1
|
Teng Y, Zhong Y, Xu P, Li J, Pan Z, Hu T, Ji H, Zhang X, Lou Y. Utilizing pillararenes as capping agents to stabilize copper nanoparticles for cost-effective and high-performance SERS application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125919. [PMID: 39986254 DOI: 10.1016/j.saa.2025.125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Gold, silver, and copper nanoparticles (CuNPs) exhibit strong localized surface plasmon resonance (LSPR) effects at specific sizes, which can amplify the Raman signals of adsorbed molecules. However, despite the cost-effectiveness of CuNPs, their applications in surface-enhanced Raman spectroscopy (SERS) are limited due to their susceptibility to surface oxidation and particle aggregation. In this study, three distinct capping agents-pillararenes, polyvinylpyrrolidone, and sodium citrate-were employed to enhance particle dispersion, improve stability, and protect the CuNPs from oxidation and degradation. The synthesized CuNPs were thoroughly characterized using UV-Vis absorption spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy. Results revealed that CuNPs capped with pillararenes demonstrated superior SERS enhancement effects when using 4-aminothiophenol as the probe molecule, achieving an enhancement factor of 3.7 × 105. Furthermore, pillararene-capped CuNPs exhibited a broader linear range in SERS quantitative detection applications. This proposed method offers a versatile and cost-effective SERS substrate compared to commercial gold and silver nanocolloids, positioning it as a promising candidate for a wide range of SERS applications.
Collapse
Affiliation(s)
- Yuanjie Teng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yi Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianyu Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibing Ji
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Xingchen Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yantao Lou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Lai L, Xia M, Fu M, Gao Y, Sun J, Liu G, Chen S. Development of micro-nanostructured film with antibacterial, anticorrosive and thermal conductivity properties on copper surface. Bioelectrochemistry 2025; 163:108905. [PMID: 39847815 DOI: 10.1016/j.bioelechem.2025.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
A micro-nano sharkskin like film (Cu-MNS-FA) was synthesized on copper surface through chemical etching followed by formate passivation, and its anticorrosive, antibacterial and thermal conductivity properties were investigated. Results show that after 7 d of exposure to nature, Pseudomonas aeruginosa and Desulfovibrio vulgaris seawater, the charge transfer resistance of Cu-MNS-FA is more than three times higher than that of unmodified copper. In particular, in D. vulgaris seawater, the Rct value of modified copper is 7 times higher than that of unmodified copper after the same exposure duration. The counts of sessile cells, specifically P. aeruginosa and D. vulgaris, on the surface of modified copper are reduced by > 88 % after 3 days of immersion. Furthermore, thermal conductivity remains 10 % higher than that of untreated copper after 7 d of immersion. This film improves the performance characteristics of copper in seawater heat exchange systems.
Collapse
Affiliation(s)
- Li Lai
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Muqiu Xia
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Mengyu Fu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuanyuan Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Jiahao Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Guangzhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shiqiang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Jiao K, Cao W, Yuan W, Yuan H, Zhu J, Gao X, Duan S, Yong R, Zhao Z, Song P, Jiang ZJ, Wang Y, Zhu J. Cellulose Nanostructures as Tunable Substrates for Nanocellulose-Metal Hybrid Flexible Composites. Chempluschem 2024; 89:e202300704. [PMID: 38363060 DOI: 10.1002/cplu.202300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 02/17/2024]
Abstract
Nanocomposite represents the backbone of many industrial fabrication applications and exerts a substantial social impact. Among these composites, metal nanostructures are often employed as the active constituents, thanks to their various chemical and physical properties, which offer the ability to tune the application scenarios in thermal management, energy storage, and biostable materials, respectively. Nanocellulose, as an emerging polymer substrate, possesses unique properties of abundance, mechanical flexibility, environmental friendliness, and biocompatibility. Based on the combination of flexible nanocellulose with specific metal fillers, the essential parameters involving mechanical strength, flexibility, anisotropic thermal resistance, and conductivity can be enhanced. Nowadays, the approach has found extensive applications in thermal management, energy storage, biostable electronic materials, and piezoelectric devices. Therefore, it is essential to thoroughly correlate cellulose nanocomposites' properties with different metallic fillers. This review summarizes the extraction of nanocellulose and preparation of metal modified cellulose nanocomposites, including their wide and particular applications in modern advanced devices. Moreover, we also discuss the challenges in the synthesis, the emerging designs, and unique structures, promising directions for future research. We wish this review can give a valuable overview of the unique combination and inspire the research directions of the multifunctional nanocomposites using proper cellulose and metallic fillers.
