1
|
Ma P, Da J, Zhao G, Suo F, Li Y, Zhou X, Li Y, Han Y, Zou M, Dou X. Injectable Light-Responsive Hydrogel Dressing Promotes Diabetic Wound Healing by Enhancing Wound Angiogenesis and Inhibiting Inflammation. Polymers (Basel) 2025; 17:607. [PMID: 40076100 PMCID: PMC11902652 DOI: 10.3390/polym17050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic wounds are therapeutically challenging because of the complex and adverse microenvironment that impedes healing. Unlike conventional wound dressings, hydrogels provide antibacterial, anti-inflammatory, and repair-promoting functions. In this study, we developed a light-responsive and injectable chitosan methacryloyl (CSMA) hydrogel, incorporating soy isoflavones (SIs) and gold nanoparticles (AuNPs). Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and proton nuclear magnetic resonance (1H NMR) spectroscopy analyses confirmed the successful synthesis of the CSMA/SI/AuNP hydrogels. In vitro experiments demonstrated that this hydrogel exhibited exceptional biocompatibility and enhanced the migration of human umbilical vein endothelial cells (p < 0.05), thereby underscoring its potential for promoting angiogenesis. In vivo studies have indicated that hydrogels significantly enhance the rate of wound healing (p < 0.001). Moreover, they facilitate angiogenesis (p < 0.01) and diminish the inflammatory response at the wound site (p < 0.05). Additionally, hydrogels promote collagen deposition and the regeneration of skin appendages. These findings substantiate the hydrogel's therapeutic potential for diabetic wound care, highlighting its promise for regenerative medicine. CSMA/SI/AuNP represents a significant advancement in diabetic wound treatment, addressing key challenges in wound healing by offering a multifaceted therapeutic approach with broad clinical implications for enhancing patient outcomes in chronic wound management.
Collapse
Affiliation(s)
- Peifen Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Jianlong Da
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Guanghui Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| | - Feiya Suo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Yan Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Xiaochun Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Yao Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Yiheng Han
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Mingyang Zou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| | - Xinman Dou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (P.M.); (J.D.); (F.S.); (Y.L.); (X.Z.); (Y.L.); (Y.H.); (M.Z.)
| |
Collapse
|
2
|
Jahani M, Asefnejad A, Al-Musawi MH, Mohammed AA, Al-Sudani BT, Hameed Al-Bahrani M, Kadhim NA, Shahriari-Khalaji M, Valizadeh H, Sharifianjazi F, Mehrjoo M, Tavamaishvili K, Tavakoli M. Antibacterial and wound healing stimulant nanofibrous dressing consisting of soluplus and soy protein isolate loaded with mupirocin. Sci Rep 2024; 14:26397. [PMID: 39488603 PMCID: PMC11531482 DOI: 10.1038/s41598-024-78161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Severe cutaneous injuries may not heal spontaneously and may necessitate the use of supplementary therapeutic methods. Electrospun nanofibers possess high porosity and specific surface area, which provide the necessary microenvironment for wound healing. Here in, the nanofibers of Soluplus-soy protein isolate (Sol-SPI) containing mupirocin (Mp) were fabricated via electrospinning for wound treatment. The fabricated nanofibers exhibited water absorption capacities of about 300.83 ± 29.72% and water vapor permeability values of about 821.8 ± 49.12 g/m2 day. The Sol/SPI/Mp nanofibers showed an in vitro degradability of 33.73 ± 3.55% after 5 days. The ultimate tensile strength, elastic modulus, and elongation of the Sol/SPI/Mp nanofibers were measured as 3.61 ± 0.29 MPa, 39.15 ± 5.08 MPa, and 59.11 ± 1.94%, respectively. Additionally, 85.90 ± 6.02% of Mp loaded in the nanofibers was released in 5 days in vitro, and by applying the Mp-loaded nanofibers, 93.06 ± 5.40% and 90.40 ± 5.66% of S. aureus and E. coli bacteria were killed, respectively. Human keratinocyte cells (HaCat) demonstrated notable biocompatibility with the prepared nanofibers. Furthermore, compare to other groups, Sol-SPI-Mp nanofibers caused the fastest re-epithelialization and wound healing in a rat model. The findings of this study present a novel nanofiber-based wound dressing that accelerates the healing of severe skin wounds with the risk of infection.
