1
|
Fourati Kallel I, Kammoun JK, Lajnef H, Ben Ali S. Intelligent progress monitoring of healing wound tissues based on classification models. Biomed Phys Eng Express 2025; 11:035008. [PMID: 40096753 DOI: 10.1088/2057-1976/adc137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
The evolution of wound monitoring techniques has seen a significant shift from traditional methods like ruler-based measurements to the use of AI-assisted assessment of wound tissues. This progression has been driven by the need for more accurate, efficient, and non-invasive methods for wound assessment and treatment planning. The proposed approach aims to automate wound analysis and reduce efforts to manage chronic wounds. The snake's approach is used to extract wound areas and geometrical measures are used to monitor the rate of wound healing. A segmentation based on the color thresholding and K-means technique was carried out and demonstrated the effectiveness of the thresholding technique in mapping the wound tissues. The three proportions of wound tissues necrosis, slough, granulation and wound size are combined with three features from the patient's medical record and transmitted to the Support Vector Machine (SVM), Naive Bayes (NB) and Decision Tree (DT) classifiers. Finally, this work is ended with a comparative study that shows the efficiency and the interest of the proposed approach.
Collapse
Affiliation(s)
| | | | - Hanen Lajnef
- Innov'COM Laboratory, Sup'Com, University of Carthage, Tunisia
| | - Saif Ben Ali
- ESSE laboratory, ENET'com, University of Sfax, Tunisia
| |
Collapse
|
2
|
Jian X, Deng Y, Xiao S, Qi F, Deng C. Microneedles in diabetic wound care: multifunctional solutions for enhanced healing. BURNS & TRAUMA 2025; 13:tkae076. [PMID: 39958434 PMCID: PMC11827613 DOI: 10.1093/burnst/tkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 11/09/2024] [Indexed: 02/18/2025]
Abstract
Diabetic wounds present a significant challenge in clinical treatment and are characterized by chronic inflammation, oxidative stress, impaired angiogenesis, peripheral neuropathy, and a heightened risk of infection during the healing process. By creating small channels in the surface of the skin, microneedle technology offers a minimally invasive and efficient approach for drug delivery and treatment. This article begins by outlining the biological foundation of normal skin wound healing and the unique pathophysiological mechanisms of diabetic wounds. It then delves into the various types, materials, and preparation processes of microneedles. The focus is on the application of multifunctional microneedles in diabetic wound treatment, highlighting their antibacterial, anti-inflammatory, immunomodulatory, antioxidant, angiogenic and neural repair properties. These multifunctional microneedles demonstrate synergistic therapeutic effects by directly influencing the wound microenvironment, ultimately accelerating the healing of diabetic wounds. The advancement of microneedle technology not only holds promise for enhancing the treatment outcomes of diabetic wounds but also offers new strategies for addressing other chronic wounds.
Collapse
Affiliation(s)
- Xichao Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Yaping Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
3
|
Yang F, Lu D, Chen Y, Qi F, Wang X, Li J, Fu Q, Li R, Wu D, Wang J, Liu D, Zhao L. Bioadhesive supramolecular polymer/hyaluronic acid hydrogel with sustained release of zinc ions and dexamethasone for diabetic wound healing. Int J Biol Macromol 2025; 286:137752. [PMID: 39561845 DOI: 10.1016/j.ijbiomac.2024.137752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Diabetic patients often struggle with wound healing and are at higher risk of infections, necessitating the development of a stretchable, adhesive hydrogel dressing with antibacterial and angiogenesis-promoting properties. In this study, we synthesized a series of adhesive, antibacterial and anti-inflammatory hydrogels using free radical polymerization with materials including methacrylated hyaluronic acid (HAMA), N-[tris(hydroxymethyl)methyl]acrylamide (THMA), and 3-(bis(pyridin-2-ylmethyl)amino)propyl methacrylate (DPAMA). By leveraging the strong affinity of zinc(II)-dipicolylamine coordination complexes for the phosphorylated groups in dexamethasone sodium phosphate (DMSP), Zn2+ and DMSP were successfully incorporated into the hydrogel. The results demonstrated that the hydrogels possessed excellent adhesiveness and mechanical properties, enabling them to adhere closely to the skin while remaining easily removable without causing trauma. Antibacterial tests demonstrated significant inhibitory effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), attributed to the slow release of Zn2+, which effectively suppressed bacterial growth. Additionally, the slow release of DMSP provided strong anti-inflammatory effects. The DHTDZ2 hydrogel, containing 1.5 mg/mL Zn2+ and 4 mg/mL DMSP, significantly accelerated the healing of full-thickness skin wounds. In vitro angiogenesis, immunofluorescence, and immuno-histochemical results further confirmed that the DHTDZ2 hydrogel promoted angiogenesis and reduced the expression of pro-inflammatory factors. In summary, the hydrogel is an effective wound healing dressing that can reduce wound infections and inflammation.
