1
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
2
|
Romano G, Paradiso F, Li P, Shukla P, Barger LN, Naggar OE, Miller JP, Liang RJ, Helms TL, Lazar AJ, Wargo JA, Taraballi F, Costello JC, Kwong LN. Microparticle-Delivered Cxcl9 Prolongs Braf Inhibitor Efficacy in Melanoma. Cancer Immunol Res 2023; 11:558-569. [PMID: 36820825 PMCID: PMC10159986 DOI: 10.1158/2326-6066.cir-22-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Patients with BRAF-mutant melanoma show substantial responses to combined BRAF and MEK inhibition, but most relapse within 2 years. A major reservoir for drug resistance is minimal residual disease (MRD), comprised of drug-tolerant tumor cells laying in a dormant state. Towards exploiting potential therapeutic vulnerabilities of MRD, we established a genetically engineered mouse model of BrafV600E-driven melanoma MRD wherein genetic BrafV600E extinction leads to strong but incomplete tumor regression. Transcriptional time-course analysis after BrafV600E extinction revealed that after an initial surge of immune activation, tumors later became immunologically "cold" after MRD establishment. Computational analysis identified candidate T-cell recruiting chemokines as strongly upregulated initially and steeply decreasing as the immune response faded. Therefore, we hypothesized that sustaining chemokine signaling could impair MRD maintenance through increased recruitment of effector T cells. We found that intratumoral administration of recombinant Cxcl9 (rCxcl9), either naked or loaded in microparticles, significantly impaired MRD relapse in BRAF-inhibited tumors, including several complete pathologic responses after microparticle-delivered rCxcl9 combined with BRAF and MEK inhibition. Our experiments constitute proof of concept that chemokine-based microparticle delivery systems are a potential strategy to forestall tumor relapse and thus improve the clinical success of first-line treatment methods.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francesca Paradiso
- Center for Musculoskeletal Regeneration, Department of Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, Texas
- Reproductive Biology and Gynecological Oncology Group, Swansea University Medical School, Swansea, United Kingdom
| | - Peng Li
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pooja Shukla
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Olivia El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - John P Miller
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roger J Liang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy L Helms
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Department of Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, Texas
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Hollow-structured nanomaterials (HSNMs) have attracted increased interest in biomedical fields, owing to their excellent potential as drug delivery systems (DDSs) for clinical applications. Among HSNMs, hollow multi-shelled structures (HoMSs) exhibit properties such as high loading capacity, sequential drug release, and multi-functionalized modification and represent a new class of nanoplatforms for clinical applications. The remarkable properties of HoMS-based DDS can simultaneously satisfy and enhance DDSs for delivering small molecular drugs (e.g., antibiotics, chemotherapy drugs, and imaging agents) and macromolecular drugs (e.g., protein/peptide- and nucleic acid-based drugs). First, the latest research advances in delivering small molecular drugs are summarized and highlight the inherent advantages of HoMS-based DDSs for small molecular drug targeting, combining continuous therapeutic drug delivery and theranostics to optimize the clinical benefit. Meanwhile, the macromolecular drugs DDSs are in the initial development stage and currently offer limited delivery modes. There is a growing need to analyze the deficiency of other HSNMs and integrate the advantages of HSNMs, providing solutions for the safe, stable, and cascade delivery of macromolecular drugs to meet vast treatment requirements. Therefore, the latest advances in HoMS-based DDSs are comprehensively reviewed, mainly focusing on the characteristics, research progress by drug category, and future research prospects.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
4
|
Banche-Niclot F, Corvaglia I, Cavalera C, Boggio E, Gigliotti CL, Dianzani U, Tzagiollari A, Dunne N, Manca A, Fiorilli S, Vitale-Brovarone C. Optimization of an Injectable, Resorbable, Bioactive Cement Able to Release the Anti-Osteoclastogenic Biomolecule ICOS-Fc for the Treatment of Osteoporotic Vertebral Compression Fractures. Biomolecules 2023; 13:biom13010094. [PMID: 36671479 PMCID: PMC9855932 DOI: 10.3390/biom13010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.