Collapse
Affiliation(s)
- Maryam Jahani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ahmed A Mohammed
- College of Pharmacy, Branch of Clinical Laboratory Sciences, University of Mustansiriyah, Baghdad, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maha Hameed Al-Bahrani
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Nada A Kadhim
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | | | - Hamideh Valizadeh
- Department of tissue engineering and regenerative medicine, Faculty of advanced technologies in medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, 0171, Georgia
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ketevan Tavamaishvili
- School of Medicine, Georgian American University, 10 Merab Aleksidze Str., Tbilisi, 0160, Georgia
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
3
|
Wang H, Luo Y, Wang L, Liu Z, Kang Z, Che X. A separable double-layer self-pumping dressing containing astragaloside for promoting wound healing. Int J Biol Macromol 2024; 281:136342. [PMID: 39374715 DOI: 10.1016/j.ijbiomac.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Some skin wounds often have many exudate. Ordinary single layer electrospunning nanofiber wound dressings often don't have enough capacity to absorb them. Therefore, a separable double layer electrospunning nanofiber dressing was developed in this work. The dressing had a separable feature that allowed the upper layer to be separated and removed after it had absorbed a significant amount of wound exudate. This dressing consisted of an upper layer of super hydrophilic sodium polyacrylate nanofibers and a bottom layer of 3D-structure coaxial nanofibers with encapsulated Astragaloside (AS). The results showed that nanofibers had better morphology. The water absorption rate, water vapor transmission rate and free radical scavenging rate of the double-layer dressings were 1461.71 ± 39.72 %, 1193.63 ± 134 g·m-2·day-1, and 63.35 ± 3.65 %, respectively. The double-layer nanofiber dressing achieved 65.69 ± 2.62 % and 75.10 ± 6.26 % inhibition against Staphylococcus aureus and Escherichia coli, respectively. The double-layer dressing had proliferative, migratory, and adhesive effects on L929 fibroblasts. And the double-layer dressing resulted in a 96.78 ± 1.0 % wound healing rate in rats after giving a 14 days treatment. Therefore, the 3D-structure separable double-layer wound dressing designed and prepared in this study was effective in promoting wound healing.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Yongming Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zhichao Kang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
4
|
Huang C, Zhang Z, Fang Y, Huang K, Zhao Y, Huang H, Wu J. Cost-effective and natural-inspired lotus root/GelMA scaffolds enhanced wound healing via ROS scavenging, angiogenesis and reepithelialization. Int J Biol Macromol 2024; 278:134496. [PMID: 39128742 DOI: 10.1016/j.ijbiomac.2024.134496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Skin wounds, prevalent and fraught with complications, significantly impact individuals and society. Wound healing encounters numerous obstacles, such as excessive reactive oxygen species (ROS) production and impaired angiogenesis, thus promoting the development of chronic wound. Traditional clinical interventions like hemostasis, debridement, and surgery face considerable challenges, including the risk of secondary infections. While therapies designed to scavenge excess ROS and enhance proangiogenic properties have shown effectiveness in wound healing, their clinical adoption is hindered by high costs, complex manufacturing processes, and the potential for allergic reactions. Lotus root, distinguished by its natural micro and macro porous architecture, exhibits significant promise as a tissue engineering scaffold. This study introduced a novel scaffold based on hybridization of lotus root-inspired and Gelatin Methacryloyl (GelMA), verified with satisfactory physicochemical properties, biocompatibility, antioxidative capabilities and proangiogenic abilities. In vivo tests employing a full-thickness wound model revealed that these scaffolds notably enhanced micro vessel formation and collagen remodeling within the wound bed, thus accelerating the healing process. Given the straightforward accessibility of lotus roots and the cost-effective production of the scaffolds, the novel scaffolds with ROS scavenging, pro-angiogenesis and re-epithelialization abilities are anticipated to have clinical applicability for various chronic wounds.