Collapse
Affiliation(s)
- Fang Yang
- School of Food Science and Engineering, Foshan University, Foshan 528000, Guangdong, PR China
| | - Daoqiang Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510280, Guangdong, PR China
| | - Yiqing Chen
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China
| | - Fei Qi
- School of Clinical Medicine, Anhui Medical College, Hefei 230601, Anhui Province, PR China
| | - Xiu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528231, Guangdong, PR China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528231, Guangdong, PR China
| | - Qiang Fu
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China
| | - Riwang Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528231, Guangdong, PR China
| | - Di Wu
- School of Medicine, Foshan University, Foshan 528000, Guangdong, PR China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528231, Guangdong, PR China.
| | - Dahai Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528231, Guangdong, PR China.
| | - Lilian Zhao
- The 8th Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong, PR China.
| |
Collapse
|
4
|
Fu X, Xian H, Xia C, Liu Y, Du S, Wang B, Xue P, Wang B, Kang Y. Polymer homologue-mediated formation of hydrogel microneedles for controllable transdermal drug delivery. Int J Pharm 2024; 666:124768. [PMID: 39366526 DOI: 10.1016/j.ijpharm.2024.124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) microneedles (MNs) are hydrogel-based devices that achieve controlled drug delivery kinetics by adjusting the crosslinking density. However, the biosafety of many crosslinking agents used to regulate crosslinking density is not ideal. To avoid crosslinking agents and simplify the preparation process, using two types of polymer homologues with different number-average molecular weights, we have successfully developed a series of PEGDA MNs with controllable crosslinking density (abbreviated as TP-X MNs). The research showed that the mechanical properties and drug release behavior of TP-X MNs could be tuned by simply controlling the weight proportion of two different PEGDA components in MNs. Ex vivo drug delivery experiments indicated that all TP-X MNs exhibited a sustained release profile, and their control range of 336-hour accumulative release rates was from 6.24% to 40.93%. Moreover, we prepared a novel dual-layer PEDGA MN, which can customize the drug loading and release rate in each layer of MN. This work demonstrates a new way to develop hydrogel MNs with adjustable crosslink density and broadens the applications of PEGDA MN in the biomedical field.
Collapse
Affiliation(s)
- Xinwei Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Hong Xian
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanlan Xia
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Yingqi Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Shan Du
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Bo Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China.
| | - Bin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China.