Collapse
Affiliation(s)
- Federica Banche-Niclot
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Ilaria Corvaglia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Caterina Cavalera
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Elena Boggio
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Antzela Tzagiollari
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Antonio Manca
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Torino, Italy
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
- Correspondence:
| |
Collapse
|
5
|
Araujo-Gutierrez R, Van Eps JL, Scherba JC, Anastasio AT, Cabrera F, Vatsaas CJ, Youker K, Fernandez Moure JS. Platelet rich plasma concentration improves biologic mesh incorporation and decreases multinucleated giant cells in a dose dependent fashion. J Tissue Eng Regen Med 2021; 15:1037-1046. [PMID: 34551456 DOI: 10.1002/term.3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022]
Abstract
Platelet rich plasma (PRP) has been shown to improve incorporation and reduce inflammation in ventral hernia repair (VHR) with acellular dermal matrix (ADM). The concentration of platelets in PRP varies in clinical studies and an ideal concentration has yet to be defined. The effects of varied concentrations of PRP on ADM incorporation and inflammatory cell infiltration in a rat model of VHR. We hypothesized that increasing concentration of PRP would lead to improved incorporation, decreased CD8+ and multinucleated giant cell (MNGC) infiltrate. Lewis rats underwent ventral hernia creation and repair 30 days later with porcine non-crosslinked ADM. PRP was applied to the mesh prior to skin closure at concentrations of 1 × 104 plt/μL (PRP-LOW), 1 × 106 plt/μL (PRP-MID), or 1 × 107 plt/μL (PRP-HIGH) and tissue harvested at 2 and 4 weeks. Cellularization, tissue deposition, and mesh thickness using hematoxylin and eosin and Masson's trichrome, and neovascularization was assessed with VVG staining, to establish the relationship of PRP concentration to metrics of incorporation. MNGC and CD8+ T-cell infiltration were quantified to establish the relationship of inflammatory cell infiltration in response to PRP concentration. Lymphocyte infiltration was assessed using immunohistochemical staining for CD8. PRP-HIGH treated had significantly greater tissue deposition at 4 weeks. PRP-MID showed increasing mesh thickness at 2 weeks. Cell infiltration was significantly higher with PRP-HIGH at both 2 and 4 weeks while PRP-LOW showed increased cell infiltration only at 4 weeks. At both time points there was a trend towards a dose dependent response in cell infiltration to PRP concentration. Neovascularization was highest with MID-plt at 2 weeks, yet no significant differences were noted compared to controls. CD8+ cell infiltrate was significantly decreased at 2 and 4 weeks in PRP-LOW and PRP-MID treated groups. PRP at all concentrations significantly decreased MNGC infiltration at 2 weeks while only PRP-HIGH and PRP-MID had significant reductions in MNGC at 4 weeks. Both MNGC and CD8+ cell infiltration demonstrated dose dependent reduction in relation to PRP concentration. Increasing platelet concentrations of PRP correlated with improved incorporation, tissue deposition, and decreased scaffold degradation. These findings were associated with a blunted foreign body response. These findings suggest PRP reduces inflammation which may be beneficial for ADM incorporation in VHR.
Collapse
Affiliation(s)
| | - Jeffrey L Van Eps
- Department of Surgery, Section of Colon & Rectal Surgery, UTHealth at McGovern Medical School, Houston, Texas, USA
| | - Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Albert Thomas Anastasio
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Fernando Cabrera
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Cory J Vatsaas
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Keith Youker
- Department of Cardiovascular Science, Houston Methodist Hospital, Houston, Texas, USA
| | - Joseph S Fernandez Moure
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
6
|
He J, Hu X, Xing L, Chen D, Peng L, Liang G, Xiong C, Zhang X, Zhang L. Enhanced bone regeneration using poly(trimethylene carbonate)/vancomycin hydrochloride porous microsphere scaffolds in presence of the silane coupling agent modified hydroxyapatite nanoparticles. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Yu C, Zhu W, He Z, Xu J, Fang F, Gao Z, Ding W, Wang Y, Wang J, Wang J, Huang A, Cheng A, Wei Y, Ai S. ATP-triggered drug release system based on ZIF-90 loaded porous poly(lactic-co-glycolic acid) microspheres. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Martinez JO, Evangelopoulos M, Brozovich AA, Bauza G, Molinaro R, Corbo C, Liu X, Taraballi F, Tasciotti E. Mesenchymal Stromal Cell‐Mediated Treatment of Local and Systemic Inflammation through the Triggering of an Anti‐Inflammatory Response. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202002997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 01/05/2025]
Abstract
AbstractThe emergence of cell‐based therapeutics, specifically the use of mesenchymal stromal/stem cells (MSCs), stands to significantly affect the future of targeted drug delivery technologies. MSCs represent a unique cell type, offering more than only regenerative potential but also site‐specific inflammatory targeting and tissue infiltration. In this study, a versatile multicomponent delivery platform, combining MSC tropism with multistage nanovector (MSV)‐mediated payload delivery, is debuted. It is demonstrated that the incorporation of drug‐loaded MSVs bestows MSCs with the ability to transport anti‐inflammatory payloads, achieving a fivefold increase in payload release without negatively impacting cellular functions, viability, extravasation, and inflammatory homing. When incorporated within MSCs, MSVs avoid rapid sequestration by filtering organs and conserve a 15‐fold increase in local inflammatory targeting compared to healthy ears. Furthermore, this MSC‐mediated MSV platform (M&Ms) rapidly triggers a 4.5‐fold reduction of local inflammation compared to free drug and extends survival to 100% of treated mice in a lethal model of systemic inflammation.
Collapse
Affiliation(s)
- Jonathan O. Martinez
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
| | - Ava A. Brozovich
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
- Texas A&M College of Medicine 8447 Bryan Rd, Bryan Houston TX 77807 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital 6565 Fannin Street Houston Houston TX 77030 USA
| | - Guillermo Bauza
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea University Bay, Singleton Park Swansea Wales SA2 8PP UK
| | - Roberto Molinaro
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
| | - Claudia Corbo
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
- School of Medicine and Surgery Nanomedicine Center NANOMIB University of Milano‐Bicocca Vedano al Lambro MB 20854 Italy
| | - Xuewu Liu
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital 6565 Fannin Street Houston Houston TX 77030 USA
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration Houston Methodist Research Institute 6670 Bertner Ave Houston Houston TX 77030 USA
- Texas A&M College of Medicine 8447 Bryan Rd, Bryan Houston TX 77807 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital 6565 Fannin Street Houston Houston TX 77030 USA
| |
Collapse
|
9
|
Zhou J, Zhai Y, Xu J, Zhou T, Cen L. Microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles for finely manipulated drug release. Int J Pharm 2020; 593:120173. [PMID: 33321168 DOI: 10.1016/j.ijpharm.2020.120173] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
The current study explored the feasibility of a microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles (MSNs) to finely manipulate the drug release behaviors of the microspheres. MSNs were synthesized via a hydrothermal method, and PLGA microspheres loaded with MSNs (PLGA-MSNs) were prepared using a capillary-based three-phase microfluidic device. Drug loading and release behaviors using rhodamine B (RB) as a water-soluble model drug were investigated and compared with those of PLGA microspheres. MSNs with an average particle size of 119 nm, a specific surface area of 902.5 cm2/g, and a pore size of approximately 5 nm were obtained. The mean diameter of PLGA-MSNs was 56 μm (CV = 4.91%). A sustained release duration of encapsulated RB from PLGA-MSNs for 4 months was achieved without any observable burst release. PLGA microspheres with monodispersion could also allow for a similar release duration of encapsulated RB but encountered a burst release in the mid-term of the studied duration. PLGA-MSNs had a denser outer PLGA layer and a more centralized hollow hole than PLGA microspheres without MSNs. Hence, the incorporation of MSNs into PLGA microspheres via microfluidics could be an efficient strategy to finely tune the drug release behavior of PLGA microspheres.
