1
|
Sun J, Dai W, Guo Q, Gao Y, Chen J, Chen JL, Mao G, Sun H, Peng YK. Self-powered wearable electrochemical sensor based on composite conductive hydrogel medium for detection of lactate in human sweat. Biosens Bioelectron 2025; 277:117303. [PMID: 40014949 DOI: 10.1016/j.bios.2025.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Sweat, a vital metabolic product in the human body, contains valuable biomarkers that reflect human conditions. Among these, lactate concentration serves as a significant indicator of human physiological states. In this study, we present an innovative self-powered wearable electrochemical sensor designed for real-time lactate detection in human sweat. This sensor utilizes a composite conductive hydrogel medium, showcasing its potential in monitoring and assessing human health. The sensor incorporates two key components: the lactate oxidase/reduced graphene oxide/carbon cloth electrode (LOx/rGO/CCE) as the anode and the bilirubin oxidase/reduced graphene oxide/carbon cloth electrode (BOx/rGO/CCE) as the cathode. These electrodes are integrated into a substrate comprising a conductive hydrogel composed of Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and hydrophilic polyurethane (HPU). The sensor's performance was evaluated. The linear detection range spans from 10 nM to 50 mM, with an impressive detection limit of 4.38 nM, demonstrating its high sensitivity and selectivity towards lactate detection with long-term stability. Additionally, this sensor has been successfully applied to real-time monitor lactate concentration on athletes' skin by combining it with self-made equipment and smartphones. The test results demonstrate minimal error compared to the results obtained from high-performance liquid chromatography. This technology opens up a valuable tool for monitoring and assessing human physiological conditions and new possibilities for advancements in health management, sports monitoring, and medical diagnostics.
Collapse
Affiliation(s)
- Jing Sun
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China
| | - Wanqing Dai
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China
| | - Qiang Guo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China
| | - Yaru Gao
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China
| | - Jiayu Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China
| | - Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| |
Collapse
|
2
|
Yamamoto S, Kindaichi S, Matsubara R, Kubono A, Giridharagopal R, Ginger DS, Mitsuishi M. Organic Electrochemical Transistors Based on Blend Films with Thermoresponsive Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501927. [PMID: 40346972 DOI: 10.1002/smll.202501927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Indexed: 05/12/2025]
Abstract
Organic electrochemical transistors (OECTs) are biocompatible devices with significant potential for biosensing. Functionalizing the channel layers is essential for improving the selectivity and sensitivity of OECT-based biosensors. A straightforward one-step fabrication method for these functionalized channel layers can simplify the production process for these devices. This study developed OECT devices based on a polymer blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and poly(N-isopropylacrylamide) (PNIPAM) that respond to temperature changes. Structural analyses of the blended films showed that hole transport through PEDOT is maintained even after blending, and the PNIPAM is segregated at the surface. To overcome the large chain conformational change that occurs with temperature changes, a flexible poly(ethylene glycol) diglycidyl ether (PEGDE) crosslinker is used in addition to the conventional crosslinker, (3-glycidyloxypropyl)trimethoxysilane (GOPS). As a result, the PEGDE + GOPS binary crosslinker system exhibited reversible responses to temperature cycling. These results highlight two key considerations when designing a functional mixed-conductor film based on a polymer blend system: (1) vertical phase separation and (2) proper crosslinker selection.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shuhei Kindaichi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Ryosuke Matsubara
- Department of Electronics and Materials Science, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Atsushi Kubono
- Department of Electronics and Materials Science, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
3
|
