1
|
Han ZW, Wang HM, Chen X, Wu YC, Hou QX. Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance. J Colloid Interface Sci 2025; 684:735-757. [PMID: 39818034 DOI: 10.1016/j.jcis.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites. Moreover, versatile and high tunable lignins can be valorized into functional materials, which are crucial building blocks in the fabrication of biomass-derived composites. Lignin's unique chemical structure, solvent resistance, anti-aging, and anti-ultraviolet functional properties make it highly potential for the fabrication of sustainable biobased barrier materials. This review systematically summarizes the progress in the fabrication and application of lignin-based functional composites, with a particular focus on barrier materials. First, the structural diversity of lignins from different sources and fractionation methods, and the structural modification strategies of lignins are briefly introduced. Then, the multiple barrier performances of lignin-based composites are listed, and the fabrication methods of different composites based on the polymer matrix systems are elaborated. In terms of diverse applications, this review highlights the multifaceted barrier properties of lignin-based composites in oxygen barrier, water vapor barrier, ultraviolet barrier, flame retardant and antibacterial applications. These functional barrier materials are widely used in food/pharmaceutical packaging, agricultural protection, construction, etc., providing an excellent option for sustainable materials with high barrier performance requirements. Finally, the main challenges faced by lignin-based barrier materials and the future directions are proposed.
Collapse
Affiliation(s)
- Zhong-Wei Han
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Han-Min Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Shanying International Holdings Co., Ltd., Maanshan 243021, China.
| | - Xu Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu-Chun Wu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing-Xi Hou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Liu X, Zhou J, Lu X, Liu Z. Bird's-Nest-Inspired, High-Temperature-Resistant Soft Robots with Enhanced Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21886-21897. [PMID: 40145775 DOI: 10.1021/acsami.5c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The rapid development of aerospace, artificial intelligence, and flexible wearable electronics has led to an increasing demand for multifunctional electromagnetic interference (EMI) shielding materials, especially for lightweight and high-strength biomimetic intelligent actuators. In this study, we present polyolefin elastomer/aramid nanofiber/carbon nanotube (POE/ANF/CNT) composites with a sandwich architecture fabricated via layer-by-layer technology. Actuation is achieved by exploiting the differential thermal expansion coefficients among the layers, where the POE functions as the active layer, while ANFs and CNTs serve as inert reinforcement layers. The bird's-nest-like CNT layer imparts the actuators with repeatable programming capabilities. These intelligent actuators exhibit rapid responses to light, electrical, and thermal stimuli, featuring a low activation energy, high actuation speed, significant deformation, and exceptional fatigue resistance. Inspired by paper cutting and origami techniques, the actuators achieve repeatable morphological programming and complex actuation behaviors. The POE/ANF/CNT composites also demonstrate effective EMI shielding (35.7 dB at 40 wt % CNTs), high tensile strength (39.1 MPa), superior Joule heating performance (301 °C at 20 V voltage), and excellent thermal stabilities (with a maximum decomposition temperature reaching 473 °C). These multifunctional intelligent materials hold significant potential for applications in flexible wearable electronic devices, EMI shielding, and soft robotics.
Collapse
Affiliation(s)
- Xianyuan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Jinman Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xianyong Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Zunfeng Liu
- School of Chemistry and Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Sun Y, Wang Y, Liu D, Jiang H, Ding B, Guo J, Dai S. MoS 2-Coated MOF-Derived Hollow Heterostructures for Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39982447 DOI: 10.1021/acsami.4c23019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Structural design constitutes one of the crucial approaches for augmenting the wave-absorbing capacity of electromagnetic wave (EMW) absorbers, and the incorporation of cavity structures represents a typical methodology therein. In this work, the MoS2-coated metal-organic framework (MOF)-derived Hollow-MoS2@CNS@CoS2 composite materials (HCNSs) were prepared by combining tannic acid-protected etching, carbonization, and hydrothermal methods. Especially, HCNS700, which possessed both a hollow structure and a layered heterogeneous structure, demonstrated excellent EMW absorption properties. It attained an optimal reflection loss of -63.63 dB at 16.4 GHz and -58.97 dB at 10.4 GHz, along with an extremely low thickness. In addition, the radar cross section simulation demonstrated that HCNS700 possessed excellent electromagnetic stealth capabilities. Its excellent performance is put down to the multiple loss mechanisms brought by the special structure, including multiple scattering of EMW caused by the hollow structure, interface polarization caused by the heterogeneous interfaces of MoS2, CoS2, and the carbon matrix, dipole polarization caused by element doping and defects, and optimization of impedance matching by MoS2. This research offers a novel concept for the design of EMW-absorbing materials with hollow heterogeneous layered structures.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Yanxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Dongming Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Haotian Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Bohan Ding
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Jinghe Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Shichao Dai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
4
|
Gao Y, Peng W, Wei JA, Guo D, Zhang Y, Yu Q, Wang C, Wang L. Synthesis of High-Performance Colorless Polyimides with Asymmetric Diamine: Application in Flexible Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48005-48015. [PMID: 39191511 DOI: 10.1021/acsami.4c09667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Colorless polyimides (CPIs) are widely used as high-performance materials in flexible electronic devices. From a molecular design standpoint, the industry continues to encounter challenges in developing CPIs with desired attributes, including exceptional optical transparency, excellent thermal stability, and enhanced mechanical strength. This study presents and validates a method for controlling 2-substituents, with a specific emphasis on examining how these substituents affect the thermal, mechanical, optical, and dielectric characteristics of CPIs. The presence of two CF3 groups on the same side of the diamine structure ensured the transmittance of the film. The charge transfer effect and the molecular distance are dynamically regulated by changing the 2-substituent (-OCH3/-CH3/H/F). The polyimide exhibited a well-maintained equilibrium between transparency and thermal stability, with a T500nm value ranging from 86.2 to 89.6% in the visible region, and a glass transition temperature (Tg) ranging from 358.6 to 376.0 °C. Additionally, the 6FDA-2-MTFMB compound, when combined with methyl, excels as a protective layer and base material, exhibiting excellent performance in various aspects. It has been verified as an appropriate option for flexible photodetectors and wearable piezoresistive sensors. In summary, this systematic investigation will provide a comprehensive and demonstrative methodology for developing CPIs that are capable of adapting to flexible electronic devices.
