1
|
Cheng Z, Fahy KM, Peterson GW, Kirlikovali KO, Farha OK. Advancing Metal-Organic Framework-Based Composites for Effective Chemical Warfare Agent Detoxification under Real-World Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413848. [PMID: 40207733 DOI: 10.1002/adma.202413848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/09/2025] [Indexed: 04/11/2025]
Abstract
Threats from toxic chemical warfare agents (CWAs) persist due to war and terrorist attacks, endangering both human beings and the environment. Metal-organic frameworks (MOFs), which feature ordered pore structures and excellent tunability at both metal/metal cluster nodes and organic linkers, are regarded as the best candidates to directly remove CWAs and their simulants via both physical adsorption and chemically catalyzed hydrolysis or oxidization. MOFs have attracted significant attention in the last two decades that has resulted from the rapid development of MOF-based materials in both fundamental research and real-world applications. In this review, the authors focus on the recent advancements in designing and constructing functional MOF-based materials toward CWAs detoxification and discuss how to bridge the gap between fundamental science and real-world applications. With detailed summaries from different points of view, this review provides insights into design rules for developing next-generation MOF-based materials for protection from both organophosphorus and organosulfur CWAs to mitigate potential threats from CWAs used in wars and terrorism attacks.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| | - Kira M Fahy
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- International Institute for Nanotechnology (IIN), Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- International Institute for Nanotechnology (IIN), Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Zhou J, Zhou Q, Sun H, Li X, Chen A, Chen J, Chu C. Selective detoxification of a sulfur mustard simulant in air by a methylene blue-functionalized metal-organic framework. Dalton Trans 2025; 54:1827-1837. [PMID: 39670829 DOI: 10.1039/d4dt02740j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Efficient degradation of sulfur mustard is essential owing to its extreme toxicity and widespread use as a chemical warfare agent. However, current degradation methods often lack selectivity and generate highly toxic by-products. Herein, we demonstrate an approach for the selective photodegradation of a sulfur mustard simulant using singlet oxygen (1O2) produced by a methylene blue (MB)-modified UiO-66-(COOH)2 (UC, a classical metal-organic framework) composite, termed as MB@UC. The composite was prepared via adsorption of MB onto the surface of UC through strong electrostatic interactions. The MB@UC composite demonstrates high 1O2 generation, enabling selective detoxification of a sulfur mustard simulant (2-chloroethyl ethyl sulfide) into relatively non-toxic sulfoxide, with a half-life of 1.8 minutes under ambient conditions. Compared to traditional detoxifying agents, the MB@UC composite offers superior selectivity, rapid degradation, and excellent recyclability, maintaining its performance over multiple cycles. This work presents a promising strategy for the development of advanced heterogeneous photosensitizers for the detoxification of chemical warfare agents.
Collapse
Affiliation(s)
- Jinfeng Zhou
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
- Yaoshan Laboratory, Pingdingshan 467000, P. R. China
| | - Qing Zhou
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Haoxuan Sun
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
- Yaoshan Laboratory, Pingdingshan 467000, P. R. China
| | - Xiangqian Li
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
- Yaoshan Laboratory, Pingdingshan 467000, P. R. China
| | - Ao Chen
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
| | - Junyao Chen
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
| | - Chunjie Chu
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
| |
Collapse
|
3
|
Feng Y, Jiang ZW, Gong X, Wang Y. Bifunctional Metal–Organic Gel for Deep Detoxification of Organophosphorus Nerve Agents through a Cascade Degradation Process. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024. [DOI: 10.1021/acssuschemeng.4c07121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yi Feng
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Zhong Wei Jiang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xue Gong
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Yi Wang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
4
|
Huang X, Wang H, Kong L, Chen Z, Zhang J, Zuo Y, Chen W. Microwave-assisted hydrothermal synthesis of highly dispersed cerium-zirconium solid solution on Ti 3C 2T x nanosheets as an efficient decontamination towards sulfur mustard simulants. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136203. [PMID: 39471616 DOI: 10.1016/j.jhazmat.2024.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