Collapse
Affiliation(s)
- Chunlin Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhen Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yifei Fang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Keqing Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China; Division of Life Science, The Hong Kong University of Science and Technology, 999077, Hong Kong, China.
| |
Collapse
|
5
|
Zhao W, Yang X, Li L. Soy Protein-Based Wound Dressings: A Review of Their Preparation, Properties, and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39058925 DOI: 10.1021/acsami.4c05106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Wound healing is a major challenge worldwide, and people have been researching wound dressings that can promote wound healing for decades. Natural biobased materials, such as polysaccharides and proteins, have been widely used in the development of wound dressings. Among them, soy protein-based materials have attracted the interest of a wide range of researchers due to their safety, biocompatibility, controlled degradation, and ability to be mixed with other materials. However, there has been a lack of comments on these soy protein-based wound dressings. This work reviews various forms of soy protein-based wound dressings, such as hydrogels, films, and others, which could be prepared through physical/chemical cross-linking with synthetic or natural polymers. The important role played by soy protein-based materials in the wound healing phase and their properties will be examined, such as their anti-inflammatory, antioxidant, angiogenesis-promoting, cellular biocompatibility, self-healing ability, adhesion, antimicrobial, and tunable mechanical properties. Additionally, insights into the market prospects and trends for soy protein dressings are provided, clarifying the enormous development potential of soy protein as a new type of wound repair material.
Collapse
Affiliation(s)
- Wei Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
6
|
Zhong H, Fang Y, Luo M, Wang L, Huang J, Dai G, Liu K, Wu J, Du J. Deferoxamine-Loaded Injectable Chitosan-Grafted Chlorogenic Acid/Oxidized Hyaluronic Acid Hybrid Hydrogel with Antibacterial, Anti-inflammatory, and Angiogenesis-Promoting Properties for Diabetic Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28209-28221. [PMID: 38778020 DOI: 10.1021/acsami.4c04677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Diabetic chronic wounds are notoriously difficult to heal as a result of their susceptibility to infection. To address this issue, we constructed an innovated and adaptable solution in the form of injectable chitosan (CS) hydrogel, denoted as CCOD, with enhanced antibacterial and anti-inflammatory properties. This hydrogel is created through a Schiff base reaction that combines chitosan-grafted chlorogenic acid (CS-CGA) and oxidized hyaluronic acid (OHA) with deferoxamine (DFO) as a model drug. The combination of CS and CGA has demonstrated excellent antibacterial and anti-inflammatory properties, while grafting played a pivotal role in making these positive effects stable. These unique features make it possible to customize injectable hydrogel and fit any wound shape, allowing for more effective and personalized treatment of complex bacterial infections. Furthermore, the hydrogel system is not only effective against inflammation and bacterial infections but also possesses antioxidant and angiogenic abilities, making it an ideal solution for the repair of chronic wounds that have been previously thought of as unmanageable.