Collapse
Affiliation(s)
- Jiayu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Yishu Zhai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Jumei Xu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
11
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Biocompatible PLGA-Mesoporous Silicon Microspheres for the Controlled Release of BMP-2 for Bone Augmentation. Pharmaceutics 2020; 12:pharmaceutics12020118. [PMID: 32024134 PMCID: PMC7076394 DOI: 10.3390/pharmaceutics12020118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been demonstrated to be one of the most vital osteogenic factors for bone augmentation. However, its uncontrolled administration has been associated with catastrophic side effects, which compromised its clinical use. To overcome these limitations, we aimed at developing a safer controlled and sustained release of BMP-2, utilizing poly(lactic-co-glycolic acid)-multistage vector composite microspheres (PLGA-MSV). The loading and release of BMP-2 from PLGA-MSV and its osteogenic potential in vitro and in vivo was evaluated. BMP-2 in vitro release kinetics was assessed by ELISA assay. It was found that PLGA-MSV achieved a longer and sustained release of BMP-2. Cell cytotoxicity and differentiation were evaluated in vitro by MTT and alkaline phosphatase (ALP) activity assays, respectively, with rat mesenchymal stem cells. The MTT results confirmed that PLGA-MSVs were not toxic to cells. ALP test demonstrated that the bioactivity of BMP-2 released from the PLGA-MSV was preserved, as it allowed for the osteogenic differentiation of rat mesenchymal stem cells, in vitro. The biocompatible, biodegradable, and osteogenic PLGA-MSVs system could be an ideal candidate for the safe use of BMP-2 in orthopedic tissue engineering applications.
Collapse
|
13
|
Geraldes DC, Beraldo-de-Araújo VL, Pardo BOP, Pessoa Junior A, Stephano MA, de Oliveira-Nascimento L. Protein drug delivery: current dosage form profile and formulation strategies. J Drug Target 2019; 28:339-355. [DOI: 10.1080/1061186x.2019.1669043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Danilo Costa Geraldes
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
- Biochemistry and Tissue Biology Department, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Viviane Lucia Beraldo-de-Araújo
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
- Biochemistry and Tissue Biology Department, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | - Laura de Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
- Biochemistry and Tissue Biology Department, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
14
|
Insight into the mechanism and factors on encapsulating basic model protein, lysozyme, into heparin doped CaCO3. Colloids Surf B Biointerfaces 2019; 175:184-194. [DOI: 10.1016/j.colsurfb.2018.11.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/25/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022]
|
15
|
Tsao CJ, Pandolfi L, Wang X, Minardi S, Lupo C, Evangelopoulos M, Hendrickson T, Shi A, Storci G, Taraballi F, Tasciotti E. Electrospun Patch Functionalized with Nanoparticles Allows for Spatiotemporal Release of VEGF and PDGF-BB Promoting In Vivo Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44344-44353. [PMID: 30511828 DOI: 10.1021/acsami.8b19975] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.
Collapse
Affiliation(s)
- Christopher J Tsao
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Laura Pandolfi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Xin Wang
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Silvia Minardi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Cristina Lupo
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Troy Hendrickson
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- MD/PhD Program , Texas A&M College of Medicine , 8441 Riverside Parkway , Bryan , Texas 77807 , United States
| | - Aaron Shi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Gianluca Storci
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Francesca Taraballi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| | - Ennio Tasciotti
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| |
Collapse
|
16
|
Ultrasound shear wave elastography effectively predicts integrity of ventral hernia repair using acellular dermal matrix augmented with platelet-rich plasma (PRP). Surg Endosc 2018; 33:2802-2811. [DOI: 10.1007/s00464-018-6571-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
|
17
|
Tsao CJ, Taraballi F, Pandolfi L, Velasquez-Mao AJ, Ruano R, Tasciotti E, Jacot JG. Controlled Release of Small Molecules for Cardiac Differentiation of Pluripotent Stem Cells. Tissue Eng Part A 2018; 24:1798-1807. [PMID: 30129882 DOI: 10.1089/ten.tea.2018.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been shown to differentiate to functional cardiomyocytes (CM) with high efficiency through temporally controlled inhibition of the GSK3/Wnt signaling pathways. In this study, we investigated the ability of temporally controlled release of GSK3/Wnt small-molecule inhibitors to drive cardiac differentiation of iPSC without manual intervention. Porous silica particles were loaded with GSK3 inhibitor CHIR99021 or Wnt inhibitor IWP2, and the particles containing IWP2 were coated with 5 wt% poly(lactic-co-glycolic acid) 50:50 to delay release by ∼72 h. iPSCs reprogrammed through mRNA transfection were cultured with these particles up to 30 days. High-performance liquid chromatography suggests a burst release of CHIR99021 within the first 24 h and a delayed release of IWP2 after 72 h. Annexin V/propidium iodide staining did not show a significant effect on apoptosis or necrosis rates. Cultured cells upregulated both early (Nkx 2.5, Isl-1) and late (cTnT, MHC, Cx43) cardiac markers, assayed with a quantitative real-time polymerase chain reaction, and began spontaneous contraction at 3.0 ± 0.6 Hz at 15-21 days after the start of differentiation. CM had clear sarcomeric striations when stained for β-myosin heavy chain, and showed expression and punctate membrane localization of gap junction protein Connexin43. Calcium and voltage-sensitive imaging showed both action potential and calcium transients typical of immature CM. This study showed that the cardiac differentiation of pluripotent stem cells can be directed by porous silica vectors with temporally controlled release of small-molecule inhibitors. These results suggest methods for automating and eliminating variability in manual maintenance of inhibitor concentrations in the differentiation of pluripotent stem cells to CM.