The microwave-assisted hydrothermal method has facilitated the straightforward and efficient production of nanoscale CexZr1-xO2/Ti3C2Tx composites. This technique has greatly shortened the synthesis time several hours required by conventional hydrothermal method to merely 10 min. Due to the unique mechanism of microwave-hydrothermal synthesis, composites with excellent crystallinity, uniform particle size, and superior degradation capabilities can be obtained without calcination. Our investigation systematically explores the influence of various factors including mineralizer concentration, dispersant types, synthesis duration, cerium-to-zirconium ratio, as well as MXene content on the material properties. Optimal degradation of 2-chloroethyl ethyl sulfide (2-CEES), sulfur mustard simulants, is achieved using PEG1000 as the dispersant, a cerium-to-zirconium ratio of 1:2, along with 15 mL of MXene, resulting in a remarkably short half-life of only 6.5 min. Furthermore, it is confirmed that the incorporation of cerium atoms into ZrO2 lattice, forming a solid solution that is deposited onto the interlayer and surface of Ti3C2Tx nanosheets, with the composite particles measuring approximately 5.01 nm. The reduced size and increased specific surface area, coupled with the synergistic effects of oxygen vacancies and acid-base sites, ultimately contribute to the hydrolysis and elimination reactions occurring on 2-CEES. This research offers fresh perspectives on the development of novel materials for the degradation of chemical warfare agents.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Zihao Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
5
|
Shao G, Huang X, Shen X, Li C, Thomas A. Metal-Organic Framework and Covalent-Organic Framework-Based Aerogels: Synthesis, Functionality, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409290. [PMID: 39467257 DOI: 10.1002/advs.202409290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs)-based aerogels are garnering significant attention owing to their unique chemical and structural properties. These materials harmoniously combine the advantages of MOFs and COFs-such as high surface area, customizable porosity, and varied chemical functionality-with the lightweight and structured porosity characteristic of aerogels. This combination opens up new avenues for advanced applications in fields where material efficiency and enhanced functionality are critical. This review provides a comparative overview of the synthetic strategies utilized to produce pristine MOF/COF aerogels as well as MOF/COF-based hybrid aerogels, which are functionalized with molecular precursors and nanoscale materials. The versatility of these aerogels positions them as promising candidates for addressing complex challenges in environmental remediation, energy storage and conversion, sustainable water-energy technologies, and chemical separations. Furthermore, this study discusses the current challenges and future prospects related to the synthesis techniques and applications of MOF/COF aerogels.
Collapse
Affiliation(s)
- Gaofeng Shao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaogu Huang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
| | - Arne Thomas
- Institute for Chemistry, Division of Functional Materials, Technische Universität Berlin, 10623, Berlin, Germany
| |
Collapse
|
6
|
Rabiee G, Abbasi A, Behbahani M. Quasi-2D MIL-100 (Fe) synthesis via benzene-1,3,5-tricarboxylic acid self-assembly: organic dye adsorption at room temperature with dramatically enhanced kinetics. NANOSCALE 2024; 16:20738-20751. [PMID: 39440444 DOI: 10.1039/d4nr02857k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Amid increasing environmental pollution, two-dimensional materials have played pivotal roles in environmental remediation. However, two-dimensional metal-organic frameworks (2D-MOFs) have yet to be thoroughly explored. This study introduces a novel approach to synthesize 2D-MOFs, particularly focusing on MIL-100-(Fe), for the adsorption of emerging organic dyes. By harnessing the self-assembly of benzene-1,3,5-tricarboxylic acid (BTC), we formed thin solid interfaces of BTC as building blocks to control the growth of MIL-100-(Fe). This resulted in quasi-2D structures that showed over a 35% increase in adsorption capacity and a 5.5-fold increase in the adsorption kinetics of Rhodamine B removal compared to their 3D counterparts. This new method overcomes traditional synthesis limitations, offering a replicable and high-yield procedure for 2D-MOF synthesis. Compared to its three-dimensional counterpart (3D MIL-100 Fe), the prepared adsorbent exhibited remarkably higher efficacy in the adsorption of Rhodamine B, with high structural stability and recyclability. The prepared adsorbent shows over 99% adsorption within 90 minutes for initial dye concentrations of 1-40 mg L-1via the Langmuir adsorption mechanism and pseudo-second-order kinetics. Our research pioneers a method for the synthesis of quasi 2D-MIL-100-(Fe), laying the groundwork for fabricating other 2D-MOF structures, particularly those based on carboxylic acids.