Collapse
Affiliation(s)
- Huiling Zhong
- Medical Research Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, People's Republic of China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yifei Fang
- Medical Research Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, People's Republic of China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, People's Republic of China
| | - Gang Dai
- National Health Commission Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Ke Liu
- Medical Research Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, People's Republic of China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, People's Republic of China
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, People's Republic of China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, People's Republic of China
| | - Jianhang Du
- Medical Research Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, People's Republic of China
- National Health Commission Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| |
Collapse
|
7
|
Han Y, Yin Z, Wang Y, Jiang Y, Chen J, Miao Z, He F, Cheng R, Tan L, Li K. Photopolymerizable and Antibacterial Hydrogels Loaded with Metabolites from Lacticaseibacillus rhamnosus GG for Infected Wound Healing. Biomacromolecules 2024; 25:2587-2596. [PMID: 38527924 DOI: 10.1021/acs.biomac.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In response to increasing antibiotic resistance and the pressing demand for safer infected wound care, probiotics have emerged as promising bioactive agents. To address the challenges associated with the safe and efficient application of probiotics, this study successfully loaded metabolites from Lacticaseibacillus rhamnosus GG (LGG) into a gelatin cross-linked macromolecular network by an in situ blending and photopolymerization method. The obtained LM-GelMA possesses injectability and autonomous healing capabilities. Importantly, the incorporation of LGG metabolites endows LM-GelMA with excellent antibacterial properties against Staphylococcus aureus and Escherichia coli, while maintaining good biocompatibility. In vivo assessments revealed that LM-GelMA can accelerate wound healing by mitigating infections induced by pathogenic bacteria. This is accompanied by a reduction in the expression of key proinflammatory cytokines such as TNF-α, IL-6, VEGFR2, and TGF-β, leading to increased re-epithelialization and collagen formation. Moreover, microbiological analysis confirmed that LM-GelMA can modulate the abundance of beneficial wound microbiota at family and genus levels. This study provides a facile strategy and insights into the functional design of hydrogels from the perspective of wound microenvironment regulation.
Collapse
Affiliation(s)
- Yanting Han
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Zhe Yin
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
- Department of Gastroenterology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China
| | - Yilin Wang
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Key Laboratory of Biomass Fibers for Medical Care in Textile Industry, Sichuan University, Chengdu 610065, China
| | - Jianming Chen
- Research Institute for Intelligent Wearable Systems and Research Centre of Textiles for Future Fashion, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhonghua Miao
- Department of Clinical Nutrition, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Biomass Fibers for Medical Care in Textile Industry, Sichuan University, Chengdu 610065, China
- Sate Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ka Li
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
9
|
He D, Liao C, Li P, Liao X, Zhang S. Multifunctional photothermally responsive hydrogel as an effective whole-process management platform to accelerate chronic diabetic wound healing. Acta Biomater 2024; 174:153-162. [PMID: 38061676 DOI: 10.1016/j.actbio.2023.11.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The management of chronic diabetic wounds is a complex issue that requires wound repair, regulation of inflammatory levels, and intervention to prevent bacterial infection. To address this issue, we developed a multifunctional photothermally responsive hydrogel (PAG-CuS) as an effective platform for managing the entire wound-healing process, including promoting wound healing, providing anti-inflammatory therapy, and performing photothermal sterilization. Constructed through copolymerization of acrylic acid (AA), methacrylic anhydride-modified gelatin (GelMA), and lipoic acid sodium (LAS) coated copper sulfide nanoparticles (CuS@LAS), PAG-CuS possessed a porous three-dimensional structure that promoted cell adhesion and had a substantial water-holding capacity. Additionally, the internal CuS@LAS not only conferred photothermal antibacterial properties to the hydrogel but also served as physical cross-linking agents, thus enhancing its mechanical strength. Under the NIR-induced photothermal effect, the porous hydrogel liberates CuS@LAS, and later CuS@LAS expels LAS via micelle deassembly to eliminate intracellular ROS. This results in the down-regulation of MMP-9 expression, promoting ECM production and facilitating wound healing. Meanwhile, the release of Cu2+ from PAG-CuS could enhance CD31 expression in endothelial cells, promoting microvessel formation, which is crucial for wound healing. In the diabetic wound model of GK rats, the PAG-CuS hydrogel reduced ROS levels, increased microvessel count, improved epithelialization, and enhanced wound healing. Therefore, this versatile photothermal hydrogel has the potential to be applied in sterilization, scavenging free radicals, and promoting angiogenesis, making it an effective and comprehensive solution to manage the challenges of diabetic wounds. STATEMENT OF SIGNIFICANCE: Assessment of functional recovery and timely adjustment of treatment strategy is critical in the management of chronic diabetic wounds. In this work, we prepared PAG-CuS composite hydrogels by integrating in situ reduction, chemical crosslinking, and nanoenhancement techniques. The near-infrared light-induced photothermal effect of PAG-CuS gel rapidly kills bacteria at the lesion site, and the generated heat simultaneously promotes the multilevel release of LAS from the gel, which could regulate the levels of ROS and MMP-9 to promote extracellular matrix formation. In addition, the Cu2+ released from the gel can promote the formation of blood vessels to improve blood oxygenation. Therefore, this project proposes a synergistic solution to realize the whole process of management to accelerate chronic diabetic wound healing.
