conductivity, inferior mechanical strength, and low printing resolution. This work addresses these limitations via molecular engineering of conductive hydrogels. The hydrogel inks, namely, CNC/PEDOT-DBSA, featured a unique formulation containing well-dispersed cellulose nanocrystal decorated by a poly(3,4-ethylene dioxythiophene) (PEDOT) domain combined with dodecylbenzene sulfonic acid (DBSA). The rheological properties were precisely engineered by manipulating the solid content and the intermolecular interactions among the constituents, resulting in 3D-printed structures with excellent resolution. More importantly, the resultant aerogels following freeze-drying exhibited a high electrical conductivity (110 ± 12 S m-1), outstanding mechanical properties (Young's modulus of 6.98 MPa), and fire-resistance properties. These robust aerogels were employed to address pressing global concerns about electromagnetic pollution with a specific shielding effectiveness of 4983.4 dB cm2 g-1. Importantly, it was shown that the shielding mechanism of the 3D printed aerogels could be manipulated by their geometrical features, unraveling the undeniable role of additive manufacturing in materials design.
Collapse
Affiliation(s)
- Majed Amini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| | - Hadi Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| | - Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Milad Kamkar
- Multiscale Materials Design Center, Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Toronto, Ontario N2L 3G1. Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| |
Collapse
|
11
|
Xie S, Liu F, Abdiryim T, Liu X, Jamal R, Song Y, Niyaz M, Liu Y, Zhang H, Tang X. PEDOT-embellished Ti 3C 2Tx nanosheet supported Pt-Pd bimetallic nanoparticles as efficient and stable methanol oxidation electrocatalysts. Dalton Trans 2023; 52:16345-16355. [PMID: 37856218 DOI: 10.1039/d3dt02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Exploiting high-efficiency and durable electrocatalysts toward the methanol oxidation reaction (MOR) is crucial for the advancement of direct methanol fuel cells (DMFCs). Herein, we demonstrate the loading of platinum-palladium bimetallic nanoparticles (Pt-Pd NPs) onto poly(3,4-ethylenedioxythiophene) (PEDOT)-embellished titanium carbide (Ti3C2Tx) nanosheets as the electrocatalyst (Ti3C2Tx/PEDOT/Pt-Pd) via a facile and rapid chemical reduction-assisted one-pot hydrothermal process. The structural and morphological analyses of Ti3C2Tx/PEDOT/Pt-Pd indicate that the three-dimensional (3D) hybrid structure formed between PEDOT and Ti3C2Tx provides a sizable active surface and more active sites, which enhances the homogeneous dispersion of the Pt-Pd NPs and facilitates mass transfer. The Schottky junctions formed between PEDOT and Pt-Pd NPs contribute to charge transfer. The electronic effects and synergistic interactions between the support and catalyst favor the electrocatalytic activity of the catalyst. The electrochemical test results reveal that the Ti3C2Tx/PEDOT/Pt-Pd catalyst has prominent electrocatalytic capability for the MOR. Compared with Ti3C2Tx/Pt-Pd and commercial Pt/C catalysts, the Ti3C2Tx/PEDOT/Pt-Pd catalyst has a larger electrochemical activity surface area (ECSA = 122 m2 g-1) and higher mass activity (MA = 1445.4 mA mg-1), as well as better CO tolerance and more reliable long-term durability (a peak current density retention of 71% after 5200 s).