Collapse
Affiliation(s)
- Ghazal Rabiee
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Behbahani
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Jang HJ, Yun G, Shim H, Hwang SY, Kim SY, Kim J, Jung H, Khan MM, Sohn Y. Ultraviolet Light-Assisted Decontamination of Chemical Warfare Agent Simulant 2-Chloroethyl Phenyl Sulfide on Metal-Loaded TiO 2/Ti Surfaces. ChemistryOpen 2024; 13:e202300246. [PMID: 38377228 PMCID: PMC11319225 DOI: 10.1002/open.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
The application of ultraviolet (UV) light for the decontamination of chemical warfare agents (CWAs) has gained recognition as an effective method, especially for treating hard-to-reach areas where wet chemical methods are impractical. In this study, TiO2/Ti was employed as a model catalyst, which was contaminated with 2-chloroethyl phenyl sulfide (CEPS), and subjected to photocatalytic decontamination using both UVB and UVC light. Additionally, photocatalytic decontamination efficiency by introducing Au, Pt, and Cu onto the TiO2/Ti surface was explored. During the photodecomposition process under UVC light, at least eight distinct secondary byproducts were identified. It was observed that the introduction of overlayer metals did not significantly enhance the photodecomposition under UVC light instead overlaid Au exhibited substantially improved activity under UVB light. Whereas, photodecomposition process under UVB light, only five secondary products were detected, including novel compounds with sulfoxide and sulfone functional groups. This novel study offers valuable insights into the generation of secondary products and sheds light on the roles of overlayer metals and photon wavelength in the photodecontamination process of CWA.
Collapse
Affiliation(s)
- Hye Ji. Jang
- Department of ChemistryChungnam National UniversityDaejeon34134Republic of Korea
| | - Gaeun Yun
- Department of ChemistryChungnam National UniversityDaejeon34134Republic of Korea
| | - Huieun Shim
- Department of ChemistryChungnam National UniversityDaejeon34134Republic of Korea
| | - Seon Young Hwang
- Department of ChemistryChungnam National UniversityDaejeon34134Republic of Korea
| | - So Young Kim
- Department of ChemistryChungnam National UniversityDaejeon34134Republic of Korea
| | - Jeongkwon Kim
- Department of ChemistryChungnam National UniversityDaejeon34134Republic of Korea
| | - Heesoo Jung
- Agency for Defense Development (ADD)Daejeon34186Republic of Korea
| | - Mohammad Mansoob Khan
- Chemical SciencesFaculty of ScienceUniversiti Brunei DarussalamJalan Tungku LinkGadongBE 1410Brunei Darussalam
| | - Youngku Sohn
- Department of ChemistryChungnam National UniversityDaejeon34134Republic of Korea
| |
Collapse
|
8
|
Huang T, Chen Q, Jiang H, Zhang K. Research Progress in the Degradation of Chemical Warfare Agent Simulants Using Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1108. [PMID: 38998714 PMCID: PMC11243471 DOI: 10.3390/nano14131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Chemical warfare agents primarily comprise organophosphorus nerve agents, saliva alkaloids, cyanides, and mustard gas. Exposure to these agents can result in severe respiratory effects, including spasms, edema, and increased secretions leading to breathing difficulties and suffocation. Protecting public safety and national security from such threats has become an urgent priority. Porous metal-organic framework (MOF) materials have emerged as promising candidates for the degradation of chemical warfare agents due to their large surface area, tunable pore size distribution, and excellent catalytic performance. Furthermore, combining MOFs with polymers can enhance their elasticity and processability and improve their degradation performance. In this review, we summarize the literature of the past five years on MOF-based composite materials and their effectiveness in degrading chemical warfare agents. Moreover, we discuss key factors influencing their degradation efficiency, such as MOF structure, pore size, and functionalization strategies. Furthermore, we highlight recent developments in the design of MOF-polymer composites, which offer enhanced degradation performance and stability for practical applications in CWA degradation. These composite materials exhibit good performance in degrading chemical warfare agents, playing a crucial role in protecting public safety and maintaining national security. We can expect to see more breakthroughs in the application of metal-organic framework porous materials for degrading chemical warfare agents. It is hoped that these innovative materials will play a positive role in achieving social stability and security.