Collapse
Affiliation(s)
- Dengfeng He
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Institute of Burn Research Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaoming Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Mirhaj M, Varshosaz J, Nasab PM, Al-Musawi MH, Almajidi YQ, Shahriari-Khalaji M, Tavakoli M, Alizadeh M, Sharifianjazi F, Mehrjoo M, Labbaf S, Sattar M, Esfahani SN. A double-layer cellulose/pectin-soy protein isolate-pomegranate peel extract micro/nanofiber dressing for acceleration of wound healing. Int J Biol Macromol 2024; 255:128198. [PMID: 37992930 DOI: 10.1016/j.ijbiomac.2023.128198] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pegah Madani Nasab
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Yasir Q Almajidi
- Department of Pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Mohamadreza Tavakoli
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mamoona Sattar
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Salar Nasr Esfahani
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Huang X, Li T, Jiang X, Wang Z, Wang M, Wu X, Li J, Shi J. Co-assembled Supramolecular Hydrogel of Salvianolic Acid B and a Phosphopeptide for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45606-45615. [PMID: 37733024 DOI: 10.1021/acsami.3c09219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Supramolecular natural product gels (NPGs) have emerged as promising biomaterials for scalable and adjustable drug delivery systems. These gels possess biocompatibility, biodegradability, and the ability to mimic the extracellular matrix. Salvianolic acid B (SAB), derived from Salvia miltiorrhiza, a Chinese medicinal plant, exhibits various beneficial properties such as antioxidant, antifibrotic, and angiogenic effects. In our research, we serendipitously discovered that the co-assembly of SAB and a soluble phosphopeptide results in the formation of a robust and adhesive hydrogel termed 1&SAB hydrogel. This hydrogel effectively prolongs the retention time of the therapeutic agents on the skin's wound surface, thereby promoting wound healing. The hydrogel demonstrates antioxidant effects, enhances cell migration, accelerates angiogenesis, and inhibits scar hyperplasia. This innovative gel material offers a simple and efficient approach to managing skin wounds and holds promise for application in complex wound-healing treatments.
Collapse
Affiliation(s)
- Xiaojing Huang
- Hunan Key Laboratory of Aging Biology, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tingting Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Science, Hunan University, Changsha 410082, China
| | - Xingyue Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Science, Hunan University, Changsha 410082, China
| | - Zhuole Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Science, Hunan University, Changsha 410082, China
| | - Mingshui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Science, Hunan University, Changsha 410082, China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Science, Hunan University, Changsha 410082, China
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, Guangdong 518116, China
| | - Ji Li
- Hunan Key Laboratory of Aging Biology, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Science, Hunan University, Changsha 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong Province 518000, China
| |
Collapse
|
13
|
Chen K, Liu Y, Liu X, Guo Y, Liu J, Ding J, Zhang Z, Ni X, Chen Y. Hyaluronic acid-modified and verteporfin-loaded polylactic acid nanogels promote scarless wound healing by accelerating wound re-epithelialization and controlling scar formation. J Nanobiotechnology 2023; 21:241. [PMID: 37496007 PMCID: PMC10369727 DOI: 10.1186/s12951-023-02014-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Wound healing is a common occurrence. However, delayed healing and aberrant scarring result in pathological wound healing. Accordingly, a scarless wound healing remains a significant clinical challenge. In this study, we constructed hyaluronic acid (HA)-modified and verteporfin (VP)-loaded polylactic acid (PLA) nanogels (HA/VP-PLA) to promote scarless wound healing by accelerating wound re-epithelialization and controlling scar formation. Owing to the unique structure of HA incorporating and coating in VP-loaded PLA nanoparticles, HA/VP-PLA could be topically applied on wound to achieve targeted delivery to fibroblasts. Then, HA/VP-PLA released HA and lactic acid (LA) to stimulate the proliferation and migration of fibroblasts, as well as VP to inhibit Yes-associated protein (YAP) expression and nuclear localization to suppress fibrosis. In vitro (skin fibroblasts) and in vivo (rat and rabbit models) experiments strongly suggested that HA/VP-PLA promoted scarless wound healing by accelerating wound re-epithelialization and controlling scar formation. Therefore, our work provides a feasible strategy for scarless wound healing, and the sophisticated HA/VP-PLA exhibit a great potential for clinical applications.