Collapse
Affiliation(s)
- Shuyue Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Yanyan Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Mariyam Niyaz
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Yajun Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Hujun Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Xinsheng Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| |
Collapse
|
12
|
Liu Y, Wang Y, Wu N, Han M, Liu W, Liu J, Zeng Z. Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:240. [PMID: 37917275 PMCID: PMC10622396 DOI: 10.1007/s40820-023-01203-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/09/2023] [Indexed: 11/04/2023]
Abstract
There is an urgent demand for flexible, lightweight, mechanically robust, excellent electromagnetic interference (EMI) shielding materials. Two-dimensional (2D) transition metal carbides/nitrides (MXenes) have been potential candidates for the construction of excellent EMI shielding materials due to their great electrical electroconductibility, favorable mechanical nature such as flexibility, large aspect ratios, and simple processability in aqueous media. The applicability of MXenes for EMI shielding has been intensively explored; thus, reviewing the relevant research is beneficial for advancing the design of high-performance MXene-based EMI shields. Herein, recent progress in MXene-based macrostructure development is reviewed, including the associated EMI shielding mechanisms. In particular, various structural design strategies for MXene-based EMI shielding materials are highlighted and explored. In the end, the difficulties and views for the future growth of MXene-based EMI shields are proposed. This review aims to drive the growth of high-performance MXene-based EMI shielding macrostructures on basis of rational structural design and the future high-efficiency utilization of MXene.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Yadi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Na Wu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shandong University, Shandong, 250100, China.
| | - Mingrui Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| |
Collapse
|
13
|
Suresh S, Krishnan VG, Dasgupta D, Surendran KP, Gowd EB. Directional-Freezing-Enabled MXene Orientation toward Anisotropic PVDF/MXene Aerogels: Orientation-Dependent Properties of Hybrid Aerogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49567-49582. [PMID: 37842998 DOI: 10.1021/acsami.3c09845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Polymer hybrid materials that contain reinforcements with a preferred orientation have received growing attention because of their unique properties and promising applications in multifunctional fields. Herein, anisotropic poly(vinylidene fluoride) (PVDF)/MXene hybrid aerogels with highly ordered delaminated MXene nanosheets and anisotropic porous structures were successfully fabricated by unidirectional freezing of thermoreversible gels followed by a freeze-drying process. The strong interfacial interactions between PVDF chains and abundant functional groups on the surface of MXene enabled the orientation of MXene nanosheets at the boundaries of ice crystals as the semicrystalline PVDF and delaminated MXene nanosheets are squeezed along the freezing direction. These aerogels display distinct properties along the freezing and perpendicular to the freezing (transverse) directions. These anisotropic aerogels are flexible and flame-retardant and possess an anisotropic compression performance, heat transfer, electrical conductivity, and electromagnetic interference (EMI) shielding. Further, by increasing the MXene loadings, the electrical conductivity and EMI shielding performances of hybrid aerogels were significantly improved. The PVDF aerogel showed sticky hydrophobicity with a contact angle of 139°, whereas the contact angle increased significantly in hybrid aerogels (153°) with low water adhesion, making them suitable as self-cleaning materials. The combination of the above characteristics makes these hybrid aerogels potential candidates for a wide range of electronic applications.
Collapse
Affiliation(s)
- Sruthi Suresh
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vipin G Krishnan
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debarshi Dasgupta
- Corporate R&D Center, Momentive Performance Materials Inc., Survey No. 09, Hosur Road, Electronic City (West), Bangalore 560100, India
| | - Kuzhichalil Peethambharan Surendran
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - E Bhoje Gowd
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
14
|
Hossein-Babaei F, Chegini E. The complex permittivity of PEDOT:PSS. J Chem Phys 2023; 158:2890483. [PMID: 37184021 DOI: 10.1063/5.0142523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
High permittivity materials are required for efficient organic photovoltaic devices, and the addition of the conjugated polymer composite poly(3,4-ethylenedioxythiophen) polystyrene sulfonate (PEDOT:PSS) to dielectric polymers has been shown to significantly heighten their permittivity. The permittivity of PEDOT:PSS at the optical and microwave frequencies has been investigated, but PEDOT:PSS layers are mainly used for low-frequency device applications, where accurate dielectric property measurements are hindered by their high electrical conductivity and the problems arising from the metal-polymer interfaces. Here, we determine the complex relative permittivity (εr*=εr'-jεr″) of PEDOT:PSS layers perpendicular to the layer plane in the 10-2-106 Hz range by combining data from the reactive energy estimations and electrochemical impedance spectroscopy, and discover that: εr' at <1 Hz is ultra-high (∼106) decreasing with frequency to ∼5 at 106 Hz; the experimental data fit the Cole-Cole dielectric relaxation model by considering multiple relaxation mechanisms; PEDOT:PSS polarizes nonlinearly and εr' increases with the intensity of the applied external field; low frequency εr' increases with both thickness and temperature of the layer, opposite trend of temperature-dependence prevails at >103 Hz; the dielectric properties of PEDOT:PSS are highly anisotropic and the in-plane εr' at 1.0 kHz is three orders of magnitude higher than the vertical εr'; and that the εr'' decreases proportional to the reciprocal of frequency (1/f). The latter finding provides an explanation for the ubiquitous pink noise accompanying signals transmitted through organic conductor links. The described methodology can be adopted for investigations on other conjugated polymers.