Montazerian H, Davoodi E, Wang C, Lorestani F, Li J, Haghniaz R, Sampath RR, Mohaghegh N, Khosravi S, Zehtabi F, Zhao Y, Hosseinzadeh N, Liu T, Hsiai TK, Najafabadi AH, Langer R, Anderson DG, Weiss PS, Khademhosseini A, Gao W. Boosting hydrogel conductivity via water-dispersible conducting polymers for injectable bioelectronics. Nat Commun 2025; 16:3755. [PMID: 40263282 PMCID: PMC12015517 DOI: 10.1038/s41467-025-59045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Bioelectronic devices hold transformative potential for healthcare diagnostics and therapeutics. Yet, traditional electronic implants often require invasive surgeries and are mechanically incompatible with biological tissues. Injectable hydrogel bioelectronics offer a minimally invasive alternative that interfaces with soft tissue seamlessly. A major challenge is the low conductivity of bioelectronic systems, stemming from poor dispersibility of conductive additives in hydrogel mixtures. We address this issue by engineering doping conditions with hydrophilic biomacromolecules, enhancing the dispersibility of conductive polymers in aqueous systems. This approach achieves a 5-fold increase in dispersibility and a 20-fold boost in conductivity compared to conventional methods. The resulting conductive polymers are molecularly and in vivo degradable, making them suitable for transient bioelectronics applications. These additives are compatible with various hydrogel systems, such as alginate, forming ionically cross-linkable conductive inks for 3D-printed wearable electronics toward high-performance physiological monitoring. Furthermore, integrating conductive fillers with gelatin-based bioadhesive hydrogels substantially enhances conductivity for injectable sealants, achieving 250% greater sensitivity in pH sensing for chronic wound monitoring. Our findings indicate that hydrophilic dopants effectively tailor conducting polymers for hydrogel fillers, enhancing their biodegradability and expanding applications in transient implantable biomonitoring.
Collapse
Affiliation(s)
- Hossein Montazerian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Mechanical Engineering Department, University of Utah, Salt Lake City, Utah, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Elham Davoodi
- Mechanical Engineering Department, University of Utah, Salt Lake City, Utah, USA
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
| | - Farnaz Lorestani
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Rohan R Sampath
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Yichao Zhao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Negar Hosseinzadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Tianhan Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA.
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
4
|
Zhou M, Zhang S, Zhang X. Filler-free cellulose nanofiber composite papers with excellent mechanical properties for efficient electromagnetic interference shielding. Int J Biol Macromol 2025; 302:140562. [PMID: 39894116 DOI: 10.1016/j.ijbiomac.2025.140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The vast majority of conductive polymer composites (CPCs) currently available for electromagnetic interference (EMI) shielding rely on inorganic conductive fillers to construct conductive networks. However, the strategy inevitably causes some compromises in the biocompatibility, biodegradability, and mechanical properties of CPCs. In this work, the filler-free and high conductive cellulose nanofiber (CNF) composite papers containing poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) doped by lithium bis(trifloromethanesulfonyl) imide (Li-TFSI) are reported. The resultant Li-TFSI@PEDOT:PSS/CNF (LPPC) composite papers exhibit an exceptional absolute EMI shielding effectiveness of 14,525.5 dB∙cm-1, surpassing the reported values of many CPCs-based EMI shielding materials containing inorganic fillers. Li-TFSI can induce the structural reorganization of PEDOT chains. The conductivity of Li-TFSI@PEDOT:PSS was boosted with the enhancement of the crystalline order and oxidation level of PEDOT chains. Furthermore, the obtained LPPC composite papers demonstrate outstanding mechanical properties with a tensile strength of 44.42 MPa and EMI shielding stability with a retention ratio of up to 97 %, which are desirable for EMI shielding in wearable devices. Therefore, this work provides a feasible strategy to construct filler-free CPCs-based EMI shielding materials, which are expected to provide electromagnetic protection for the next flexible devices.