Collapse
Affiliation(s)
- Taotao Huang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| |
Collapse
|
9
|
Hu X, Yang Y, Li N, Huang C, Zhou Y, Zhang L, Zhong Y, Liu Y, Wang Y. Interface-regulated S-type core-shell PCN-224@TiO 2 heterojunction for visible-light-driven generation of singlet oxygen for selective photooxidation of 2-chloroethyl ethyl sulfide. J Colloid Interface Sci 2024; 674:791-804. [PMID: 38955010 DOI: 10.1016/j.jcis.2024.06.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Selective oxidation of sulfur mustard gas (HD) to non-toxic sulfoxide by the visible-light-catalyzed generation of singlet oxygen (1O2) is a promising degradation strategy. Although PCN-224 can absorb visible light, it suffers from rapid electron-hole recombination and low redox capacity, which limits the performance of HD degradation. Titanium dioxide (TiO2) is an excellent photocatalyst but it lacks visible-light-activity in degrading HD. In this study, PCN-224@TiO2 heterojunction with S-type core-shell structure was synthesized by in-situ growth method to prolong the visible light absorption capacity of TiO2 and inhibit the rapid recombination of PCN-224. The interface formation and internal electric field were optimized by adjusting the Zr/Ti ratio to enhance the charge transfer, redox capacity, electron-hole separation, and visible light absorption. In this study, the formation of heterojunction composites based on Zr-O-Ti linkages is demonstrated by a series of characterization methods. It is demonstrated by experiments and theoretical calculations that PCN-224@TiO2 can generate nearly 100 % 1O2 under visible light conditions without a sacrificial agent, resulting in efficient and selective oxidation of 2-chloroethyl ethyl sulfide (CEES), a simulant of HD, to non-toxic sulfoxide form.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China; Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Ying Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Nan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yanqin Liu
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yao Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
10
|
Huang X, Chen W, Wang H, Kong L, Zhang J, Zhao C, Zuo Y. Manganese Oxides with Different Morphologies In Situ Anchored onto Ti 3C 2T x Nanosheets: Highly Effective Decontamination toward Sulfur Mustard Simulants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30371-30384. [PMID: 38815133 DOI: 10.1021/acsami.4c03629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Manganese oxides with porous structure and abundant active sites show potential in degrading sulfur mustard (HD). However, there is an interface effect between the oily liquid HD and nano oxides, and the powder is prone to agglomeration, which leads to incomplete contact and limited degradation ability. Here, we demonstrate a simple hydrothermal method for preparing MnO2/Ti3C2 composites to address this problem. The influence of morphology and crystal structure on performance are examined. Herein, flower-like MnO2 is loaded onto the surface or interlayer of Ti3C2-MXene nanosheets during in situ formation, significantly expanding the specific surface area. It also provides abundant acid-base sites and oxygen vacancies for the degradation of simulants 2-chloro-ethyl-ethyl thioether (2-CEES) without external energy, resulting in a reaction half-life as fast as 12.5 min. The relationship between structure and performance is clearly elaborated through temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) analyses. Based on in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis, gas chromatography-mass spectrometry (GC-MS) analysis, and density functional theory (DFT) calculation, the proposed degradation pathway of the 2-CEES molecule is a synergistic effect of hydrolysis, elimination, and oxidation. Furthermore, the products are nontoxic or low toxic. Metal oxide/MXene composites are first illustrated for their potential use in degrading sulfur mustard, suggesting new insights into these materials as novel decontamination for decomposing chemical warfare agents.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Chonglin Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| |
Collapse
|
11
|
Wang X, Liu H, Sun M, Wang H, Feng X, Chen W, Feng X, Fan W, Sun D. Thiadiazole-Functionalized Th/Zr-UiO-66 for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7819-7825. [PMID: 38300743 DOI: 10.1021/acsami.3c17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Adsorptive separation technology provides an effective approach for separating gases with similar physicochemical properties, such as the purification of acetylene (C2H2) from carbon dioxide (CO2). The high designability and tunability of metal-organic framework (MOF) adsorbents make them ideal design platforms for this challenging separation. Herein, we employ an isoreticular functionalization strategy to fine-tune the pore environment of Zr- and Th-based UiO-66 by the immobilization of the benzothiadiazole group via bottom-up synthesis. The functionalized UPC-120 exhibits an enhanced C2H2/CO2 separation performance, which is confirmed by adsorption isotherms, dynamic breakthrough curves, and theoretical simulations. The synergy of ligand functionalization and metal ion fine-tuning guided by isoreticular chemistry provides a new perspective for the design and development of adsorbents for challenging gas separation processes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Haoyang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Wenmiao Chen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