Collapse
Affiliation(s)
- Faramarz Hossein-Babaei
- Electronic Materials Laboratory, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Ebrahim Chegini
- Electronic Materials Laboratory, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| |
Collapse
|
15
|
Xing Y, Wan Y, Wu Z, Wang J, Jiao S, Liu L. Multilayer Ultrathin MXene@AgNW@MoS 2 Composite Film for High-Efficiency Electromagnetic Shielding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5787-5797. [PMID: 36669167 DOI: 10.1021/acsami.2c18759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structure and material composition is crucial in realizing high electromagnetic interference (EMI) shielding effectiveness (SE). Herein, an ultrathin MXene@AgNW@MoS2 (MAM) composite film that resembles the structure of a pork belly and exhibits superior EMI shielding performance was fabricated via the vacuum-assisted suction filtration process and atomic layer deposition (ALD). The staggered AgNWs form skeletons and intersperse in MXene sheets to build a doped layer with three-dimensional network structures, which improves the electrical conductivity of the film. Based on the optimal dispersion concentration of Ag in doped and single layers, the MXene/AgNW doped layer and AgNW single layer are alternately vacuum-assisted-filtered to obtain laminated structures with multiple heterogeneous interfaces. These interfaces generate interface polarization and increase multiple reflection and scattering, resulting in the increased electromagnetic (EM) wave losses. On the other hand, MoS2 outer nanolayers fabricated precisely by ALD effectively increases the absorption proportion of electromagnetic waves, reduces the secondary reflection, and improves the stability of EMI shielding properties. Ultimately, an ultrathin MAM film (a thickness of 0.03 mm) with five alternating internal layers and MoS2 outer layers exhibits an excellent EMI SE of 86.3 dB in the X-band.
Collapse
Affiliation(s)
- Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
- Engineering Research Center of New Light Sources Technology and Equipment of MOE, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Yizhi Wan
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Jianqiao Wang
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| |
Collapse
|
16
|
Peng F, Zhu W, Fang Y, Fu B, Chen H, Ji H, Ma X, Hang C, Li M. Ultralight and Highly Conductive Silver Nanowire Aerogels for High-Performance Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4284-4293. [PMID: 36634254 DOI: 10.1021/acsami.2c16940] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-based materials possess superior electromagnetic interference (EMI) shielding performance because of their extraordinary electrical conductivity. Nevertheless, the high density and structural rigidity of metals seriously limit their applicability in portable and wearable electronic equipment. A common method for reducing the density of metal-based materials is to prepare metal nanowire aerogels by freeze-drying, but the weak connection among the nanowires results in poor mechanical and electrical properties. Herein, a facile approach is developed for the one-step synthesis of silver nanowire (AgNW) aerogels with ultralow density, good flexibility, high electrical conductivity, and a robust structure. The gel is directly formed by in situ assembly of AgNWs. The end-to-end nanojoining of AgNWs contributes to constructing an interconnected three-dimensional (3D) network, resulting in improved mechanical and electrical properties. The AgNW aerogel with an ultralow density of 4.87 mg cm-3 demonstrates a high electrical conductivity of 4584 S m-1. Moreover, the porous structure of the AgNW aerogel provides numerous interfaces for multiple reflections and scattering of EM waves, allowing them to be continuously absorbed and dissipated within the aerogel. Thus, the AgNW aerogel exhibits a superb EMI shielding effectiveness (SE) of 109.3 dB and a normalized surface specific SE (SSE/t, calculated as the SE divided by the density and thickness) of 353 183 dB cm2 g-1, significantly above that of previously known shielding materials. This work provides a new route for preparing high-performance metal nanowire aerogels and their great potential in EMI shielding.