Collapse
Affiliation(s)
- Meng Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Shuo Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Li Q, Cao S, Bi Y, Song Y, Liang Y, Li H, Xing K, Zou B, Zhao J. Dipole Modulation Engineering Enhances Structural Order of PEDOT:PSS for Efficient and Stable InP-Based QLEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70728-70736. [PMID: 39663824 DOI: 10.1021/acsami.4c18231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Indium phosphide (InP)-based quantum dot light-emitting diodes (QLEDs) are promising for future lighting and display applications due to their high color purity and brightness. However, their efficiency and stability are often limited by the disordered structure of the widely used poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), which impairs charge transport. Herein, we present a strategy to enhance the performance of InP-based QLEDs by modifying PEDOT:PSS through interfacial dipole modulation using molybdenum oxide (MoOx) nanoparticles. The strong hydrogen bonding between MoOx and PSS creates strong dipole-dipole interactions, reducing the separation of PEDOT-rich regions, enhancing π-π stacking and conductivity. This optimization facilitates balanced electron and hole injection, increasing external quantum efficiency (EQE) from 12.2% in control devices to 17.8% in the treated devices, along with a brightness enhancement from 32,998 to 43,567 cd m-2. Notably, our treated devices exhibit a reduction in efficiency attenuation compared to other reported InP-based QLEDs, particularly at high brightness levels of 5000 and 10,000 cd m-2, with EQE attenuation of only 4 and 9%, respectively, compared to 16 and 30% for controls. This work highlights the potential of dipole engineering in advancing InP-based QLED technology, providing a pathway for developing high-performance, stable, and eco-friendly lighting and displays.
Collapse
Affiliation(s)
- Qiuyan Li
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yuhe Bi
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yusheng Song
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yi Liang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Huiying Li
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ke Xing
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Blau R, Russman SM, Qie Y, Shipley W, Lim A, Chen AX, Nyayachavadi A, Ah L, Abdal A, Esparza GL, Edmunds SJ, Vatsyayan R, Dunfield SP, Halder M, Jokerst JV, Fenning DP, Tao AR, Dayeh SA, Lipomi DJ. Surface-Grafted Biocompatible Polymer Conductors for Stable and Compliant Electrodes for Brain Interfaces. Adv Healthc Mater 2024; 13:e2402215. [PMID: 39011811 PMCID: PMC11582513 DOI: 10.1002/adhm.202402215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Durable and conductive interfaces that enable chronic and high-resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long-term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)-b-poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface-initiated atom-transfer radical polymerization (SI-ATRP) is described. This "block-brush" provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge-discharge voltage sweeps on a multiarray neural electrode. In addition, the block-brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application.
Collapse
Affiliation(s)
- Rachel Blau
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Samantha M Russman
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Yi Qie
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Wade Shipley
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0418, USA
| | - Allison Lim
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Alexander X Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Audithya Nyayachavadi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Louis Ah
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Abdulhameed Abdal
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Guillermo L Esparza
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Samuel J Edmunds
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Ritwik Vatsyayan
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Sean P Dunfield
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Moumita Halder
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - David P Fenning
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Andrea R Tao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0418, USA
| | - Shadi A Dayeh
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| | - Darren J Lipomi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA
| |
Collapse
|
7
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
8
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
9
|
Blau R, Abdal A, Root N, Chen AX, Rafeedi T, Ramji R, Qie Y, Kim T, Navarro A, Chin J, Becerra LL, Edmunds SJ, Russman SM, Dayeh SA, Fenning DP, Rouw R, Lipomi DJ. Conductive block copolymer elastomers and psychophysical thresholding for accurate haptic effects. Sci Robot 2024; 9:eadk3925. [PMID: 38865475 DOI: 10.1126/scirobotics.adk3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.