Collapse
Affiliation(s)
| | - Francesca Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas
| | - Laura Pandolfi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas
| | | | - Rodrigo Ruano
- Department of Obstetrics and Gynecology, Fetal Diagnostic and Intervention Center, Rochester, Minnesota
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas
| | - Jeffrey G Jacot
- Department of Bioengineering, Rice University, Houston, Texas
- Congenital Heart Surgery Service, Texas Children's Hospital, Houston, Texas
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
18
|
He Y, Yu X, Chen Z, Li L. Stromal vascular fraction cells plus sustained release VEGF/Ang-1-PLGA microspheres improve fat graft survival in mice. J Cell Physiol 2018; 234:6136-6146. [PMID: 30238985 DOI: 10.1002/jcp.27368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/16/2018] [Indexed: 01/17/2023]
Abstract
Autologous fat transplantation is increasingly applied in plastic and reconstructive surgery. Stromal vascular fraction cells (SVFs) combined with angiogenic factors, such as VEGF (vascular endothelial growth factor A) and Ang-1 (angiogenin-1), can improve angiogenesis, which is a critical factor for graft survival. However, direct transplant with such a mixture is insufficient owing to the short half-life of angiogenic factors. In this study, we evaluated whether a double sustained release system of VEGF/ANG-1-PLGA (poly (lactic-co-glycolic acid)) microspheres plus SVFs can improve angiogenesis and graft survival after autologous fat transplantation. VEGF/ANG-1-PLGA-sustained release microspheres were fabricated by a modified double emulsion-solvent evaporation technique. Human aspirated fat was mixed with SVF suspension plus VEGF/ANG-1 sustained release microspheres (Group C), SVF suspension (Group B) alone, or Dulbecco's modified Eagle's medium as the control (Group A). Eighteen immunocompromised nude mice were injected with these three mixtures subcutaneously at random positions. After 8 weeks, the mean volume of grafts was greater in the SVFs plus VEGF/ANG-1-PLGA group than in the control and SVFs groups (1.08 ± 0.069 ml vs. 0.62 ± 0.036 ml, and 0.83 ± 0.059 ml, respectively). Histological assessments showed that lower fibrosis, but greater microvascular density in the SVFs plus VEGF/ANG-1-PLGA group than in the other groups, though the SVFs group also had an appropriate capillary density and reduced fibrosis. Our findings indicate that SVFs plus VEGF/ANG-1-PLGA-sustained release microspheres can improve angiogenesis and graft survival after autologous fat transplantation.
Collapse
Affiliation(s)
- Yucang He
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Yu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuojie Chen
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqun Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Taraballi F, Sushnitha M, Tsao C, Bauza G, Liverani C, Shi A, Tasciotti E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Adv Healthc Mater 2018; 7:e1800490. [PMID: 29995315 DOI: 10.1002/adhm.201800490] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Regenerative medicine technologies rely heavily on the use of well-designed biomaterials for therapeutic applications. The success of implantable biomaterials hinges upon the ability of the chosen biomaterial to negotiate with the biological barriers in vivo. The most significant of these barriers is the immune system, which is composed of a highly coordinated organization of cells that induce an inflammatory response to the implanted biomaterial. Biomimetic platforms have emerged as novel strategies that aim to use the principle of biomimicry as a means of immunomodulation. This principle has manifested itself in the form of biomimetic scaffolds that imitate the composition and structure of biological cells and tissues. Recent work in this area has demonstrated the promising potential these technologies hold in overcoming the barrier of the immune system and, thereby, improve their overall therapeutic efficacy. In this review, a broad overview of the use of these strategies across several diseases and future avenues of research utilizing these platforms is provided.
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| | - Christopher Tsao
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea University Bay Singleton Park Wales Swansea SA2 8PP UK
| | - Chiara Liverani
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Biosciences Laboratory Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Via Piero Maroncelli 40 47014 Meldola FC Italy
| | - Aaron Shi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Wiess School of Natural Sciences Rice University Houston TX 77251‐1892 USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
20
|
Kang YJ, Kuo CF, Majd S. Nanoparticle-based delivery of an anti-proliferative metal chelator to tumor cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:309-312. [PMID: 29059872 DOI: 10.1109/embc.2017.8036824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes the preparation and characterization of polymeric nanoparticles loaded with a potent anti-tumor metal chelator, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) for delivery to cancer cells. Metal chelators have been increasingly studied for their anti-cancer properties that rely on the high demand of neoplastic cells for iron. Dp44mT has previously shown great antiproliferative characteristics in several cancers including breast cancer and melanoma. To further expand the application of this highly cytotoxic agent for cancer treatment and to enable its specific delivery to malignant cells, here we apply nano-scale particles (NPs) of biodegradable poly(lactic-co-glycolide) (PLGA) for encapsulation of Dp44mT and evaluate its effectiveness in vitro. The results demonstrated that Dp44mT was efficiently encapsulated in PLGA particles. Resulting NPs were uniform in size and shape and had good colloidal stability. Moreover, Dp44mT encapsulation in PLGA enhanced the water solubility of this agent. Lastly, the present formulation showed high level of cytotoxicity in glioma cells. Together, these results show the potential of PLGA NPs as a nano-carrier for Dp44mT with no apparent impact on the anti-tumor activity of this compound.