Collapse
Affiliation(s)
- Yanyu Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Weifeng Peng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ji-An Wei
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Dechao Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yunjie Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Cheng Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Hossain MM, Kungsadalpipob P, He N, Gao W, Bradford P. Multilayer Core-Shell Fiber Device for Improved Strain Sensing and Supercapacitor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401031. [PMID: 38970556 DOI: 10.1002/smll.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Indexed: 07/08/2024]
Abstract
1D fiber devices, known for their exceptional flexibility and seamless integration capabilities, often face trade-offs between desired wearable application characteristics and actual performance. In this study, a multilayer device composed of carbon nanotube (CNT), transition metal carbides/nitrides (MXenes), and cotton fibers, fabricated using a dry spinning method is presented, which significantly enhances both strain sensing and supercapacitor functionality. This core-shell fiber design achieves a record-high sensitivity (GF ≈ 4500) and maintains robust durability under various environmental conditions. Furthermore, the design approach markedly influences capacitance, correlating with the percentage of active material used. Through systematic optimization, the fiber device exhibited a capacitance 26-fold greater than that of a standard neat CNT fiber, emphasizing the crucial role of innovative design and high active material loading in improving device performance.
Collapse
Affiliation(s)
- Md Milon Hossain
- Department of Textile Engineering, Chemistry and Science, NC State University, Raleigh, NC, 27606, USA
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Patrapee Kungsadalpipob
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nanfei He
- Department of Textile Engineering, Chemistry and Science, NC State University, Raleigh, NC, 27606, USA
| | - Wei Gao
- Department of Textile Engineering, Chemistry and Science, NC State University, Raleigh, NC, 27606, USA
| | - Philip Bradford
- Department of Textile Engineering, Chemistry and Science, NC State University, Raleigh, NC, 27606, USA
| |
Collapse
|
6
|
Dong J, Lin J, Zhang H, Wang J, Li Y, Pan K, Zhang H, Hu D. Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing. Molecules 2024; 29:4000. [PMID: 39274848 PMCID: PMC11396044 DOI: 10.3390/molecules29174000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Developing multifunctional flexible composites with high-performance electromagnetic interference (EMI) shielding, thermal management, and sensing capacity is urgently required but challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers (ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-assisted filtration and hot-pressing. The formed 3D conductive skeleton enabled fast electron and phonon transport pathways in the composite films. As a result, the composite films showed a high electrical conductivity of 71.53 S/cm and an outstanding thermal conductivity of 6.4 W/m·K when the mass ratio of ANFs to MXene/AgNWs was 10:8. The excellent electrical properties and multi-layered structure endowed the composite films with superior EMI shielding performance and remarkable Joule heating performance, with a surface temperature of 78.3 °C at a voltage of 2.5 V. Additionally, it was found that the composite films also exhibited excellent mechanical properties and outstanding flame resistance. Moreover, the composite films could be further designed as strain sensors, which show great promise in monitoring real-time signals for human motion. These satisfactory results may open up a new opportunity for EMI shielding, thermal management, and sensing applications in wearable electronic devices.