Collapse
Affiliation(s)
- Rachel Blau
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Abdulhameed Abdal
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas Root
- Brain and Cognition, Psychology Department, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander X Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Tarek Rafeedi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Robert Ramji
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yi Qie
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Taewoo Kim
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Navarro
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jason Chin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Laura L Becerra
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Samuel J Edmunds
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Samantha M Russman
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Shadi A Dayeh
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - David P Fenning
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Romke Rouw
- Brain and Cognition, Psychology Department, University of Amsterdam, Amsterdam, Netherlands
| | - Darren J Lipomi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Dominguez-Alfaro A, Casado N, Fernandez M, Garcia-Esnaola A, Calvo J, Mantione D, Calvo MR, Cortajarena AL. Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307536. [PMID: 38126666 DOI: 10.1002/smll.202307536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm-1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maxence Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Andrea Garcia-Esnaola
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Javier Calvo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maria Reyes Calvo
- Departamento de Física Aplicada, Universidad de Alicante, Alicante, 03690, Spain
- Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, Alicante, 03690, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
11
|
Chhatre S, Nagane SS, Wu Y, Lee J, Yap GPA, Martin DC. Influence of Controlled Chirality on the Crystallization of Maleimide-Functionalized 3,4-Ethylenedioxythiophene (EDOT-MA) Monomers. ACS OMEGA 2024; 9:13655-13665. [PMID: 38559998 PMCID: PMC10975600 DOI: 10.1021/acsomega.3c07719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Conjugated poly(alkoxythiophenes) such as poly(3,4-ethylenedioxythiophene) (PEDOT) have attracted considerable interest for use in a variety of applications such as biomedical devices, energy storage, and chemical sensing. Functionalized versions of the 3,4-ethylenedioxythiophene (EDOT) monomer make it possible to create polymers with properties tailored for specific applications. The maleimide functional group shows particular promise due to the wide variety of chemical modifications that it can undergo. Here, we examine the role that control of the chirality of the maleimide (MA) substituent has on the crystal structure and crystallization of the EDOT-MA monomer. We describe a method for the synthesis of a homochiral (S) variant of EDOT-MA and compare its crystallography, morphology, and thermal properties to that of the (R,S) EDOT-MA racemic compound. The conformation of the EDOT-MA molecule was substantially different, with the molecules adopting an "L" shape in the homochiral crystal, while in the racemic crystals, they were more colinear. The thermal stability of the homochiral crystals (Tm = 128.6 °C) was slightly higher than the racemic ones (Tm = 102.8 °C). We expect these results to be important in better understanding the solid-state assembly of the corresponding polymers prepared from these monomers.
Collapse
Affiliation(s)
- Shrirang
S. Chhatre
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Samadhan S. Nagane
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Yuhang Wu
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Junghyun Lee
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Glenn P. A. Yap
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Shinn EH, Garden AS, Peterson SK, Leupi DJ, Chen M, Blau R, Becerra L, Rafeedi T, Ramirez J, Rodriquez D, VanFossen F, Zehner S, Mercier PP, Wang J, Hutcheson K, Hanna E, Lipomi DJ. Iterative Patient Testing of a Stimuli-Responsive Swallowing Activity Sensor to Promote Extended User Engagement During the First Year After Radiation: Multiphase Remote and In-Person Observational Cohort Study. JMIR Cancer 2024; 10:e47359. [PMID: 38416544 PMCID: PMC10938225 DOI: 10.2196/47359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Frequent sensor-assisted monitoring of changes in swallowing function may help improve detection of radiation-associated dysphagia before it becomes permanent. While our group has prototyped an epidermal strain/surface electromyography sensor that can detect minute changes in swallowing muscle movement, it is unknown whether patients with head and neck cancer would be willing to wear such a device at home after radiation for several months. OBJECTIVE We iteratively assessed patients' design preferences and perceived barriers to long-term use of the prototype sensor. METHODS In study 1 (questionnaire only), survivors of pharyngeal cancer who were 3-5 years post treatment and part of a larger prospective study were asked their design preferences for a hypothetical throat sensor and rated their willingness to use the sensor at home during the first year after radiation. In studies 2 and 3 (iterative user testing), patients with and survivors of head and neck cancer attending visits at MD Anderson's Head and Neck Cancer Center were recruited for two rounds of on-throat testing with prototype sensors while completing a series of swallowing tasks. Afterward, participants were asked about their willingness to use the sensor during the first year post radiation. In study 2, patients also rated the sensor's ease of use and comfort, whereas in study 3, preferences were elicited regarding haptic feedback. RESULTS The majority of respondents in study 1 (116/138, 84%) were willing to wear the sensor 9 months after radiation, and participant willingness rates were similar in studies 2 (10/14, 71.4%) and 3 (12/14, 85.7%). The most prevalent reasons for participants' unwillingness to wear the sensor were 9 months being excessive, unwanted increase in responsibility, and feeling self-conscious. Across all three studies, the sensor's ability to detect developing dysphagia increased willingness the most compared to its appearance and ability to increase adherence to preventive speech pathology exercises. Direct haptic signaling was also rated highly, especially to indicate correct sensor placement and swallowing exercise performance. CONCLUSIONS Patients and survivors were receptive to the idea of wearing a personalized risk sensor for an extended period during the first year after radiation, although this may have been limited to well-educated non-Hispanic participants. A significant minority of patients expressed concern with various aspects of the sensor's burden and its appearance. TRIAL REGISTRATION ClinicalTrials.gov NCT03010150; https://clinicaltrials.gov/study/NCT03010150.