12
|
Ali-Ahmad A, Hamieh T, Roques-Carmes T, Hmadeh M, Toufaily J. Effect of amino functional groups on the surface properties and Lewis's acid base parameters of UiO-66(NH 2) by inverse gas chromatography. Heliyon 2024; 10:e23839. [PMID: 38226281 PMCID: PMC10788446 DOI: 10.1016/j.heliyon.2023.e23839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Amino-functionalized metal organic frameworks (MOFs) have attracted much attention for various applications such as carbon dioxide capture, water remediation and catalysis. The focus of this study is to determine the surface and Lewis's acid-base properties of UiO-66(NH2) crystals by the inverse gas chromatography (IGC) technique at infinite dilution. The latter was applied to evaluate the dispersive component of the surface energy γ s d ( T ) by using thermal model and several molecular models. The obtained results proved that γ s d ( T ) decreases when the temperature increases. The best results were achieved by using the thermal model that takes into account the effect of the temperature on the surface areas of the organic molecules. We also observed a decrease of the Gibbs surface free energy of adsorption by increasing the temperature of the different organic solvents. The polar interactions of UiO-66(NH2) were obtained by using the methods of Saint-Flour Papirer, Donnet et al., Brendlé-Papirer and the different molecular models. The Lewis's acid base constants K A and K D were further calculated by determining the different variables of adsorption of the probes on the solid surface and the obtained values were 1.07 and 0.45 for K A and K D respectively, with an acid-base ratio (KA/KD) of 2.38. These values showed the high acidic surface of the solid substrate; whereas, the values of the entropic acid base parameters, ω A , ω D and ω A / ω D respectively equal to 1.0 × 10 - 3 , 3.8 × 10 - 4 and 2.73 , also highlighted the important acidity of UiO-66-(NH2) surface. These important findings suggest that the surface defects (missing linkers and/or clusters) in UiO-66(NH2) are the main determining factor of the acid-base properties of UiO-66 based structures.
Collapse
Affiliation(s)
- Ali Ali-Ahmad
- Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Hadath, Lebanon
- Laboratory of Applied Studies to the Sustainable Development and Renewable Energies (LEADDER), EDST, Faculty of Sciences, Lebanese University, Hadath, Lebanon
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon
| | - Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Thibault Roques-Carmes
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, 54000 Nancy, France
| | - Mohamad Hmadeh
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon
| | - Joumana Toufaily
- Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Hadath, Lebanon
- Laboratory of Applied Studies to the Sustainable Development and Renewable Energies (LEADDER), EDST, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| |
Collapse
|
13
|
Zhou C, Li L, Qin H, Wu Q, Wang L, Lin C, Yang B, Tao CA, Zhang S. Humidity Enhances the Solid-Phase Catalytic Ability of a Bulk MOF-808 Metal-Organic Gel toward a Chemical Warfare Agent Simulant. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54582-54589. [PMID: 37974445 DOI: 10.1021/acsami.3c14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Zirconium-based metal-organic frameworks have emerged as promising materials for detoxifying chemical warfare agents (CWAs) due to their remarkable stability and porosity. However, their practical application is hindered by issues with their powder form and poor catalytic performance in solid-phase degradation. To address these challenges, herein, a granular MOF-808 metal-organic gel (G808) is prepared under optimized conditions for catalytic degradation of the simulant 2-chloroethyl ethyl sulfide (2-CEES), a sulfide blister agent, in a neat state under different humidity conditions. The detoxification performance of G808 toward 2-CEES is significantly enhanced as the content of water present increases. The half-life of 2-CEES decontaminated by G808 can be shortened to 816 s, surpassing those of many other benchmark materials. To confirm the mechanism of catalytic degradation, we used gas chromatography, gas chromatography-mass spectrometry, and theoretical calculations. The findings revealed that hydrolysis was the predominant route. Additionally, granular G808 was reusable and adaptable to high-moisture environments, making it an excellent protective material with practical potential.