Collapse
Affiliation(s)
- Jin Dong
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jing Lin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Hebai Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jun Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Ye Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Kelin Pan
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Haichen Zhang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Dechao Hu
- School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
7
|
Yang X, Wang N, Li X, Xu T, Song N, Qian G, Ding P. Integrated Thermal Conductive and Electromagnetic Interference Shielding Performance in Polyimide Composite: Impact of Carbon Felt-Graphene Van der Waals Heterostructure. Macromol Rapid Commun 2024:e2400527. [PMID: 39137308 DOI: 10.1002/marc.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Indexed: 08/15/2024]
Abstract
With the widespread application of highly integrated electronic devices, the urgent development of multifunctional polymer-based composite materials with high electromagnetic interference shielding effectiveness (EMI SE) and thermal conductivity capabilities is critically essential. Herein, a graphene/carbon felt/polyimide (GCF/PI) composite is prepared through constructing 3D van der Waals heterostructure by heating carbon felt and graphene at high temperature. The GCF-3/PI composite exhibits the highest through-plane thermal conductivity with 1.31 W·m-1·K-1, when the content of carbon felt and graphene is 14.1 and 1.4 wt.%, respectively. The GCF-3/PI composite material achieves a thermal conductivity that surpasses pure PI by 4.9 times. Additionally, GCF-3/PI composite shows an outstanding EMI SE of 69.4 dB compared to 33.1 dB for CF/PI at 12 GHz. The 3D van der Waals heterostructure constructed by carbon felt and graphene sheets is conducive to the formation of continuous networks, providing fast channels for the transmission of phonons and carriers. This study provides a guidance on the impact of 3D van der Waals heterostructures on the thermal and EMI shielding properties of composites.
Collapse
Affiliation(s)
- Xiaohui Yang
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Nan Wang
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiong Li
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Tongle Xu
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Na Song
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Gao Qian
- The Institute of Service-Oriented Manufacturing (Hangzhou) Ltd., Hangzhou, 311100, P. R. China
| | - Peng Ding
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
8
|
Shao R, Wang G, Chai J, Wang G, Zhao G. Flexible, Reliable, and Lightweight Multiwalled Carbon Nanotube/Polytetrafluoroethylene Membranes with Dual-Nanofibrous Structure for Outstanding EMI Shielding and Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308992. [PMID: 38174631 DOI: 10.1002/smll.202308992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Indexed: 01/05/2024]
Abstract
In this study, lightweight, flexible, and environmentally robust dual-nanofibrous membranes made of carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) are fabricated using a novel shear-induced in situ fibrillation method for electromagnetic interference (EMI) shielding. The unique spiderweb-like network, constructed from fine CNTs and PTFE fibrils, integrates the inherent characteristics of these two materials to achieve high conductivity, superhydrophobicity, and extraordinary chemical resistance. The dual-nanofibrous membranes demonstrate a high EMI shielding effectiveness (SE) of 25.7-42.2 dB at a thickness range of 100-520 µm and the normalized surface-specific SE can reach up to 9931.1 dB·cm2·g-1, while maintaining reliability even under extremely harsh conditions. In addition, distinct electrothermal and photothermal conversion properties can be achieved easily. Under the stimulation of a modest electrical voltage (5 V) and light power density (400 mW·cm-2), the surface temperatures of the CNT/PTFE membranes can reach up to 135.1 and 147.8 °C, respectively. Moreover, the CNT/PTFE membranes exhibit swift, stable, and highly efficient thermal conversion capabilities, endowing them with self-heating and de-icing performance. These versatile, flexible, and breathable membranes, coupled with their efficient and facile fabrication process, showcase tremendous application potential in aerospace, the Internet of Things, and the fabrication of wearable electronic equipment for extreme environments.
Collapse
Affiliation(s)
- Runze Shao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, 250061, China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, 250061, China
| | - Jialong Chai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, 250061, China
| | - Guizhen Wang
- Key Laboratory of Chinese Education Ministry for Tropical Biological Resources, Hainan University, Haikou, Hainan, 570228, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
9
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
10
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
11
|
Cheng X, Cai J, Liu P, Chen T, Chen B, Gong D. Multifunctional Flexible MXene/AgNW Composite Thin Film with Ultrahigh Conductivity Enabled by a Sandwich-Structured Assembly Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304327. [PMID: 37699748 DOI: 10.1002/smll.202304327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Flexible composite films have attracted considerable attention due to great potential for healthcare, telecommunication, and aerospace. However, it is still challenging to achieve high conductivity and multifunctional integration, mainly due to poorly designed composite structures of these films. Herein, a novel sandwich-structured assembly strategy is proposed to fabricate flexible composite thin films made of Ag nanowire (AgNW) core and MXene layers by combination of spray coating and vacuum filtration process. In this case, ultrathin MXene layers play crucial roles in constructing compact composite structures strongly anchored to substrate with extensive hydrogen-bonding interactions. The resultant sandwich-structured MXene/AgNW composite thin films (SMAFs) exhibit ultrahigh electrical conductivity (up to 27193 S cm-1 ), resulting in exceptional electromagnetic interference shielding effectiveness of 16 223.3 dB cm2 g-1 and impressive Joule heating performance with rapid heating rate of 10.4 °C s-1 . Moreover, the uniform SMAFs can also be facilely cut into kirigami-patterned interconnects, which indicate superior strain-insensitive conductance even after long-term exposure to extreme temperatures. The demonstrated strategy offers a significant paradigm to construct multifunctional composite thin films for next-generation integrated flexible electronics with practical applications.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Liu