Collapse
Affiliation(s)
- Eileen H Shinn
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Adam S Garden
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Susan K Peterson
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Dylan J Leupi
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, South Bend, IN, United States
| | - Minxing Chen
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Rachel Blau
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Laura Becerra
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| | - Tarek Rafeedi
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Julian Ramirez
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Daniel Rodriquez
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Finley VanFossen
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Sydney Zehner
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Patrick P Mercier
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| | - Joseph Wang
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Kate Hutcheson
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Ehab Hanna
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| |
Collapse
|
13
|
Yang S, Cheng J, Shang J, Hang C, Qi J, Zhong L, Rao Q, He L, Liu C, Ding L, Zhang M, Chakrabarty S, Jiang X. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat Commun 2023; 14:6494. [PMID: 37838683 PMCID: PMC10576757 DOI: 10.1038/s41467-023-42149-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life. Here, we address these constraints by design of an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). The TPP electrode offers superior stretchability (~200%) and adhesiveness (0.58 N/cm) compared to current electrodes, ensuring stable and long-term contact with the skin for recording (>20 dB; >5 days). In addition, we developed a metal-polymer electrode array patch (MEAP) comprising liquid metal (LM) circuits and TPP electrodes. The MEAP demonstrated better conformability than commercial arrays, resulting in higher signal-to-noise ratio and more stable recordings during muscle movements. Manufactured using scalable screen-printing, these MEAPs feature a completely stretchable material and array architecture, enabling real-time monitoring of muscle stress, fatigue, and tendon displacement. Their potential to reduce muscle and tendon injuries and enhance performance in daily exercise and professional sports holds great promise.
Collapse
Grants
- We thank the National Key R&D Program of China (2021YFF1200800, 2021YFF1200100, 2022YFB3804700, and 2018YFA0902600), the National Natural Science Foundation of China (22234004), Shenzhen Science and Technology Program (JCYJ20200109141231365 and KQTD 20190929172743294), Shenzhen Key Laboratory of Smart Healthcare Engineering (ZDSYS20200811144003009), Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08Y191), Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003), Tencent Foundation through the XPLORER PRIZE, Guangdong Major Talent Introduction Project (2019CX01Y196). We also acknowledge the assistance of SUSTech Core Research Facilities.
Collapse
Affiliation(s)
- Shuaijian Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jinhao Cheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jin Shang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chen Hang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Leni Zhong
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Qingyan Rao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chenqi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Ding
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Mingming Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
14
|
Ghazal M, Susloparova A, Lefebvre C, Daher Mansour M, Ghodhbane N, Melot A, Scholaert C, Guérin D, Janel S, Barois N, Colin M, Buée L, Yger P, Halliez S, Coffinier Y, Pecqueur S, Alibart F. Electropolymerization processing of side-chain engineered EDOT for high performance microelectrode arrays. Biosens Bioelectron 2023; 237:115538. [PMID: 37506488 DOI: 10.1016/j.bios.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Microelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling. Herein, we investigate on electro-co-polymerization of EDOT with its triglymated derivative to control valence between monomer units and hydrophilic functions on a conducting polymer. Molecular packing, cation complexation, dopant stoichiometry are governed by the glycolation degree of the electro-active coating of the microelectrodes. Optimal monomer ratio allows fine-tuning the material hydrophilicity and biocompatibility without compromising the electrochemical impedance of microelectrodes nor their stability while interfaced with a neural cell culture. After incubation, sensing readout on the modified electrodes shows higher performances with respect to unmodified electropolymerized PEDOT, with higher signal-to-noise ratio (SNR) and higher spike counts on the same neural culture. Reported SNR values are superior to that of state-of-the-art PEDOT microelectrodes and close to that of state-of-the-art 3D microelectrodes, with a reduced fabrication complexity. Thanks to this versatile technique and its impact on the surface chemistry of the microelectrode, we show that electro-co-polymerization trades with many-compound properties to easily gather them into single macromolecular structures. Applied on sensor arrays, it holds great potential for the customization of neurosensors to adapt to environmental boundaries and to optimize extracted sensing features.