Collapse
Affiliation(s)
- Kun Chen
- Department of Burn and Plastic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yuanhu Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children' s Hospital, Capital Medical University, National Center for Children' s Health, Beijing, 100045, China
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Xiaohui Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children' s Hospital, Capital Medical University, National Center for Children' s Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jing Liu
- Department of Burn and Plastic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiaojiao Ding
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children' s Hospital, Capital Medical University, National Center for Children' s Health, Beijing, 100045, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children' s Hospital, Capital Medical University, National Center for Children' s Health, Beijing, 100045, China.
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yunsheng Chen
- Department of Burn, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
14
|
Wang Y, Kang H, Hu J, Chen H, Zhou H, Wang Y, Ke H. Preparation of metal-organic framework combined with Portulaca oleracea L. extract electrostatically spun nanofiber membranes delayed release wound dressing. RSC Adv 2023; 13:21633-21642. [PMID: 37476048 PMCID: PMC10354497 DOI: 10.1039/d3ra01777j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we prepared a polyacrylonitrile (PAN) composite nanofiber membrane comprising Portulaca oleracea L. extract (POE) and a zinc-based metal-organic framework (MOF) by an in situ growth method as a potentially new type of wound dressing with a slow drug-release effect, to solve the problem of the burst release of drugs in wound dressings. The effects of the MOF and POE doping on the nanofiber membranes were examined using scanning electron microscopy (SEM) and FTIR spectroscopy. SEM analysis revealed the dense and uniform attachment of MOF particles to the surface of the nanofiber membrane, while FTIR spectroscopy confirmed the successful fusion of MOF and POE. Furthermore, investigations into the water contact angle and swelling property demonstrated that the incorporation of the MOF and POE enhanced the hydrophilicity of the material. The results of the in vitro release test showed that the cumulative release rate for PAN/MOF/POE60 decreased from 66.5 ± 2.34% to 32.18 ± 1.31% in the initial 4 h and from 90.54 ± 0.79% to 65.92 ± 1.95% in 72 h compared to PAN/POE, indicating a slowing down of the drug release. In addition, the antimicrobial properties of the fiber membranes were evaluated by the disc diffusion method, and it was evident that the PAN/MOF/POE nanofibers exhibited strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The antioxidant properties of the nanofiber membranes loaded with POE were further validated through the DPPH radical scavenging test. These findings highlight the potential application of the developed nanofiber membranes in wound dressings, offering controlled and sustained drug-release capabilities.