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Teng Chen
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Bo Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
12
|
Wang W, Peng Z, Ma Z, Zhang L, Wang X, Xu Z, Feng Y, Liu C, Liang D, Li Q. High-Efficiency Electromagnetic Interference Shielding from Highly Aligned MXene Porous Composites via Controlled Directional Freezing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47566-47576. [PMID: 37782766 DOI: 10.1021/acsami.3c10599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lightweight porous composite materials (PCMs) with outstanding electromagnetic interference (EMI) shielding performances are ideal for aerospace, artificial intelligence, military, and other fields. Herein, a three-dimensional Ti3C2Tx MXene/sodium alginate (SA)/carbon nanotubes (CNTs) (MSC) PCMs was prepared by a controlled directional freezing process. This method constructs a directionally ordered porous structure, which can make the incident electromagnetic waves reflect and scattered several times in the PCMs. The introduction of CNTs into the MSC PCMs can form three-dimensional conductive networks with MXene, thus improving the conductivity and further improving the electromagnetic shielding performance. Furthermore, the SA with abundant hydrogen bonding can strengthen the interlayer interaction between MXene and CNTs. Profiting from the controlled directional freezing and highly aligned porous structure, the MSC PCMs with 75 wt % CNTs exhibit ultrahigh conductivity of 1630 S m-1, an ultrahigh EMI shielding effectiveness of 48.0 dB in X-band for electromagnetic waves incident perpendicular to the hole growth direction, and compressive strength of 72.3 kPa. The as-prepared MSC PCMs show excellent EMI shielding and mechanical properties and have significant applications in the preparation of an entirely novel type of EMI shielding materials with an absorption-based mechanism.
Collapse
Affiliation(s)
- Wei Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zilong Peng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhenping Ma
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xianzhen Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziming Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yongbao Feng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenglong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Dewei Liang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Qiulong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Bian X, Yang Z, Zhang T, Yu J, Xu G, Chen A, He Q, Pan J. Multifunctional Flexible AgNW/MXene/PDMS Composite Films for Efficient Electromagnetic Interference Shielding and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41906-41915. [PMID: 37610108 DOI: 10.1021/acsami.3c08093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
With the rapid development of electronic information technology, composite materials with outstanding performance in terms of electromagnetic interference (EMI) shielding and strain sensing are crucial for next-generation smart wearable electronic devices. However, the fabrication of flexible composite films with dual functionality remains a significant challenge. Herein, multifunctional flexible composite films with exciting EMI shielding and strain sensing properties were constructed using a facile vacuum-assisted filtration process and transfer method. The films consisted of ultrathin AgNW/MXene (Ti3C2Tx)/AgNW conductive networks (1 μm) attached to a flexible polydimethylsiloxane (PDMS) substrate. The obtained AgNW/MXene/PDMS composite film exhibited an exceptional EMI shielding effectiveness of 50.82 dB and good flexibility (retaining 93.67 and 90.18% of its original value after 1000 bending and stretching cycles, respectively), which are attributed to the enhanced multilayer internal reflection network created by the AgNWs and MXene as well as the synergistic effect of PDMS. Besides EMI shielding, the composite films also displayed remarkable strain sensing properties. They exhibited a wide linear range of tensile strain up to 68% with a gauge factor of 468. They also showed fast response, ultralow detection limit, and high mechanical stability. Interestingly, the composite films could also detect motion and voice recognition, demonstrating their potential as wearable sensors. This study highlights the effectiveness of multifunctional flexible AgNW/MXene/PDMS composite films in resisting electromagnetic radiation and monitoring human motion, thereby providing a promising solution for the development of flexible wearable electronic devices in complex electromagnetic environments.
Collapse
Affiliation(s)
- Xiaolong Bian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhonglin Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tao Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiewen Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gaopeng Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - An Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingquan He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
14
|
Liu Y, Zou W, Zhao N, Xu J. Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat Commun 2023; 14:5342. [PMID: 37660170 PMCID: PMC10475028 DOI: 10.1038/s41467-023-40707-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023] Open
Abstract
Constructing flexible and robust thermally conductive but electrically insulating composite films for efficient and safe thermal management has always been a sought-after research topic. Herein, a nacre-inspired high-performance poly(p-phenylene-2,6-benzobisoxazole) (PBO)/MXene nanocomposite film was prepared by a sol-gel-film conversion method with a homogeneous gelation process. Because of the as-formed optimized brick and mortar structure, and the strong bridging and caging effects of the fine PBO nanofibre network on the MXene nanosheets, the resulting nanocomposite film is electrically insulating (2.5 × 109 Ω cm), and exhibits excellent mechanical properties (tensile strength of 416.7 MPa, Young's modulus of 9.1 GPa and toughness of 97.3 MJ m-3). More importantly, the synergistic orientation of PBO nanofibres and MXene nanosheets endows the film with an in-plane thermal conductivity of 42.2 W m-1 K-1. The film also exhibits excellent thermal stability and flame retardancy. This work broadens the ideas for preparing high-performance thermally conductive but electrically insulating composites.