Collapse
|
21
|
Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 132:169-187. [PMID: 30009884 DOI: 10.1016/j.addr.2018.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Nanoparticles for biomedical applications are generally formed by bottom-up approaches such as self-assembly, emulsification and precipitation. But these methods usually have critical limitations in fabrication of nanoparticles with controllable morphologies and monodispersed size. Compared with bottom-up methods, top-down nanofabrication techniques offer advantages of high fidelity and high controllability. This review focuses on top-down nanofabrication techniques for engineering particles along with their biomedical applications. We present several commonly used top-down nanofabrication techniques that have the potential to fabricate nanoparticles, including photolithography, interference lithography, electron beam lithography, mold-based lithography (nanoimprint lithography and soft lithography), nanostencil lithography, and nanosphere lithography. Varieties of current and emerging applications are also covered: (i) targeting, (ii) drug and gene delivery, (iii) imaging, and (iv) therapy. Finally, a future perspective of the nanoparticles fabricated by the top-down techniques in biomedicine is also addressed.
Collapse
|
22
|
Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703740. [PMID: 29534311 DOI: 10.1002/adma.201703740] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/16/2017] [Indexed: 05/24/2023]
Abstract
In the past two decades, porous silicon (PSi) has attracted increasing attention for its potential biomedical applications. With its controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry, PSi shows significant advantages over conventional drug carriers. Here, an overview of recent progress in the use of PSi in drug delivery and cancer immunotherapy is presented. First, an overview of the fabrication of PSi with various geometric structures is provided, with particular focus on how the unique geometry of PSi facilitates its biomedical applications, especially for drug delivery. Second, surface chemistry and modification of PSi are discussed in relation to the strengthening of its performance in drug delivery and bioimaging. Emerging technologies for engineering PSi-based composites are then summarized. Emerging PSi advances in the context of cancer immunotherapy are also highlighted. Overall, very promising research results encourage further exploration of PSi for biomedical applications, particularly in drug delivery and cancer immunotherapy, and future translation of PSi into clinical applications.
Collapse
Affiliation(s)
- Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
23
|
Tang Y, Huang S, Xu J, Ouyang G, Liu Y. PLGA-based nanofibers with a biomimetic polynoradrenaline sheath for rapid in vivo sampling of tetrodotoxin and sulfonamides in pufferfish. J Mater Chem B 2018; 6:3655-3664. [DOI: 10.1039/c8tb00757h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PLGA nanofibers with PNA sheath modification achieve enhanced extraction performance and antibiofouling capacity for in vivo sampling in pufferfish.
Collapse
Affiliation(s)
- Yijia Tang
- Department of Food Science and Technology
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Siming Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Yuan Liu
- Department of Food Science and Technology
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
24
|
Li H, Xiong Y, Zhang Y, Tong W, Georgieva R, Bäumler H, Gao C. Photo-Decomposable Sub-Micrometer Albumin Particles Cross-Linked by ortho
-Nitrobenzyl Derivatives. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huiying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Yu Xiong
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies; Charité-Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Germany
| | - Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Radostina Georgieva
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies; Charité-Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies; Charité-Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Germany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine; Zhejiang University; Hangzhou 310030 China
| |
Collapse
|
25
|
Hu X, Li X, Yin M, Li P, Huang P, Wang L, Jiang Y, Wang H, Chen N, Fan C, Song H. Nanodiamonds Mediate Oral Delivery of Proteins for Stem Cell Activation and Intestinal Remodeling in Drosophila. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18575-18583. [PMID: 28509532 DOI: 10.1021/acsami.7b04788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Introduction of exogenous biomacromolecules into living systems is of great interest in genome editing, cancer immunotherapy, and stem cell reprogramming. Whereas current strategies generally depend on nucleic acids transfection, direct delivery of functional proteins that provides enhanced specificity, increased safety, and fast and temporal regulation is highly desirable. Nevertheless, intracellular delivery of intact and bioactive proteins, especially in vivo, remains poorly explored. In this study, we developed a nanodiamonds (NDs)-based protein delivery system in cultured cells and in Drosophila that showed high adsorption, high efficiency, and effective cytosolic release of fully functional proteins. Through live-cell imaging, we observed a novel phenomenon wherein a substantial amount of internalized NDs-protein complex rejected fusion with the early endosome, thereby evading protein degradation in the lysosome. More significantly, we demonstrated that dietary NDs-RNase induced apoptosis in enterocytes, stimulating regenerative divisions in intestinal stem cells and increasing the number of stem cells and precursor cells in Drosophila intestine. As stem cells are poorly accessible by exogenous agents in vivo, NDs-mediated oral delivery of proteins provides a new approach to modulate the stem cell microenvironment for intestinal remodeling, which has important implications for colorectal cancer therapy and regenerative medicine.