Collapse
Affiliation(s)
- Mahdi Ghazal
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Anna Susloparova
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Camille Lefebvre
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Michel Daher Mansour
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Najami Ghodhbane
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Alexis Melot
- Laboratoire Nanotechnologies & Nanosystèmes (LN2, UMI 3463) | CNRS, Université de Sherbrooke, J1X0A5, Sherbrooke, Canada
| | - Corentin Scholaert
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - David Guérin
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Sébastien Janel
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Nicolas Barois
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Pierre Yger
- Plasticity & SubjectivitY Team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; Institut de La Vision, Sorbonne Université, INSERM, Centre National de La Recherche Scientifique, Paris, France
| | - Sophie Halliez
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Yannick Coffinier
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France.
| | - Sébastien Pecqueur
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France.
| | - Fabien Alibart
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France; Laboratoire Nanotechnologies & Nanosystèmes (LN2, UMI 3463) | CNRS, Université de Sherbrooke, J1X0A5, Sherbrooke, Canada
| |
Collapse
|
15
|
Chen AX, Esparza GL, Simon I, Dunfield SP, Qie Y, Bunch JA, Blau R, Lim A, Zhang H, Brew SE, O'Neill FM, Fenning DP, Lipomi DJ. Effect of Additives on the Surface Morphology, Energetics, and Contact Resistance of PEDOT:PSS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38143-38153. [PMID: 37499172 DOI: 10.1021/acsami.3c08341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
For a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) film employed in a device stack, charge must pass through both the bulk of the film and interfaces between adjacent layers. Thus, charge transport is governed by both bulk and contact resistances. However, for ultrathin films (e.g., flexible devices, thin-film transistors, printed electronics, solar cells), interfacial properties can dominate over the bulk properties, making contact resistance a significant determinant of device performance. For most device applications, the bulk conductivity of PEDOT:PSS is typically improved by blending additives into the solid film. Doping PEDOT:PSS with secondary dopants (e.g., polar small molecules), in particular, increases the bulk conductivity by inducing a more favorable solid morphology. However, the effects of these morphological changes on the contact resistance (which play a bigger role at smaller length scales) are relatively unstudied. In this work, we use transfer length method (TLM) measurements to decouple the bulk resistance from the contact resistance of PEDOT:PSS films incorporating several common additives. These additives include secondary dopants, a silane crosslinker (typically used to stabilize the PEDOT:PSS film), and multi-walled carbon nanotubes (conductive fillers). Using conductive atomic force microscopy, Kelvin probe force microscopy, Raman spectroscopy, and photoelectron spectroscopy, we connect changes in the contact resistance to changes in the surface morphology and energetics as governed by the blended additives. We find that the contact resistance at the PEDOT:PSS/silver interface can be reduced by (1) increasing the ratio of PEDOT to PSS chains, (2) decreasing the work function, (3) decreasing the benzoid-to-quinoid ratio at the surface of the solid film, (4) increasing the film uniformity and contact area, and (5) increasing the phase-segregated morphology of the solid film.
Collapse
Affiliation(s)
- Alexander X Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Guillermo L Esparza
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Ignasi Simon
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Sean P Dunfield
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Yi Qie
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Jordan A Bunch
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Rachel Blau
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Allison Lim
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Henry Zhang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Sarah E Brew
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Finnian M O'Neill
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - David P Fenning
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Darren J Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| |
Collapse
|