Collapse
Affiliation(s)
- Fei Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
| | - Wenbo Zhu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
| | - Yi Fang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
| | - Bicheng Fu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
| | - Hongtao Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
| | - Chunjin Hang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin150001, China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin150001, China
| |
Collapse
|
17
|
Gu W, Ong SJH, Shen Y, Guo W, Fang Y, Ji G, Xu ZJ. A Lightweight, Elastic, and Thermally Insulating Stealth Foam With High Infrared-Radar Compatibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204165. [PMID: 36285685 PMCID: PMC9762302 DOI: 10.1002/advs.202204165] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/24/2022] [Indexed: 05/21/2023]
Abstract
The development of infrared-radar compatible materials/devices is challenging because the requirements of material properties between infrared and radar stealth are contradictory. Herein, a composite of poly(3, 4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) coated melamine foam is designed to integrate the advantages of the dual materials and the created heterogeneous interface between them. The as-designed PEDOT:PSS@melamine composite shows excellent mechanical properties, outstanding thermal insulation, and improved thermal infrared stealth performance. The relevant superb radar stealth performance including the minimum reflection loss value of -57.57 dB, the optimum ultra-wide bandwidth of 10.52 GHz, and the simulation of radar cross section reduction value of 17.68 dB m2 , can be achieved. The optimal specific electromagnetic wave absorption performance can reach up as high as 3263.02 dB·cm3 g-1 . The average electromagnetic interference shielding effectiveness value can be 30.80 dB. This study provides an approach for the design of high-performance stealth materials with infrared-radar compatibility.
Collapse
Affiliation(s)
- Weihua Gu
- College of Material Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
- School of Materials Sciences and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Samuel Jun Hoong Ong
- School of Materials Sciences and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Yuhong Shen
- College of Material Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
| | - Wenyi Guo
- College of Material Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
| | - Yiting Fang
- College of Material Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
| | - Guangbin Ji
- College of Material Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
| | - Zhichuan J. Xu
- School of Materials Sciences and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
18
|
Gholamirad F, Ge J, Sadati M, Wang G, Taheri-Qazvini N. Tuning the Self-Assembled Morphology of Ti 3C 2T x MXene-Based Hybrids for High-Performance Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49158-49170. [PMID: 36269799 DOI: 10.1021/acsami.2c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hybrid materials based on transition metal carbide and nitride (MXene) nanosheets have great potential for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, the performance of final products depends not only on the properties of constituent components but also on the morphology of the assembly. Here, via the controlled diffusion of positively charged poly(allylamine hydrochloride) (PAH) chains into the negatively charged Ti3C2Tx MXene suspension, MXene/PAH hybrids in the forms of thin films, porous structures, and fibers with distinguished internal morphologies are obtained. Our results confirm that PAH chains could effectively enhance the oxidation stability and integrity of wet and dry MXene structures. The flexibility to tune the structures allows for a thorough discussion of the relations between the morphology, electrical conductivity, and EMI shielding mechanism of the hybrids in a wide range of electrical conductivity (2.5 to 3347 S·cm-1) and thickness (7.7 to 1900 μm) values. The analysis of thin films shows the direct impact of the polymer content on the alignment and compactness of MXene nanosheets regulating the films' electrical conductivity/EMI shielding effectiveness. The colloidal behavior of the initial MXene suspension determines the interconnection of MXene nanosheets in MXene/PAH porous assemblies and the final electrical properties. In addition to the internal morphology, examining the laminated MXene/PAH fibers with geometrically different arrangements demonstrates the role of conductive network configuration on EMI shielding performance. These findings provide insights into tuning the EMI shielding effectiveness via the charge-driven bottom-up assembly of electrically conductive MXene/polyelectrolyte hybrids.