Collapse
Affiliation(s)
- Yize Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Hua Kang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Jao Hu
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Heming Chen
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huimin Zhou
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Ying Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huizhen Ke
- Fujian Engineering Research Center for Textile and Clothing, Faculty of Clothing and Design, Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University Fuzhou 350108 Fujian China
| |
Collapse
|
15
|
Hao Z, Liu G, Ren L, Liu J, Liu C, Yang T, Wu X, Zhang X, Yang L, Xia J, Li W. A Self-Healing Multifunctional Hydrogel System Accelerates Diabetic Wound Healing through Orchestrating Immunoinflammatory Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19847-19862. [PMID: 37042619 DOI: 10.1021/acsami.2c23323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Developing an effective treatment strategy of drug delivery to improve diabetic wound healing remains a major challenge in clinical practice nowadays, due to multidrug-resistant bacterial infections, angiopathy, and oxidative damage in the wound microenvironment. Herein, an effective and convenient strategy was designed through a self-healing multiple-dynamic-bond cross-linked hydrogel with interpenetrating networks, which was formed by multiple-dynamic-bond cross-linking of reversible catechol-Fe3+ coordinate bonds, hydrogen bonding, and Schiff base bonds. The excellent autonomous healing of the hydrogel was initiated and accelerated by Schiff bonds with reversible breakage between 3,4-dihydroxybenzaldehyde containing catechol and aldehyde groups and chitosan chains, and further consolidated by the co-optation of other noncovalent interactions contributed of hydrogen bonding and Fe3+ coordinate bonds. Intriguingly, cathelicidin LL-37 was introduced and uniformly dispersed in the dynamic interpenetrating networks of the hydrogel as a bioactive molecular to orchestrate the diabetic wound healing microenvironment. This multifunctional wound dressing can significantly promote diabetic wound healing by antibacterial activity, immunomodulation, anti-inflammation, neovascularization, and antioxidant activity. Therefore, this study provided an effective and safe strategy for guiding the diabetic wound treatment in clinical applications.
Collapse
Affiliation(s)
- Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Jiangchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Ling Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| |
Collapse
|
16
|
Musaie K, Abbaszadeh S, Nosrati-Siahmazgi V, Qahremani M, Wang S, Eskandari MR, Niknezhad SV, Haghi F, Li Y, Xiao B, Shahbazi MA. Metal-coordination synthesis of a natural injectable photoactive hydrogel with antibacterial and blood-aggregating functions for cancer thermotherapy and mild-heating wound repair. Biomater Sci 2023; 11:2486-2503. [PMID: 36779258 DOI: 10.1039/d2bm01965e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photothermal therapy (PTT) is a promising approach for treating cancer. However, it suffers from the formation of local lesions and subsequent bacterial infection in the damaged area. To overcome these challenges, the strategy of mild PTT following the high-temperature ablation of tumors is studied to achieve combined tumor suppression, wound healing, and bacterial eradication using a hydrogel. Herein, Bi2S3 nanorods (NRs) are employed as a photothermal agent and coated with hyaluronic acid to obtain BiH NRs with high colloidal stability. These NRs and allantoin are loaded into an injectable Fe3+-coordinated hydrogel composed of sodium alginate (Alg) and Farsi gum (FG), which is extracted from Amygdalus scoparia Spach. The hydrogel can be used for localized cancer therapy by high-temperature PTT, followed by wound repair through the combination of mild hyperthermia and allantoin-mediated induction of cell proliferation. In addition, an outstanding blood clotting effect is observed due to the water-absorbing ability and negative charge of FG and Alg as well as the porous structure of hydrogels. The hydrogels also eradicate infection owing to the local heat generation and intrinsic antimicrobial activity of the NRs. Lastly, in vivo studies reveal an efficient photothermal-based tumor eradication and accelerated wound healing by the hydrogel.
Collapse
Affiliation(s)
- Kiyan Musaie
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Shige Wang
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P.R. China
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Seyyed Vahid Niknezhad
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA 1, USA
| | - Fakhri Haghi
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715 China.