Collapse
Affiliation(s)
- Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Li Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Haojie Qin
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qiong Wu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Liying Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Changxu Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bo Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| |
Collapse
|
14
|
Oh S, Lee S, Lee G, Oh M. Boosted ability of ZIF-8 for early-stage adsorption and degradation of chemical warfare agent simulants. NANOSCALE ADVANCES 2023; 5:6449-6457. [PMID: 38024321 PMCID: PMC10662003 DOI: 10.1039/d3na00807j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Efficient adsorption of hazardous substances from the environment is crucial owing to the considerable risks they pose to both humans and ecosystems. Consequently, the development of porous materials with strong adsorption capabilities for hazardous substances, such as chemical warfare agents (CWAs), is pivotal for safeguarding human lives. Specifically, the early-stage adsorption proficiency of the adsorbents plays a vital role in determining their effectiveness as ideal adsorbents. Herein, we report the efficient adsorption of CWA simulants using thermally treated ZIF-8 (T-ZIF-8). The T-ZIF-8 samples were prepared by subjecting ZIF-8 to a simple thermal treatment, which resulted in a more positive surface charge with extra open metal sites. Although the pore volume of T-ZIF-8 decreased after thermal treatment, the positive surface charge of T-ZIF-8 proved advantageous for the adsorption of the CWA simulants. As a result, the adsorption capacity of T-ZIF-8 for the CWA simulants improved compared to that of pure ZIF-8. Notably, T-ZIF-8 exhibited a remarkably enhanced adsorption ability in the early stage of exposure to the CWA simulants, possibly due to the effective polar interactions between T-ZIF-8 and the simulants via the electron-rich components within the CWA simulants. Moreover, the enhanced adsorption capacity of T-ZIF-8 led to the fast degradation of simulant compared to pure ZIF-8. T-ZIF-8 also demonstrated excellent stability over three adsorption cycles. These findings highlight that T-ZIF-8 is an outstanding material for the early-stage adsorption and degradation of CWA simulants, offering high effectiveness and stability.
Collapse
Affiliation(s)
- Sojin Oh
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Sujeong Lee
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Gihyun Lee
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| |
Collapse
|
15
|
Wang C, Feng X, Shang S, Liu H, Song Z, Zhang H. Adsorption of methyl orange from aqueous solution with lignin-modified metal-organic frameworks: Selective adsorption and high adsorption capacity. BIORESOURCE TECHNOLOGY 2023; 388:129781. [PMID: 37730139 DOI: 10.1016/j.biortech.2023.129781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The lignin-based metal-organic framework (UIO-g-NL) was prepared by a Schiff base reaction of aminated lignin and the zirconium cluster-based MOF (UIO-66-NH2) as an adsorbent of methyl orange (MO). The results showed that UIO-g-NL maintained the original crystal structure and aminated lignin was successfully introduced after functionalization. UIO-g-NL selectively adsorbed MO from a mixed solution 50 mg/L MO and 50 mg/L methylene blue (MB), with an adsorption efficiency of nearly 100%. In a mixed solution 250 mg/L MB and 250 mg/L MO, UIO-g-NL adsorbed both dyes with 1120.70 mg/g for MB and 961.54 mg/g for MO. Hydrogen bonding, π-π and NH-π interactions, and electrostatic attraction contribute to the MO adsorption by UIO-g-NL. In the MO/MB mixture, MO adsorption by UIO-g-NL follows the pseudo-second-order kinetic and Freundlich isotherm models, which is an endothermic, spontaneous, and feasible adsorption process. Furthermore, the MO adsorption efficiency of UIO-g-NL remained high (>90%) after six re-use cycles.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| |
Collapse
|
16
|
Zhang Y, Tao CA. Metal-Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels 2023; 9:815. [PMID: 37888388 PMCID: PMC10606365 DOI: 10.3390/gels9100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Chemical warfare agents (CWAs) have brought great threats to human life and social stability, and it is critical to investigate protective materials. MOF (metal-organic framework) gels are a class with an extended MOF architecture that are mainly formed using metal-ligand coordination as an effective force to drive gelation, and these gels combine the unique characteristics of MOFs and organic gel materials. They have the advantages of a hierarchically porous structure, a large specific surface area, machinable block structures and rich metal active sites, which inherently meet the requirements for adsorption and catalytic detoxification of CWAs. A series of advances have been made in the adsorption and catalytic detoxification of MOF gels as chemical warfare agents; however, overall, they are still in their infancy. This review briefly introduces the latest advances in MOF gels, including pure MOF gels and MOF composite gels, and discusses the application of MOF gels in the adsorption and catalytic detoxification of CWAs. Meanwhile, the influence of microstructures (pore structures, metal active site, etc.) on the detoxification performance of protective materials is also discussed, which is of great significance in the exploration of high-efficiency protective materials. Finally, the review looks ahead to next priorities. Hopefully, this review can inspire more and more researchers to enrich the performance of MOF gels for applications in chemical protection and other purification and detoxification processes.