Collapse
Affiliation(s)
- Xingjie Hu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800, China
| | - Xiaojiao Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health , Beijing 100021, China
| | - Min Yin
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800, China
| | - Ping Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health , Beijing 100021, China
| | - Ping Huang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health , Beijing 100021, China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800, China
| | - Yiguo Jiang
- School of Public Health, Guangzhou Medical University , Guangdong 511436, China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health , Beijing 100021, China
| | - Nan Chen
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800, China
| | - Haiyun Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health , Beijing 100021, China
| |
Collapse
|
26
|
Minardi S, Pandolfi L, Taraballi F, Wang X, De Rosa E, Mills ZD, Liu X, Ferrari M, Tasciotti E. Enhancing Vascularization through the Controlled Release of Platelet-Derived Growth Factor-BB. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14566-14575. [PMID: 28393518 DOI: 10.1021/acsami.6b13760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using delivery systems to control the in vivo release of growth factors (GFs) for tissue engineering applications is extremely desirable as the clinical use of GFs is limited by their fast in vivo turnover. Hence, the development of effective platforms that are able to finely control the release of GFs in vivo remains a challenge. Herein, we investigated the ability of multiscale microspheres, composed by a nanostructured silicon multistage vector (MSV) core and a poly(dl-lactide-co-glycolide) acid (PLGA) forming outer shell (PLGA-MSV), to release functional platelet-derived growth factor-BB (PDGF-BB) to induce in vivo localized neovascularization. The in vitro release of PDGF-BB was assessed by enzyme-linked immunosorbent assay (ELISA) over 2 weeks and showed a sustained, zero-order release kinetics. The ability to promote in vivo localized neovascularization was investigated in a subcutaneous injection model in BALB/c mice and followed by intravital microscopy up to 2 weeks. Fully functional newly formed vessels were found within the area where PLGA-MSVs were localized and covered 3.0 ± 0.9 and 19 ± 5.1% at 7 and 14 days, respectively, showing a 6-fold increase in 1 week. The distribution of CD31+ and α-SMA+ cells was detected by immunofluorescence on harvested tissues. CD31 was significantly more expressed (4-fold increase) compared to the untreated control. Finally, the level of up-regulation of angiogenesis-associated genes (Vegfa, Vwf, and Col3a1) was assessed by q-PCR, resulting in a significantly higher expression where PLGA-MSVs were localized (Vegfa: 2.32 ± 0.50 at 7 days and 4.37 ± 0.75 at 14 days; Vwf: 4.13 ± 0.82 and 7.74 ± 0.91; Col3a1: 5.43 ± 0.37 and 6.66 ± 0.89). Altogether, our data supported the conclusion that the localized delivery of PDGF-BB from PLGA-MSVs induced the localized de novo formation of fully functional vessels in vivo. With this study, we demonstrated that PLGA-MSV holds promise for accomplishing the controlled localized in vivo release of GFs for the design of innovative tissue engineering strategies.
Collapse
Affiliation(s)
| | - Laura Pandolfi
- College of Materials Science and Engineering, University of Chinese Academy of Science , 19A Yuquanlu, Beijing 100049, China
| | | | | | | | | | | | | | - Ennio Tasciotti
- Department of Orthopedics, Houston Methodist Hospital , 6565 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
27
|
Lan L, Tian FR, ZhuGe DL, ZhuGe QC, Shen BX, Jin BH, Huang JP, Wu MZ, Fan LX, Zhao YZ, Xu HL. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury. PLoS One 2017; 12:e0173814. [PMID: 28291798 PMCID: PMC5349659 DOI: 10.1371/journal.pone.0173814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
In this study, porous gelatin microspheres (GMSs) were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF) on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05). At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01), indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.
Collapse
Affiliation(s)
- Li Lan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu-Rong Tian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - De-Li ZhuGe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qi-Chuan ZhuGe
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bi-Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bing-Hui Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jian-Ping Huang
- WenZhou Chinese Medicine Hospital, WenZhou, Zhejiang Province, China
| | - Ming-Ze Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Lu-Xin Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - He-Lin Xu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
28
|
Rudnik-Jansen I, Colen S, Berard J, Plomp S, Que I, van Rijen M, Woike N, Egas A, van Osch G, van Maarseveen E, Messier K, Chan A, Thies J, Creemers L. Prolonged inhibition of inflammation in osteoarthritis by triamcinolone acetonide released from a polyester amide microsphere platform. J Control Release 2017; 253:64-72. [PMID: 28284832 DOI: 10.1016/j.jconrel.2017.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/15/2023]
Abstract
Controlled biomaterial-based corticosteroid release might circumvent multiple injections and the accompanying risks, such as hormone imbalance and muscle weakness, in osteoarthritic (OA) patients. For this purpose, microspheres were prepared from an amino acid-based polyester amide (PEA) platform and loaded with triamcinolone acetonide (TAA). TAA loaded microspheres were shown to release TAA for over 60days in PBS. Furthermore, the bioactivity lasted at least 28days, demonstrated by a 80-95% inhibition of PGE2 production using TNFα-stimulated chondrocyte culture, indicating inhibition of inflammation. Microspheres loaded with the near infrared marker NIR780-iodide injected in healthy rat joints or joints with mild collagenase-induced OA showed retention of the microspheres up till 70days after injection. After intra-articular injection of TAA-loaded microspheres, TAA was detectable in the serum until day seven. Synovial inflammation was significantly lower in OA joints injected with TAA-loaded microspheres based on histological Krenn scores. Injection of TAA-loaded nor empty microspheres had no effect on cartilage integrity as determined by Mankin scoring. In conclusion, the PEA platform shows safety and efficacy upon intra-articular injection, and its extended degradation and release profiles compared to the currently used PLGA platforms may render it a good alternative. Even though further in vivo studies may need to address dosing and readout parameters such as pain, no effect on cartilage pathology was found and inflammation was effectively lowered in OA joints.