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644000, China.
| |
Collapse
|
5
|
Wang Y, Kong R, Xie K, Wang X, Wu H, Zhang Y. The Chicken HDAC4 Promoter and Its Regulation by MYC and HIF1A. Genes (Basel) 2024; 15:1518. [PMID: 39766786 PMCID: PMC11675110 DOI: 10.3390/genes15121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Histone deacetylase 4 (HDAC4) is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken HDAC4 can provide fundamental insights into its function. METHODS We examined HDAC4 expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken HDAC4 transcription start site. Subsequently, we constructed pEGFP-HDAC4 and a series of 5'-deletion luciferase reporter constructs, which we transfected into DF-1 cells to measure their transcriptional activity. The regulatory mechanisms of chicken HDAC4 expression were investigated by performing trichostatin A (TSA) treatment, deleting putative transcription factor binding sites, and altering transcription factor expression levels. RESULTS HDAC4 exhibited higher expression in SSC than in ESC. We confirmed that the upstream region from -295 bp to 0 bp is the core transcriptional region of HDAC4. TSA effectively inhibited HDAC4 transcription, and bioinformatics analysis indicated that the chicken core HDAC4 promoter sequence exhibits high homology with those of other avian species. The myelocytomatosis viral oncogene homolog (MYC) and hypoxia-inducible factor 1 α (HIF1A) transcription factors were predicted to bind to this core region. Treatment with TSA for 24 h resulted in the upregulation of MYC and HIF1A, which repressed HDAC4 transcription. CONCLUSIONS Our results provide a basis for subsequent investigations into the regulation of HDAC4 expression and biological function.
Collapse
Affiliation(s)
- Yingjie Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ruihong Kong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ke Xie
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xu Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Han Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yani Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
7
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
8
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
He W, Kong S, Lin R, Xie Y, Zheng S, Yin Z, Huang X, Su L, Zhang X. Machine Learning Assists in the Design and Application of Microneedles. Biomimetics (Basel) 2024; 9:469. [PMID: 39194448 DOI: 10.3390/biomimetics9080469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Microneedles (MNs), characterized by their micron-sized sharp tips, can painlessly penetrate the skin and have shown significant potential in disease treatment and biosensing. With the development of artificial intelligence (AI), the design and application of MNs have experienced substantial innovation aided by machine learning (ML). This review begins with a brief introduction to the concept of ML and its current stage of development. Subsequently, the design principles and fabrication methods of MNs are explored, demonstrating the critical role of ML in optimizing their design and preparation. Integration between ML and the applications of MNs in therapy and sensing were further discussed. Finally, we outline the challenges and prospects of machine learning-assisted MN technology, aiming to advance its practical application and development in the field of smart diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Suixiu Kong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Rumin Lin
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Yuanting Xie
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ziyu Yin
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Su
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput Biol Med 2024; 178:108702. [PMID: 38878397 DOI: 10.1016/j.compbiomed.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 07/24/2024]
Abstract
Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India.
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, 854106, India; Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India.
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| | - S Gowri
- PG & Research, Department of Physics, Cauvery College for Women, Tiruchirapalli, Tamil Nadu, 620018, India
| | - Mohammad Khalid
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
11
|
Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308479. [PMID: 38385813 DOI: 10.1002/smll.202308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Derya Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
| | - Ahmet Erdem
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
- Department of Chemistry, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Farouk Segujja
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Scott Dulchavsky
- Department of Surgery, Henry Ford Health, Detroit, MI, 48201, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Colleges of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
12
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
13
|
Biswas AA, Dhondale MR, Agrawal AK, Serrano DR, Mishra B, Kumar D. Advancements in microneedle fabrication techniques: artificial intelligence assisted 3D-printing technology. Drug Deliv Transl Res 2024; 14:1458-1479. [PMID: 38218999 DOI: 10.1007/s13346-023-01510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Microneedles (MNs) are micron-scale needles that are a painless alternative to injections for delivering drugs through the skin. MNs find applications as biosensing devices and could serve as real-time diagnosis tools. There have been numerous fabrication techniques employed for producing quality MN-based systems, prominent among them is the three-dimensional (3D) printing. 3D printing enables the production of quality MNs of tuneable characteristics using a variety of materials. Further, the possible integration of artificial intelligence (AI) tools such as machine learning (ML) and deep learning (DL) with 3D printing makes it an indispensable tool for fabricating microneedles. Provided that these AI tools can be trained and act with minimal human intervention to control the quality of products produced, there is also a possibility of mass production of MNs using these tools in the future. This work reviews the specific role of AI in the 3D printing of MN-based devices discussing the use of AI in predicting drug release patterns, its role as a quality control tool, and in predicting the biomarker levels. Additionally, the autonomous 3D printing of microneedles using an integrated system of the internet of things (IoT) and machine learning (ML) is discussed in brief. Different categories of machine learning including supervised learning, semi-supervised learning, unsupervised learning, and reinforced learning have been discussed in brief. Lastly, a brief section is dedicated to the biosensing applications of MN-based devices.