Collapse
Affiliation(s)
- Farivash Gholamirad
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
19
|
Shi Y, Xiang Z, Cai L, Pan F, Dong Y, Zhu X, Cheng J, Jiang H, Lu W. Multi-interface Assembled N-Doped MXene/HCFG/AgNW Films for Wearable Electromagnetic Shielding Devices with Multimodal Energy Conversion and Healthcare Monitoring Performances. ACS NANO 2022; 16:7816-7833. [PMID: 35536615 DOI: 10.1021/acsnano.2c00448] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the progressive requirements of modern electronics, outstanding electromagnetic interference (EMI) shielding materials are extensively desirable to protect intelligent electronic equipment against EMI radiation under various conditions, while integrating functional applications. So far, it remains a great challenge to effectively construct thin films with diversiform frameworks as integrated shielding devices. To simultaneously promote electromagnetic waves (EMWs) attenuation and construct integrated multifunction, an alternating-layered deposition strategy is designed to fabricate polydimethylsiloxane packaged N-doped MXene (Ti3CNTx)/graphene oxide wrapped hollow carbon fiber/silver nanowire films (p-LMHA) followed by annealing and encapsulation approaches. Contributed by the synergistic effect of consecutively conductive networks and porous architectures, LMHA films exhibit satisfying EMI shielding effectiveness of 73.2 dB at a thickness of 11 μm, with a specific EMI shielding effectiveness of 31 150.1 dB·cm2·g-1. Benefiting from the encapsulation, p-LMHA films further impart hydrophobicity and reliability against harsh environments. Besides, p-LMHA devices integrate a rapid-response behavior of the electro/photothermal and, meanwhile, function as a healthcare monitoring sensor. Therefore, it is believed that the p-LMHA films assembled by independent conductive networks with reliability offer a facile solution for practical multimodular protection of devices with integration characteristics.
Collapse
Affiliation(s)
- Yuyang Shi
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Zhen Xiang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Lei Cai
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Fei Pan
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Yanyan Dong
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaojie Zhu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Jie Cheng
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Haojie Jiang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Wei Lu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
20
|
Yang S, Yang P, Ren C, Zhao X, Zhang J. Millefeuille-inspired highly conducting polymer nanocomposites based on controllable layer-by-layer assembly strategy for durable and stable electromagnetic interference shielding. J Colloid Interface Sci 2022; 622:97-108. [PMID: 35489105 DOI: 10.1016/j.jcis.2022.04.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 01/09/2023]
Abstract
High-performance conductive polymer nanocomposites containing two-dimensional (2D) MXene are garnering substantial interest for electromagnetic shielding interference (EMI) in flexible electronics. However, owing to the non-sticky nature and undesirable mechanical performances of freestanding MXene film, it remains a formidable challenge to make the trade-off between outstanding EMI shielding capability and high stability. In this study, inspired by the structure and manufacturing process of millefeuille cakes, we propose a controllably layer-by-layer assembling strategy for fabricating flexible multilayered EMI shielding composite films based on MXene and an inherently conductive polymer (ICP). The multilayer films bearing alternating aramid nanofibers/polypyrrole nanowires (AFPy) and Ti3C2Tx reinforced by waterborne polyurethane (Ti3C2Tx@WPU) layers are orderly constructed by a facile alternating vacuum filtration method. Benefiting from the special architectures, the AFPy-70/Ti3C2Tx@WPU-4 film exhibits a high electrical conductivity of 1.74 S cm-1 and superior EMI shielding effectiveness of 40.9 dB at lower Ti3C2Tx loading content (32 wt%). Moreover, synergistic integration of hydrogen bonding and π-π stacks in multilayered films is achieved, especially in tandem with controlled crack generation within the whole film. Excellent EMI shielding performance remains well maintained even after being suffered to back-and-forth bending test (over 10,000 cycles), ultrasonication, and cryogenic temperature, validating great potential as high-performance EMI shielding film resisting extreme conditions.
Collapse
Affiliation(s)
- Shengdu Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Pengcheng Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Chuanzheng Ren
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaohai Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Junhua Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|