Collapse
Affiliation(s)
- Imke Rudnik-Jansen
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Sascha Colen
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Julien Berard
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Saskia Plomp
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80163, 3508 TD Utrecht, The Netherlands
| | - Ivo Que
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Mattie van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Nina Woike
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Annelies Egas
- Division Laboratory and Pharmacy, Clinical Pharmacy, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Gerjo van Osch
- Department of Orthopaedics & Otorhinolaryngology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Erik van Maarseveen
- Division Laboratory and Pharmacy, Clinical Pharmacy, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Ken Messier
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Alan Chan
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jens Thies
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Laura Creemers
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
29
|
Pandolfi L, Furman NT, Wang X, Lupo C, Martinez JO, Mohamed M, Taraballi F, Tasciotti E. A nanofibrous electrospun patch to maintain human mesenchymal cell stemness. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:44. [PMID: 28155052 DOI: 10.1007/s10856-017-5856-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated in regenerative medicine because of their crucial role in tissue healing. For these properties, they are widely tested in clinical trials, usually injected in cell suspension or in combination with tridimensional scaffolds. However, scaffolds can largely affect the fates of MSCs, inducing a progressive loss of functionality overtime. The ideal scaffold must delay MSCs differentiation until paracrine signals from the host induce their change. Herein, we proposed a nanostructured electrospun gelatin patch as an appropriate environment where human MSCs (hMSCs) can adhere, proliferate, and maintain their stemness. This patch exhibited characteristics of a non-linear elastic material and withstood degradation up to 4 weeks. As compared to culture and expansion in 2D, hMSCs on the patch showed a similar degree of proliferation and better maintained their progenitor properties, as assessed by their superior differentiation capacity towards typical mesenchymal lineages (i.e. osteogenic and chondrogenic). Furthermore, immunohistochemical analysis and longitudinal non-invasive imaging of inflammatory response revealed no sign of foreign body reaction for 3 weeks. In summary, our results demonstrated that our biocompatible patch favored the maintenance of undifferentiated hMSCs for up to 21 days and is an ideal candidate for tridimensional delivery of hMSCs. The present work reports a nanostructured patch gelatin-based able to maintain in vitro hMSCs stemness features. Moreover, hMSCs were able to differentiate toward osteo- and chondrogenic lineages once induces by differentiative media, confirming the ability of this patch to support stem cells for a potential in vivo application. These attractive properties together with the low inflammatory response in vivo make this patch a promising platform in regenerative medicine.
Collapse
Affiliation(s)
- L Pandolfi
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- College of Materials Science and Engineering, University of Chinese Academy of Science, 19A Yuquanlu, Beijing, China
| | - N Toledano Furman
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Xin Wang
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - C Lupo
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - J O Martinez
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - M Mohamed
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd, Houston, TX, 77004, USA
| | - F Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
| | - E Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
30
|
Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604634. [PMID: 28084658 DOI: 10.1002/adma.201604634] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 05/27/2023]
Abstract
The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
31
|
Li S, Zhang J, Deng C, Meng F, Yu L, Zhong Z. Redox-Sensitive and Intrinsically Fluorescent Photoclick Hyaluronic Acid Nanogels for Traceable and Targeted Delivery of Cytochrome c to Breast Tumor in Mice. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21155-62. [PMID: 27509045 DOI: 10.1021/acsami.6b05775] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In spite of their high specificity and potency, few protein therapeutics are applied in clinical cancer therapy owing to a lack of safe and efficacious delivery systems. Here, we report that redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels (HA-NGs) show highly efficient loading and breast tumor-targeted delivery of cytochrome c (CC). HA-NGs were obtained from hyaluronic acid-graft-oligo(ethylene glycol)-tetrazole (HA-OEG-Tet) via inverse nanoprecipitation and catalyst-free photoclick cross-linking with l-cystine dimethacrylamide (MA-Cys-MA). HA-NGs exhibited a superb CC loading content of up to 40.6 wt %, intrinsic fluorescence (λem = 510 nm), and a small size of ca. 170 nm. Notably, CC-loaded nanogels (CC-NGs) showed a fast glutathione-responsive protein release behavior. Importantly, released CC maintained its bioactivity. MTT assays revealed that CC-NGs were highly potent with a low IC50 of 3.07 μM to CD44+ MCF-7 human breast tumor cells. Confocal microscopy observed efficient and selective internalization of fluorescent HA-NGs into MCF-7 cells. Interestingly, HA-NGs exhibited also effective breast tumor penetration. The therapeutic results demonstrated that CC-NGs effectively inhibited the growth of MCF-7 breast tumor xenografts at a particularly low dose of 80 or 160 nmol CC equiv./kg. Moreover, CC-NGs did not cause any change in mice body weight, corroborating their low systemic side effects. Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels have appeared as a "smart" protein delivery nanoplatform enabling safe, efficacious, traceable, and targeted cancer protein therapy in vivo.