Collapse
Affiliation(s)
- Anuj A Biswas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | - Ashish K Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | | | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India.
| |
Collapse
|
14
|
Zhuang ZM, Wang Y, Feng ZX, Lin XY, Wang ZC, Zhong XC, Guo K, Zhong YF, Fang QQ, Wu XJ, Chen J, Tan WQ. Targeting Diverse Wounds and Scars: Recent Innovative Bio-design of Microneedle Patch for Comprehensive Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306565. [PMID: 38037685 DOI: 10.1002/smll.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
Wounds and the subsequent formation of scars constitute a unified and complex phased process. Effective treatment is crucial; however, the diverse therapeutic approaches for different wounds and scars, as well as varying treatment needs at different stages, present significant challenges in selecting appropriate interventions. Microneedle patch (MNP), as a novel minimally invasive transdermal drug delivery system, has the potential for integrated and programmed treatment of various diseases and has shown promising applications in different types of wounds and scars. In this comprehensive review, the latest applications and biotechnological innovations of MNPs in these fields are thoroughly explored, summarizing their powerful abilities to accelerate healing, inhibit scar formation, and manage related symptoms. Moreover, potential applications in various scenarios are discussed. Additionally, the side effects, manufacturing processes, and material selection to explore the clinical translational potential are investigated. This groundwork can provide a theoretical basis and serve as a catalyst for future innovations in the pursuit of favorable therapeutic options for skin tissue regeneration.
Collapse
Affiliation(s)
- Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Jin Wu
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jian Chen
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| |
Collapse
|
15
|
Zhao C, Wu Z, Pan B, Zhang R, Golestani A, Feng Z, Ge Y, Yang H. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int J Biol Macromol 2024; 267:131650. [PMID: 38636756 DOI: 10.1016/j.ijbiomac.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.
Collapse
Affiliation(s)
- Chenyu Zhao
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Zhaoqi Wu
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Boyue Pan
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Avin Golestani
- Faculty of Life Science and Medicine, King's College London, London SE1 1UL, UK
| | - Ziyi Feng
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of Plastic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yi Ge
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
16
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
17
|
Meng S, Wei Q, Chen S, Liu X, Cui S, Huang Q, Chu Z, Ma K, Zhang W, Hu W, Li S, Wang Z, Tian L, Zhao Z, Li H, Fu X, Zhang C. MiR-141-3p-Functionalized Exosomes Loaded in Dissolvable Microneedle Arrays for Hypertrophic Scar Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305374. [PMID: 37724002 DOI: 10.1002/smll.202305374] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-β2 to suppress the TGF-β2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-β2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.