Collapse
Affiliation(s)
- Yong Liu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Weizhi Zou
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
15
|
Wei Q, Li L, Deng Z, Wan G, Zhang Y, Du C, Su Y, Wang G. Scalable Fabrication of Nacre-Structured Graphene/Polytetrafluoroethylene Films for Outstanding EMI Shielding Under Extreme Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302082. [PMID: 37105765 DOI: 10.1002/smll.202302082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In this work, inspired by the great advantage of the unique "brick-mortar" layered structure as electromagnetic interference (EMI) shielding materials, a multifunctional flexible graphene nanosheets (GNS)/polytetrafluoroethylene (PTFE) composite film with excellent EMI shielding effects, impressive Joule heating performance, and light-to-heat conversion efficiency is fabricated based on the self-emulsifying process of PTFE. Both PTFE microspheres and nanofibers are employed together for the first time as "sand and cement" to build unique nacre-structured EMI shielding materials. Such configuration can obviously enhance the adhesion of composites and improve their mechanical property for the application under extreme environment. Moreover, the simple and effective repetitive roll pressing method can be used for the scalable production in industrialization. The GNS/PTFE composite film shows a high EMI shielding effectiveness (SE) of 50.85 dB. Furthermore, it has a high thermal conductivity of 16.54 W (m K)-1 , good flexibility, and recyclable properties. The excellent fire-resistant and hydrophobic properties of GNS/PTFE film also ensure its reliability and safety in practical application. In conclusion, the GNS/PTFE film demonstrates the potential for industrial manufacturing, and outstanding EMI shielding performance with high stability and durability, which has a broad application prospect for electronic devices in practical extreme outdoor environments.
Collapse
Affiliation(s)
- Qiyi Wei
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Liang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen Deng
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Gengping Wan
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Ying Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Changlong Du
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Yanran Su
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Guizhen Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
16
|
Bark H, Thangavel G, Liu RJ, Chua DHC, Lee PS. Effective Surface Modification of 2D MXene toward Thermal Energy Conversion and Management. SMALL METHODS 2023; 7:e2300077. [PMID: 37069766 DOI: 10.1002/smtd.202300077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Thermal energy management is a crucial aspect of many research developments, such as hybrid and soft electronics, aerospace, and electric vehicles. The selection of materials is of critical importance in these applications to manage thermal energy effectively. From this perspective, MXene, a new type of 2D material, has attracted considerable attention in thermal energy management, including thermal conduction and conversion, owing to its unique electrical and thermal properties. However, tailored surface modification of 2D MXenes is required to meet the application requirements or overcome specific limitations. Herein, a comprehensive review of surface modification of 2D MXenes for thermal energy management is discussed. First, this work discusses the current progress in the surface modification of 2D MXenes, including termination with functional groups, small-molecule organic compound functionalization, and polymer modification and composites. Subsequently, an in situ analysis of surface-modified 2D MXenes is presented. This is followed by an overview of the recent progress in the thermal energy management of 2D MXenes and their composites, such as Joule heating, heat dissipation, thermoelectric energy conversion, and photothermal conversion. Finally, some challenges facing the application of 2D MXenes are discussed, and an outlook on surface-modified 2D MXenes is provided.
Collapse
Affiliation(s)
- Hyunwoo Bark
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rui Jun Liu
- Department of Materials Sciences and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Daniel H C Chua
- Department of Materials Sciences and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
17
|
Ostermann M, Bilotto P, Kadlec M, Schodl J, Duchoslav J, Stöger-Pollach M, Lieberzeit P, Valtiner M. l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22471-22484. [PMID: 37125734 PMCID: PMC10176320 DOI: 10.1021/acsami.2c22854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GRM) are gathering massive attention as top-down graphite exfoliation processes at the industrial scale are feasible and often employed. In this work, environmentally friendly produced partially oxidized graphene nanosheets (POGNs) reduced by green solvents such as l-Ascorbic Acid to rGNs are proposed to deliver functional coatings based on a glass fiber composite or coated Al2024 T3 for strategic R&D questions in the aeronautical industry, i.e., low energy production, de-icing, and water uptake. In detail, energy efficiency in rGNs production is assessed via response-surface modeling of the powder conductivity, hence proposing an optimized reduction window. De-Icing functionality is verified by measuring the stable electrothermal property of an rGNs based composite over 24 h, and water uptake is elucidated by evaluating electrochemical and corrosion properties. Moreover, a mathematical model is proposed to depict the relation between the layers' sheet resistance and applied rGNs mass per area, which extends the system to other graphene-related materials, conductive two-dimensional materials, and various substrates. To conclude, the proposed system based on rGNs and epoxy paves the way for future multifunctional coatings, able to enhance the resistance of surfaces, such as airplane wings, in a flight harsh environment.