Collapse
Affiliation(s)
- Shuai Li
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Jian Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| |
Collapse
|
32
|
Khaled SZ, Cevenini A, Yazdi IK, Parodi A, Evangelopoulos M, Corbo C, Scaria S, Hu Y, Haddix SG, Corradetti B, Salvatore F, Tasciotti E. One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials 2016; 87:57-68. [PMID: 26901429 PMCID: PMC4785811 DOI: 10.1016/j.biomaterials.2016.01.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
This report describes a novel, one-pot synthesis of hybrid nanoparticles formed by a nanostructured inorganic silica core and an organic pH-responsive hydrogel shell. This easy-to-perform, oil-in-water emulsion process synthesizes fluorescently-doped silica nanoparticles wrapped within a tunable coating of cationic poly(2-diethylaminoethyl methacrylate) hydrogel in one step. Transmission electron microscopy and dynamic light scattering analysis demonstrated that the hydrogel-coated nanoparticles are uniformly dispersed in the aqueous phase. The formation of covalent chemical bonds between the silica and the polymer increases the stability of the organic phase around the inorganic core as demonstrated by thermogravimetric analysis. The cationic nature of the hydrogel is responsible for the pH buffering properties of the nanostructured system and was evaluated by titration experiments. Zeta-potential analysis demonstrated that the charge of the system was reversed when transitioned from acidic to basic pH and vice versa. Consequently, small interfering RNA (siRNA) can be loaded and released in an acidic pH environment thereby enabling the hybrid particles and their payload to avoid endosomal sequestration and enzymatic degradation. These nanoparticles, loaded with specific siRNA molecules directed towards the transcript of the membrane receptor CXCR4, significantly decreased the expression of this protein in a human breast cancer cell line (i.e., MDA-MB-231). Moreover, intravenous administration of siRNA-loaded nanoparticles demonstrated a preferential accumulation at the tumor site that resulted in a reduction of CXCR4 expression.
Collapse
Affiliation(s)
- Sm Z. Khaled
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Armando Cevenini
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, 80131 Italy
- CEINGE-Biotecnologie Avanzate, s.c.a r.l., Naples, 80145 Italy
| | - Iman K. Yazdi
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Department of Biomedical Engineering, University of Houston, Houston, Texas, 77204 United States
| | - Alessandro Parodi
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Fondazione SDN IRCCS, Naples, 80143 Italy
| | - Michael Evangelopoulos
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Claudia Corbo
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Fondazione SDN IRCCS, Naples, 80143 Italy
| | - Shilpa Scaria
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Ye Hu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Seth G. Haddix
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| | - Bruna Corradetti
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, 60131 Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, s.c.a r.l., Naples, 80145 Italy
- Fondazione SDN IRCCS, Naples, 80143 Italy
| | - Ennio Tasciotti
- Department of Regenerative Medicine: Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, 77030 United States
| |
Collapse
|
33
|
Minardi S, Corradetti B, Taraballi F, Byun JH, Cabrera F, Liu X, Ferrari M, Weiner BK, Tasciotti E. IL-4 Release from a Biomimetic Scaffold for the Temporally Controlled Modulation of Macrophage Response. Ann Biomed Eng 2016; 44:2008-19. [DOI: 10.1007/s10439-016-1580-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022]
|
34
|
Minardi S, Corradetti B, Taraballi F, Sandri M, Martinez JO, Powell ST, Tampieri A, Weiner BK, Tasciotti E. Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1479-1488. [PMID: 26797709 DOI: 10.1002/smll.201503484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release.
Collapse
Affiliation(s)
- Silvia Minardi
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Bruna Corradetti
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Francesca Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Monica Sandri
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Jonathan O Martinez
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Sebastian T Powell
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Bradley K Weiner
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Orthopedic Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| |
Collapse
|
35
|
Yazdi IK, Taghipour N, Hmaidan S, Palomba R, Scaria S, Munoz A, Boone TB, Tasciotti E. Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells. J Tissue Eng 2016; 7:2041731416629767. [PMID: 27027860 PMCID: PMC4794088 DOI: 10.1177/2041731416629767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/08/2016] [Indexed: 01/03/2023] Open
Abstract
The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability.
Collapse
Affiliation(s)
- Iman K Yazdi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Nima Taghipour
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Sarah Hmaidan
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Roberto Palomba
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Shilpa Scaria
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Alvaro Munoz
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Timothy B Boone
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Urology, Houston Methodist Hospital, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
36
|
Fontana F, Mori M, Riva F, Mäkilä E, Liu D, Salonen J, Nicoletti G, Hirvonen J, Caramella C, Santos HA. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:988-996. [PMID: 26652045 DOI: 10.1021/acsami.5b10950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | | | - Ermei Mäkilä
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | | | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| |
Collapse
|
37
|
Agarwal S, Morshed M, Labour MN, Hoey D, Duffy B, Curtin J, Jaiswal S. Enhanced corrosion protection and biocompatibility of a PLGA–silane coating on AZ31 Mg alloy for orthopaedic applications. RSC Adv 2016. [DOI: 10.1039/c6ra24382g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper reports a multi-step procedure to fabricate a novel corrosion resistant and biocompatible PLGA–silane coating on the magnesium (Mg) alloy AZ31.
Collapse
Affiliation(s)
- Sankalp Agarwal
- Centre for Research in Engineering and Surface Technology
- FOCAS Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | - Muhammad Morshed
- Centre for Research in Engineering and Surface Technology
- FOCAS Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | - Marie-Noelle Labour
- Trinity Centre for Bioengineering
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - David Hoey
- Trinity Centre for Bioengineering
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology
- FOCAS Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | - James Curtin
- School of Food Science and Environmental Health
- Dublin Institute of Technology
- Dublin 1
- Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology
- FOCAS Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| |
Collapse
|
38
|
Pandolfi L, Minardi S, Taraballi F, Liu X, Ferrari M, Tasciotti E. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering. J Tissue Eng 2016; 7:2041731415624668. [PMID: 26977286 PMCID: PMC4765809 DOI: 10.1177/2041731415624668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan-gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.
Collapse
Affiliation(s)
- Laura Pandolfi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- College of Materials Science and Engineering, University of Chinese Academy of Science, Beijing, China
| | - Silvia Minardi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Xeuwu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|