Collapse
Affiliation(s)
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China;
| |
Collapse
|
17
|
Zhang L, Sun C, Xiao SJ, Tan QG, Yang GP, Fan JQ, Luo YT, Liang RP, Qiu JD. Deposition of Silver Nanostructures on Covalent Organic Frameworks for Photocatalytic Degradation of Sulfur Mustard Simulants. ACS APPLIED NANO MATERIALS 2023; 6:17083-17091. [DOI: 10.1021/acsanm.3c03262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Gui-Ping Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Qi Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yu-Ting Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| |
Collapse
|
18
|
Lee S, Oh S, Lee G, Oh M. Defective MOF-74 with ancillary open metal sites for the enhanced adsorption of chemical warfare agent simulants. Dalton Trans 2023; 52:12143-12151. [PMID: 37584168 DOI: 10.1039/d3dt02025h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The development of effective porous adsorbents plays a vital role in eliminating hazardous substances from the environment. Toxic chemicals, including chemical warfare agents (CWAs), pose significant risks to both humans and ecosystems, highlighting the urgency to create efficient porous adsorbents. Therefore, substantial attention has been directed towards advancing adsorption techniques for the successful eradication of CWAs from the environment. Herein, we demonstrate a rational approach for enhancing the adsorption capability of a porous metal-organic framework (MOF) by employing ancillary open metal sites within the MOF structure. To generate defective MOF-74 (D-MOF-74) with ancillary open metal sites, some of the 2,5-dihydroxy-1,4-bezenedicarboxylic acid (DHBDC) linkers originally present in the MOF-74 structure were replaced with 1,4-benzenedicarboxylic acid (BDC) linkers. The absence of hydroxyl groups in the BDC linkers compared to the original DHBDC linkers creates ancillary open metal sites, which enhance the adsorption ability of D-MOF-74 for CWA simulants such as dimethyl methyl phosphonate, 2-chloroethyl ethyl sulfide, and methyl salicylate by providing effective interaction sites for the targeted molecules. However, excessive creation of open metal sites causes the collapse of the originally well-developed MOF-74 structure, resulting in a substantial reduction in its empty space and a subsequent decline in adsorption efficiency. Thus, to produce a defective MOF with the best performance, it is necessary to replace an appropriate amount of organic linker and create suitable open metal sites. Moreover, D-MOF-74 displays excellent recyclability during consecutive adsorption cycles without losing its original structure and morphology, suggesting that D-MOF-74 is an effective and stable material for the removal of CWA simulants.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sojin Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Jiang N, Liu H, Zhao G, Li H, Yang S, Xu X, Zhuang X, Cheng B. Aramid nanofibers supported metal-organic framework aerogel for protection of chemical warfare agent. J Colloid Interface Sci 2023; 640:192-198. [PMID: 36863176 DOI: 10.1016/j.jcis.2023.02.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Protective fabrics containing Zr-Based Metal-Organic Frameworks (Zr-MOFs) show great potential in the detoxification of chemical warfare agents (CWAs). However, the current studies still face the challenges of complicated fabrication processes, limited MOF loading mass, and insufficient protection. Herein, we developed a lightweight, flexible and mechanical robust aerogel by in situ growth of UiO-66-NH2 onto aramid nanofibers (ANFs) and assembly of UiO-66-NH2 loaded ANFs (UiO-66-NH2@ANFs) into 3D hierarchically porous architecture. The UiO-66-NH2@ANF aerogels feature high MOF loading of 261 %, high surface area of 589.349 m2 g-1, open and interconnected cellular structure, which provide efficient transfer channels and promote catalytic degradation of CWAs. As a result, the UiO-66-NH2@ANF aerogels demonstrate high 2-chloroethyl ethyl thioether (CEES) removal rate at 98.9 % and a short half-life of 8.15 min. Moreover, the aerogels present good mechanical stability (recovery rate of 93.3 % after 100 cycles under 30 % strain), low thermal conductivity (λ of 25.66 mW m-1 K-1), high flame resistance (LOI of 32 %) and good wearing comfortableness, indicating promising potential in multifunctional protection against CWAs.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Hongyan Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Guodong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Heyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xianlin Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