Collapse
Affiliation(s)
- Markus Ostermann
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
- Institute of Physical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Pierluigi Bilotto
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
| | - Martin Kadlec
- VZLU - Czech Aerospace Research Centre, CZ-199 05 Praha, Czech Republic
| | - Jürgen Schodl
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
| | - Jiri Duchoslav
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
- Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, A-4040 Linz, Austria
| | - Michael Stöger-Pollach
- University Service Centre for Transmission Electron Microscopy (USTEM), TU Wien, A-1040 Vienna, Austria
- Institute for Solid State Physics, TU Wien, A-1040 Vienna, Austria
| | - Peter Lieberzeit
- Institute of Physical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Markus Valtiner
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
- Applied Interface Physics, TU Wien, A-1040, Vienna, Austria
| |
Collapse
|
18
|
A review on recent advances in 2D-transition metal carbonitride-MXenes nano-sheets/polymer composites' electromagnetic shields, mechanical and thermal properties. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Xing Y, Wan Y, Wu Z, Wang J, Jiao S, Liu L. Multilayer Ultrathin MXene@AgNW@MoS 2 Composite Film for High-Efficiency Electromagnetic Shielding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5787-5797. [PMID: 36669167 DOI: 10.1021/acsami.2c18759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structure and material composition is crucial in realizing high electromagnetic interference (EMI) shielding effectiveness (SE). Herein, an ultrathin MXene@AgNW@MoS2 (MAM) composite film that resembles the structure of a pork belly and exhibits superior EMI shielding performance was fabricated via the vacuum-assisted suction filtration process and atomic layer deposition (ALD). The staggered AgNWs form skeletons and intersperse in MXene sheets to build a doped layer with three-dimensional network structures, which improves the electrical conductivity of the film. Based on the optimal dispersion concentration of Ag in doped and single layers, the MXene/AgNW doped layer and AgNW single layer are alternately vacuum-assisted-filtered to obtain laminated structures with multiple heterogeneous interfaces. These interfaces generate interface polarization and increase multiple reflection and scattering, resulting in the increased electromagnetic (EM) wave losses. On the other hand, MoS2 outer nanolayers fabricated precisely by ALD effectively increases the absorption proportion of electromagnetic waves, reduces the secondary reflection, and improves the stability of EMI shielding properties. Ultimately, an ultrathin MAM film (a thickness of 0.03 mm) with five alternating internal layers and MoS2 outer layers exhibits an excellent EMI SE of 86.3 dB in the X-band.
Collapse
Affiliation(s)
- Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
- Engineering Research Center of New Light Sources Technology and Equipment of MOE, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Yizhi Wan
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Jianqiao Wang
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| |
Collapse
|
20
|
Gholamirad F, Ge J, Sadati M, Wang G, Taheri-Qazvini N. Tuning the Self-Assembled Morphology of Ti 3C 2T x MXene-Based Hybrids for High-Performance Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49158-49170. [PMID: 36269799 DOI: 10.1021/acsami.2c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hybrid materials based on transition metal carbide and nitride (MXene) nanosheets have great potential for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, the performance of final products depends not only on the properties of constituent components but also on the morphology of the assembly. Here, via the controlled diffusion of positively charged poly(allylamine hydrochloride) (PAH) chains into the negatively charged Ti3C2Tx MXene suspension, MXene/PAH hybrids in the forms of thin films, porous structures, and fibers with distinguished internal morphologies are obtained. Our results confirm that PAH chains could effectively enhance the oxidation stability and integrity of wet and dry MXene structures. The flexibility to tune the structures allows for a thorough discussion of the relations between the morphology, electrical conductivity, and EMI shielding mechanism of the hybrids in a wide range of electrical conductivity (2.5 to 3347 S·cm-1) and thickness (7.7 to 1900 μm) values. The analysis of thin films shows the direct impact of the polymer content on the alignment and compactness of MXene nanosheets regulating the films' electrical conductivity/EMI shielding effectiveness. The colloidal behavior of the initial MXene suspension determines the interconnection of MXene nanosheets in MXene/PAH porous assemblies and the final electrical properties. In addition to the internal morphology, examining the laminated MXene/PAH fibers with geometrically different arrangements demonstrates the role of conductive network configuration on EMI shielding performance. These findings provide insights into tuning the EMI shielding effectiveness via the charge-driven bottom-up assembly of electrically conductive MXene/polyelectrolyte hybrids.