| | - Mohammad-Ali Shahbazi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Chummun Phul I, Huët MAL, Bekah D, Bhaw-Luximon A. Polysucrose hydrogel loaded with natural molecules/extracts for multiphase-directed sustainable wound healing. RSC Med Chem 2023; 14:534-548. [PMID: 36970144 PMCID: PMC10034044 DOI: 10.1039/d2md00402j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Natural molecules/extracts have numerous beneficial effects on wound healing processes which are challenged by appropriate use and non-toxic dosage. Polysucrose-based (PSucMA) hydrogels have been synthesized with in situ loading of one or more natural molecules/extracts namely Manuka honey (MH), Eucalyptus honey (EH1, EH2), Ginkgo biloba (GK), thymol (THY) and metformin (MET). EH1 presented low amounts of hydroxymethylfurfural and methylglyoxal compared to MH indicating that EH1 was not temperature-abused. It also showed high diastase activity and conductivity. GK was added to PSucMA solution along with other additives including MH, EH1 and MET and crosslinked to form dual loaded hydrogels. The in vitro release profiles of EH1, MH, GK and THY from the hydrogels followed the exponential Korsmeyer-Peppas equation, with a release exponent value of less than 0.5 indicating a quasi-Fickian diffusion mechanism. The IC50 values of these natural products using L929 fibroblasts and RAW 264.7 macrophages indicated that EH1, MH and GK were cytocompatible at relatively high concentrations compared to MET, THY and curcumin used as a control. MH and EH1 induced high IL6 concentration compared to GK. In vitro studies were modelled to mimic the overlapping wound healing phases using human dermal fibroblasts (HDFs), macrophages and human umbilical endothelial cells (HUVECs) in dual culture. HDFs showed a highly interconnected cellular network on GK loaded scaffolds. EH1 loaded scaffolds were seen to induce formation of spheroids which increased in number and size in co-culture studies. The SEM images of HDF/HUVEC seeded GK, GKMH and GKEH1 loaded hydrogels indicated formation of vacuoles and lumen structures. These results indicated that a combination of GK and EH1 in the hydrogel scaffold would accelerate tissue regeneration by acting on the four overlapping phases of wound healing.
Collapse
Affiliation(s)
- Itisha Chummun Phul
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius 80837 Réduit Mauritius
| | - Marie Andrea Laetitia Huët
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius 80837 Réduit Mauritius
| | - Devesh Bekah
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius 80837 Réduit Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius 80837 Réduit Mauritius
| |
Collapse
|
18
|
Wei Z, Peng G, Zhao Y, Chen S, Wang R, Mao H, Xie Y, Zhao C. Engineering Antioxidative Cascade Metal-Phenolic Nanozymes for Alleviating Oxidative Stress during Extracorporeal Blood Purification. ACS NANO 2022; 16:18329-18343. [PMID: 36356207 DOI: 10.1021/acsnano.2c06186] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oxidative stress is a compelling risk factor in chronic kidney diseases and is further aggravated for individuals during extracorporeal blood purification, ultimately leading to multiple complications. Herein, antioxidative cascade metal-phenolic nanozymes (metal-tannic acid nanozymes, M-TA NMs) are synthesized via metal ions-mediated oxidative coupling of polyphenols; then M-TA NMs engineered hemoperfusion microspheres (Cu-TAn@PMS) are constructed for alleviating oxidative stress. M-TA NMs show adjustable broad-spectrum antioxidative activities toward multiple reactive nitrogen and oxygen species (RNOS) due to the adjustable catalytic active centers. Importantly, M-TA NMs could mimic the cascade processes of superoxide dismutase and catalase to maintain intracellular redox balance. Detailed structural and spectral analyses reveal that the existence of a transition metal could decrease the electronic energy band gaps of M-TA NMs to offer better electron transfers for RNOS scavenging. Notably, dynamic blood experiments demonstrate that Cu-TAn@PMS could serve as an antioxidant defense system for blood in hemoperfusion to scavenge intracellular reactive oxygen species (ROS) effectively even in the complex blood environment and further protect endogenous antioxidative enzymes and molecules. In general, this work developed antioxidative cascade nanozymes engineered microspheres with excellent therapeutic efficacy for the treatment of oxidative stress-related diseases, which exhibited potential for clinical blood purification and extended the biomedical applications of nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | | | - Yi Xie
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | | |
Collapse
|