Collapse
Affiliation(s)
- Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengqiu Chen
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shiyi Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Lige Tian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Haihong Li
- Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| |
Collapse
|
18
|
Meng Q, Xie E, Sun H, Wang H, Li J, Liu Z, Li K, Hu J, Chen Q, Liu C, Li B, Han F. High-Strength Smart Microneedles with "Offensive and Defensive" Effects for Intervertebral Disc Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305468. [PMID: 37681640 DOI: 10.1002/adma.202305468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a global public health issue. The injury of annulus fibrosus (AF) caused by acupuncture or discectomy can trigger IVDD again. However, there is currently no suitable method for treating AF injury. In this study, the high-strength smart microneedles (MNs) which can penetrate the AF tissue through a local and minimally invasive method, and achieve remote control of speeded-up release of the drug and hyperthermia by the Near Infrared is developed. The PDA/GelMA composite MNs loaded with diclofenac sodium are designed to extracellularly "offend" the inflammatory microenvironment and mitigate damage to cells, and intracellularly increase the level of cytoprotective heat shock proteins to enhance the defense against the hostile microenvironment, achieving "offensive and defensive" effects. In vitro experiments demonstrate that the synergistic treatment of photothermal therapy and anti-inflammation effectively reduces inflammation, inhibits cell apoptosis, and promotes the synthesis of the extracellular matrix (ECM). In vivo experiments show that the MNs mitigate the inflammatory response, promote ECM deposition, reduce the level of apoptosis, and restore the biomechanical properties of the intervertebral disc (IVD) in rats. Overall, this high-strength smart MNs display promising "offensive and defensive" effects that can provide a new strategy for IVD repair.
Collapse
Affiliation(s)
- Qingchen Meng
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - En Xie
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Heng Sun
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jiaying Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhao Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Kexin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jie Hu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Qianglong Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
19
|
Wang Y, Zong Q, Wu H, Ding Y, Pan X, Fu B, Sun W, Zhai Y. Functional Microneedle Patch for Wound Healing and Biological Diagnosis and Treatment. Macromol Biosci 2023; 23:e2300332. [PMID: 37633658 DOI: 10.1002/mabi.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Wound healing, especially chronic wounds, has been one of the major challenges in the field of biomedicine. Drug therapy alone is not effective, so a variety of functional wound healing dressings have been developed. Microneedles have attracted more and more attentions in the field of wound healing dressings due to their penetration and high drug delivery efficiency. In this review, all the studies on the application of microneedles in wound healing in recent years are summarized, classify different microneedles according to their functions in the process of wound healing, discuss the current challenges in the transformation of microneedle technology toward clinical applications, and finally look forward to the future design and development directions of microneedles in this field.
Collapse
Affiliation(s)
- Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Ding
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang, 110016, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
20
|
Alqahtani T, Badreldin HA, Alrashed M, Alshaya AI, Alghamdi SS, Bin Saleh K, Alowais SA, Alshaya OA, Rahman I, Al Yami MS, Albekairy AM. The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Res Social Adm Pharm 2023:S1551-7411(23)00280-2. [PMID: 37321925 DOI: 10.1016/j.sapharm.2023.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Artificial Intelligence (AI) has revolutionized various domains, including education and research. Natural language processing (NLP) techniques and large language models (LLMs) such as GPT-4 and BARD have significantly advanced our comprehension and application of AI in these fields. This paper provides an in-depth introduction to AI, NLP, and LLMs, discussing their potential impact on education and research. By exploring the advantages, challenges, and innovative applications of these technologies, this review gives educators, researchers, students, and readers a comprehensive view of how AI could shape educational and research practices in the future, ultimately leading to improved outcomes. Key applications discussed in the field of research include text generation, data analysis and interpretation, literature review, formatting and editing, and peer review. AI applications in academics and education include educational support and constructive feedback, assessment, grading, tailored curricula, personalized career guidance, and mental health support. Addressing the challenges associated with these technologies, such as ethical concerns and algorithmic biases, is essential for maximizing their potential to improve education and research outcomes. Ultimately, the paper aims to contribute to the ongoing discussion about the role of AI in education and research and highlight its potential to lead to better outcomes for students, educators, and researchers.