Collapse
Affiliation(s)
- Farivash Gholamirad
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
21
|
Jiang M, Lin D, Jia W, Du J, Niu H, Wang X, Wu D. Preparation and characterization of porous polyimide fibers with electromagnetic wave absorption properties. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Wei Jia
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Jiang Du
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Hongqing Niu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Xiaodong Wang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
22
|
Hu J, Liang C, Li J, Lin C, Liang Y, Dong D. Ultrastrong and Hydrophobic Sandwich-Structured MXene-Based Composite Films for High-Efficiency Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33817-33828. [PMID: 35850587 DOI: 10.1021/acsami.2c07741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electromagnetic interference (EMI) shielding materials are highly necessary to solve the problem of electromagnetic radiation. Transition-metal carbide/nitride (MXene) materials offer great potential for the construction of high-performance EMI shields because of their high electrical conductivity and versatile surface chemistry. However, MXene generally suffers from poor mechanical and oxidation-resistant properties, which hinders its practical applications. Herein, flexible, strong, and hydrophobic sandwich-structured composite films (H-S-MXene), consisting of a conductive MXene layer and supporting aramid nanofiber layer, were fabricated using step-by-step vacuum-assisted filtration and dip coating. Given the unique sandwich structure, hydrogen bonding interactions, and covalent cross-linking of the MXene sheets, the H-S-MXene composite films demonstrated simultaneously excellent EMI shielding and mechanical properties. The EMI shielding effectiveness of the H-S-MXene composite film with 20 wt % MXene content reached 46.1 dB at thickness of 23.2 ± 0.5 μm, and the tensile strength of the film reached 302.1 MPa, which outperformed other reported EMI shielding materials. The excellent mechanical flexibility and hydrophobicity of the H-S-MXene composite films ensured a stable EMI shielding performance, which could withstand cycled bending, torsion, and exposure to aqueous environments. These impressive features made the H-S-MXene composite films promising candidates for electronic devices and aerospace. This study provides important guidance for the rational design of stable MXene-based composites with advanced properties.
Collapse
Affiliation(s)
- Jiana Hu
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Caiyun Liang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiadong Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chuanwei Lin
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yongjiu Liang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Chand K, Zhang X, Chen Y. Recent Progress in MXene and Graphene based Nanocomposites for Microwave Absorption and EMI Shielding. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Ghaffari-Mosanenzadeh S, Aghababaei Tafreshi O, Karamikamkar S, Saadatnia Z, Rad E, Meysami M, Naguib HE. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Adv Colloid Interface Sci 2022; 304:102646. [PMID: 35378358 DOI: 10.1016/j.cis.2022.102646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
With the rapid advancements in technology and growing aerospace applications, there is a need for effective low-weight and thermally insulating materials. Aerogels are known for their ultra-lightweight and they are highly porous materials with nanopores in a range of 2 to 50 nm with very low thermal conductivity values. However, due to hygroscopic nature and brittleness, aerogels are not used commercially and in daily life. To enhance the mechanical and hydrophobic properties, reinforcement materials such as styrene, cyanoacrylates, epoxy along with hydroxyl, amines, vinyl groups are added to the surface. The addition of organic materials resulted in lower service temperatures which reduce its potential applications. Polyimides (PI) are commonly used in engine applications due to their suitable stability at high temperatures along with excellent mechanical properties. Previous research on polyimide aerogels reported high flexibility or even foldability. However, those works' strategy was mainly limited to altering the backbone chemistry of polyimide aerogels by changing either the monomer's compositions or the chemical crosslinker. This work aims to summarize, categorize, and highlight the recent techniques for improving and tailoring properties of polyimide aerogels followed by the recent advancements in their applications.
Collapse
Affiliation(s)
| | | | - Solmaz Karamikamkar
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada
| | - Zia Saadatnia
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada
| | - Elmira Rad
- BASF Corporation, 450 Clark Drive, Budd Lake, NJ 07828, United States
| | - Mohammad Meysami
- BASF Corporation, 450 Clark Drive, Budd Lake, NJ 07828, United States
| | - Hani E Naguib
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada; Department of Materials Science and Engineering, University of Toronto, Canada.
| |
Collapse
|
25
|
Ruan K, Gu J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00491] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kunpeng Ruan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Junwei Gu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
26
|
Wang J, Ma X, Zhou J, Du F, Teng C. Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS NANO 2022; 16:6700-6711. [PMID: 35333052 DOI: 10.1021/acsnano.2c01323] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-strength, flexible, and multifunctional characteristics are highly desirable for electromagnetic interference (EMI) shielding materials in the field of electric devices. In this work, inspired by natural nacre, we fabricated large-scale, layered MXene/amarid nanofiber (ANF) nanocomposite papers by blade-coating process plus sol-gel conversion step. The as-synthesized papers possess excellent mechanical performance, that is, exceptional tensile strength (198.80 ± 5.35 MPa), large strain (15.30 ± 1.01%), and good flexibility (folded into various models without fracture), which are ascribed to synergetic interactions of the interconnected three-dimensional network frame and hydrogen bonds between MXene and ANF. More importantly, the papers with extensive continuous conductive paths formed by MXene nanosheets present a high EMI shielding effectiveness of 13188.2 dB cm2 g-1 in the frequency range of 8.2-12.4 GHz. More interestingly, the papers show excellent Joule heating performance with a fast thermal response (<10 s) and a low driving voltage (≤4 V). As such, the large-scale MXene/ANF papers are considered as promising alternatives in a wide range of applications in electromagnetic shielding and thermal management.