20
|
Zhao H, Tao CA, Zhao S, Zou X, Wang F, Wang J. Porphyrin-Moiety-Functionalized Metal-Organic Layers Exhibiting Catalytic Capabilities for Detoxifying Nerve Agent and Blister Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3297-3306. [PMID: 36608147 DOI: 10.1021/acsami.2c18126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of very efficient bifunctional catalysts for the simultaneous detoxification of two kinds of the deadliest chemical warfare agents (CWAs), nerve agent and blister agent, is highly desirable. In this study, two porphyrin-based ligands [tetrakis(4-carboxyphenyl) porphyrin (TCPP) and protoporphyrin IX (PPIX)] are introduced into 2D Zr-1,3,5-tris(4-carboxyphenyl)benzene (BTB) metal-organic layers (MOLs), composed of six-connected Zr6 nodes and the tritopic carboxylate ligand BTB, by a solvent-assisted ligand incorporation method. The loads of TCPP and PPIX are 6.4 and 10.9 wt %, respectively. The detoxification of simulants of the nerve agent and the blister agent was conducted to investigate the catalytic activity of porphyrin-moiety-functionalized MOLs. The reaction half-life of optimal TCPP-functionalized MOL catalyzing the hydrolysis of a nerve agent simulant is only 2.8 min, meanwhile, the half-life of the selective catalytic oxidation of a blister agent simulant is only 1.2 min under LED illumination. More importantly, such a degradation half-life is only about 4 min under natural sunlight (∼60 mW/cm2). To our knowledge, TCPP-functionalized MOL is by far the most efficient catalyst for blister agent simulant degradation under solar light. Therefore, 2D ultrathin MOLs on demand appear to be a promising and efficient material platform for the development of bifunctional catalysts for CWA protection.
Collapse
Affiliation(s)
- He Zhao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Shiyin Zhao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiaorong Zou
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Fang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
21
|
Wu T, Qiu F, Xu R, Zhao Q, Guo L, Chen D, Li C, Jiao X. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1265-1275. [PMID: 36594244 DOI: 10.1021/acsami.2c19039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of functional materials that can detoxify multiple chemical warfare agents (CWAs) at the same time is of great significance to cope with the uncertainty of CWA use in real-world situations. Although many catalysts capable of detoxifying CWAs have been reported, there is still a lack of effective means to integrate these catalytic-active materials on practical fibers/fabrics to achieve effective protection against coexistence of a variety of CWAs. In this work, by a combination of electrospinning and in situ solvothermal reaction, PAN@Zr(OH)4@MOF-808 nanofiber membranes were prepared for detoxification of both nerve agent and blistering agent simulants dimethyl 4-nitrophenyl phosphate (DMNP) and 2-chloroethyl ethyl sulfide (CEES). Under the catalytic effect of the MOF-808 component, DMNP hydrolysis with a half-life as short as 1.19 min was achieved. Meanwhile, an 89.3% CEES removal rate was obtained within 12 h by adsorption and catalysis of MOF-808 and Zr(OH)4 components at ambient conditions, respectively. PAN@Zr(OH)4@MOF-808 nanofiber membranes also showed a superior blocking effect on CEES compared to bare PAN and PAN@Zr(OH)4 nanofiber membranes. Simultaneous protection against DMNP and CEES showed effective inhibition of both simulants for at least 2 h. The preparation method also imparted intrinsically good interfacial adhesion between the components, contributing to the excellent recycling stability of PAN@Zr(OH)4@MOF-808 nanofiber membranes. Therefore, the prepared composite nanofabrics have great application potential, which provides a new idea for the construction of broad-spectrum protective detoxification materials.
Collapse
Affiliation(s)
- Ting Wu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Feng Qiu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Ran Xu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Qi Zhao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Longfei Guo
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
22
|
Peterson GW, Mundy L. Incorporation of Metal–Organic Frameworks onto Polypropylene Fibers Using a Phase Inverted Poly(ether- block-amide) Glue. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory W. Peterson
- U.S. Army DEVCOM Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Laura Mundy
- Leidos, Inc. 3465 Box Hill Corporate Center Drive, Abingdon, Maryland 21009, United States
| |
Collapse
|