Collapse
Affiliation(s)
- Tariq Alqahtani
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Hisham A Badreldin
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed Alrashed
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulrahman I Alshaya
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Khalid Bin Saleh
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shuroug A Alowais
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Omar A Alshaya
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Majed S Al Yami
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulkareem M Albekairy
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Long L, Ji D, Hu C, Yang L, Tang S, Wang Y. Microneedles for in situ tissue regeneration. Mater Today Bio 2023; 19:100579. [PMID: 36880084 PMCID: PMC9984687 DOI: 10.1016/j.mtbio.2023.100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Tissue injury is a common clinical problem, which may cause great burden on patients' life. It is important to develop functional scaffolds to promote tissue repair and regeneration. Due to their unique composition and structure, microneedles have attracted extensive attention in various tissues regeneration, including skin wound, corneal injury, myocardial infarction, endometrial injury, and spinal cord injury et al. Microneedles with micro-needle structure can effectively penetrate the barriers of necrotic tissue or biofilm, therefore improving the bioavailability of drugs. The use of microneedles to deliver bioactive molecules, mesenchymal stem cells, and growth factors in situ allows for targeted tissue and better spatial distribution. At the same time, microneedles can also provide mechanical support or directional traction for tissue, thus accelerating tissue repair. This review summarized the research progress of microneedles for in situ tissue regeneration over the past decade. At the same time, the shortcomings of existing researches, future research direction and clinical application prospect were also discussed.
Collapse
Affiliation(s)
- Linyu Long
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, 410009, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
22
|
Tiwari R, Pathak K. Local Drug Delivery Strategies towards Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15020634. [PMID: 36839956 PMCID: PMC9964694 DOI: 10.3390/pharmaceutics15020634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
A particular biological process known as wound healing is connected to the overall phenomena of growth and tissue regeneration. Several cellular and matrix elements work together to restore the integrity of injured tissue. The goal of the present review paper focused on the physiology of wound healing, medications used to treat wound healing, and local drug delivery systems for possible skin wound therapy. The capacity of the skin to heal a wound is the result of a highly intricate process that involves several different processes, such as vascular response, blood coagulation, fibrin network creation, re-epithelialisation, collagen maturation, and connective tissue remodelling. Wound healing may be controlled with topical antiseptics, topical antibiotics, herbal remedies, and cellular initiators. In order to effectively eradicate infections and shorten the healing process, contemporary antimicrobial treatments that include antibiotics or antiseptics must be investigated. A variety of delivery systems were described, including innovative delivery systems, hydrogels, microspheres, gold and silver nanoparticles, vesicles, emulsifying systems, nanofibres, artificial dressings, three-dimensional printed skin replacements, dendrimers and carbon nanotubes. It may be inferred that enhanced local delivery methods might be used to provide wound healing agents for faster healing of skin wounds.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur 208020, Uttar Pradesh, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206130, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
23
|
Enzyme-regulated NO programmed to release from hydrogel-forming microneedles with endogenous/photodynamic synergistic antibacterial for diabetic wound healing. Int J Biol Macromol 2023; 226:813-822. [PMID: 36528141 DOI: 10.1016/j.ijbiomac.2022.12.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The infection-prone wound pathology microenvironment leads to ulceration and difficult healing of diabetic wounds, which seriously affects the quality of survival of patients. In this study, natural polymer materials gelatin and polylysine were used as substrates. By introducing iron/tannic acid (FeIIITA) composite nanoparticles with excellent photothermal properties into the system, the glutamine residues of gelatin were crosslinked with the primary ammonia of polylysine by glutamine aminotransferase. A nanocomposite hydrogel with excellent antibacterial ability and NO production was constructed it was used to improve the clinical problems of diabetes wounds that were difficult to vascularize and easy to be infected. Under the premise of maintaining its structural stability, the hydrogel can be customized to meet the needs of different mechanical strengths by adjusting the ratios to match different diabetic wounds. Meanwhile, the photothermal effect of FeIIITA nanoparticles can synergize with the endogenous antibacterial ability of polylysine to improve the antibacterial efficacy of hydrogels. The potential of hydrogel to promote intracellular NO production was confirmed by fluorescent staining. Microneedle patches prepared from hydrogel can be applied to diabetic wounds, which can achieve NO deep release. Its anti-inflammatory and angiogenic abilities are also useful in achieving effective healing of diabetic wounds.
Collapse
|