Collapse
Affiliation(s)
- Jie Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyan Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiale Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fanglin Du
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
27
|
Yang S, Yang P, Ren C, Zhao X, Zhang J. Millefeuille-inspired highly conducting polymer nanocomposites based on controllable layer-by-layer assembly strategy for durable and stable electromagnetic interference shielding. J Colloid Interface Sci 2022; 622:97-108. [PMID: 35489105 DOI: 10.1016/j.jcis.2022.04.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 01/09/2023]
Abstract
High-performance conductive polymer nanocomposites containing two-dimensional (2D) MXene are garnering substantial interest for electromagnetic shielding interference (EMI) in flexible electronics. However, owing to the non-sticky nature and undesirable mechanical performances of freestanding MXene film, it remains a formidable challenge to make the trade-off between outstanding EMI shielding capability and high stability. In this study, inspired by the structure and manufacturing process of millefeuille cakes, we propose a controllably layer-by-layer assembling strategy for fabricating flexible multilayered EMI shielding composite films based on MXene and an inherently conductive polymer (ICP). The multilayer films bearing alternating aramid nanofibers/polypyrrole nanowires (AFPy) and Ti3C2Tx reinforced by waterborne polyurethane (Ti3C2Tx@WPU) layers are orderly constructed by a facile alternating vacuum filtration method. Benefiting from the special architectures, the AFPy-70/Ti3C2Tx@WPU-4 film exhibits a high electrical conductivity of 1.74 S cm-1 and superior EMI shielding effectiveness of 40.9 dB at lower Ti3C2Tx loading content (32 wt%). Moreover, synergistic integration of hydrogen bonding and π-π stacks in multilayered films is achieved, especially in tandem with controlled crack generation within the whole film. Excellent EMI shielding performance remains well maintained even after being suffered to back-and-forth bending test (over 10,000 cycles), ultrasonication, and cryogenic temperature, validating great potential as high-performance EMI shielding film resisting extreme conditions.
Collapse
Affiliation(s)
- Shengdu Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Pengcheng Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Chuanzheng Ren
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaohai Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Junhua Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Jalil M, Ahmed A, Hossain MM, Adak B, Islam MT, Moniruzzaman M, Parvez MS, Shkir M, Mukhopadhyay S. Synthesis of PEDOT:PSS Solution-Processed Electronic Textiles for Enhanced Joule Heating. ACS OMEGA 2022; 7:12716-12723. [PMID: 35474841 PMCID: PMC9026049 DOI: 10.1021/acsomega.1c07148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Textile-based flexible and wearable electronic devices provide an excellent solution to thermal management systems, thermal therapy, and deicing applications through the Joule heating approach. However, challenges persist in designing such cost-effective electronic devices for efficient heating performance. Herein, this study adopted a facile solution-processed strategy, "dip-coating", to develop a high-performance Joule heating device by unformly coating the intrinsically conducting polymer (CP) poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) onto the surface of cotton textiles. The structural and morphological attributes of the cotton/CP mixture were evaluated using various characterization techniques. The electrothermal characteristics of the cotton/CP sample included rapid thermal response, uniform surface temperature distribution up to 94 °C, excellent stability, and endurance in heating performance under various mechanical deformations. The real-time illustration of the fabric heater affixed on a human finger has demonstrated its outstanding potential for thermal therapy applications. The fabricated heater may further expand it purposes toward deicing, defogging, and defrosting applications.
Collapse
Affiliation(s)
- Mohammad
Abdul Jalil
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna 9203, Bangladesh
| | - Abbas Ahmed
- Polymer
Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Md Milon Hossain
- Department
of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Bapan Adak
- Product
Development Department, Kusumgar Corporates
Pvt. Ltd., Vapi, Gujarat 396195, India
| | - M. Tauhidul Islam
- Department
of Materials Science and Engineering, National
Cheng Kung University, Tainan 701, Taiwan (R. O. C.)
| | - Md Moniruzzaman
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna 9203, Bangladesh
| | - Md Sohan Parvez
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna 9203, Bangladesh
| | - Mohd. Shkir
- Advanced
Functional Materials and Optoelectronics Laboratory (AFMOL), Department
of Physics, College of Science, King Khalid
University, Abha, Asir 61413, Saudi Arabia
| | - Samrat Mukhopadhyay
- Department
of Textile and Fiber Engineering, Indian
Institute of Technology, New Delhi, Delhi 110016, India
| |
Collapse
|