Collapse
Affiliation(s)
- Keran Jiao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
- Zhenzhou Research Institute, Harbin Institute of Technology, Zhenzhou, 450000, China
| | - Wenwen Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Hang Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Jia Zhu
- School of Intelligent Manufacturing and Intelligent Transportation, Suzhou City University, Suzhou, 215104, China
| | - Xiaowu Gao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Ruiqi Yong
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Ziwei Zhao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute & Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
- Zhenzhou Research Institute, Harbin Institute of Technology, Zhenzhou, 450000, China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
- Zhenzhou Research Institute, Harbin Institute of Technology, Zhenzhou, 450000, China
| |
Collapse
|
4
|
Lin Y, Li P, Liu W, Chen J, Liu X, Jiang P, Huang X. Application-Driven High-Thermal-Conductivity Polymer Nanocomposites. ACS NANO 2024; 18:3851-3870. [PMID: 38266182 DOI: 10.1021/acsnano.3c08467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Polymer nanocomposites combine the merits of polymer matrices and the unusual effects of nanoscale reinforcements and have been recognized as important members of the material family. Being a fundamental material property, thermal conductivity directly affects the molding and processing of materials as well as the design and performance of devices and systems. Polymer nanocomposites have been used in numerous industrial fields; thus, high demands are placed on the thermal conductivity feature of polymer nanocomposites. In this Perspective, we first provide roadmaps for the development of polymer nanocomposites with isotropic, in-plane, and through-plane high thermal conductivities, demonstrating the great effect of nanoscale reinforcements on thermal conductivity enhancement of polymer nanocomposites. Then the significance of the thermal conductivity of polymer nanocomposites in different application fields, including wearable electronics, thermal interface materials, battery thermal management, dielectric capacitors, electrical equipment, solar thermal energy storage, biomedical applications, carbon dioxide capture, and radiative cooling, are highlighted. In future research, we should continue to focus on methods that can further improve the thermal conductivity of polymer nanocomposites. On the other hand, we should pay more attention to the synergistic improvement of the thermal conductivity and other properties of polymer nanocomposites. Emerging polymer nanocomposites with high thermal conductivity should be based on application-oriented research.
Collapse
Affiliation(s)
- Ying Lin
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pengli Li
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenjie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jie Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyu Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
5
|
Lee J, Suh Y, Kuciej M, Simadiris P, Barako MT, Won Y. Computer vision-assisted investigation of boiling heat transfer on segmented nanowires with vertical wettability. NANOSCALE 2022; 14:13078-13089. [PMID: 36043910 DOI: 10.1039/d2nr02447k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The boiling efficacy is intrinsically tethered to trade-offs between the desire for bubble nucleation and necessity of vapor removal. The solution to these competing demands requires the separation of bubble activity and liquid delivery, often achieved through surface engineering. In this study, we independently engineer bubble nucleation and departure mechanisms through the design of heterogeneous and segmented nanowires with dual wettability with the aim of pushing the limit of structure-enhanced boiling heat transfer performances. The demonstration of separating liquid and vapor pathways outperforms state-of-the-art hierarchical nanowires, in particular, at low heat flux regimes while maintaining equal performances at high heat fluxes. A deep-learning based computer vision framework realized the autonomous curation and extraction of hidden big data along with digitalized bubbles. The combined efforts of materials design, deep learning techniques, and data-driven approach shed light on the mechanistic relationship between vapor/liquid pathways, bubble statistics, and phase change performance.
Collapse
Affiliation(s)
- Jonggyu Lee
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Youngjoon Suh
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Max Kuciej
- Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- NG Next, Northrop Grumman Corporation, Redondo Beach, CA, 90278, USA
| | - Peter Simadiris
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Michael T Barako
- NG Next, Northrop Grumman Corporation, Redondo Beach, CA, 90278, USA
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
6
|
Yu S, Shen X, Kim JK. Beyond homogeneous dispersion: oriented conductive fillers for high κ nanocomposites. MATERIALS HORIZONS 2021; 8:3009-3042. [PMID: 34623368 DOI: 10.1039/d1mh00907a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational design of structures for regulating the thermal conductivities (κ) of materials is critical to many components and products employed in electrical, electronic, energy, construction, aerospace, and medical applications. As such, considerable efforts have been devoted to developing polymer composites with tailored conducting filler architectures and thermal conduits for highly improved κ. This paper is dedicated to overviewing recent advances in this area to offer perspectives for the next level of future development. The limitations of conventional particulate-filled composites and the issue of percolation are discussed. In view of different directions of heat dissipation in polymer composites for different end applications, various approaches for designing the micro- and macroscopic structures of thermally conductive networks in the polymer matrix are highlighted. Methodological approaches devised to significantly ameliorate thermal conduction are categorized with respect to the pathways of heat dissipation. Future prospects for the development of thermally conductive polymer composites with modulated thermal conduction pathways are highlighted.
Collapse
Affiliation(s)
- Seunggun Yu
- Insulation Materials Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea.
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Lou L, Chen K, Fan J. Advanced materials for personal thermal and moisture management of health care workers wearing PPE. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100639. [PMID: 34803231 PMCID: PMC8590464 DOI: 10.1016/j.mser.2021.100639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the development of personal protective equipment (PPE) for health care workers (HCWs) attracted enormous attention, especially during the pandemic of COVID-19. The semi-permeable protective clothing and the prolonged working hours make the thermal comfort a critical issue for HCWs. Although there are many commercially available personal cooling products for PPE systems, they are either heavy in weight or have limited durability. Besides, most of the existing solutions cannot relieve the perspiration efficiently within the insolation gowns. To avoid heat strain and ensure a longtime thermal comfort, new strategies that provide efficient personal thermal and moisture management without compromising health protection are required. This paper reviews the emerging materials for protective gown layers and advanced technologies for personal thermal and moisture management of PPE systems. These materials and strategies are examined in detail with respect to their fundamental working principles, thermal and mechanical properties, fabrication methods as well as advantages and limitations in their prospective applications, aiming at stimulating creative thinking and multidisciplinary collaboration to improve the thermal comfort of PPEs.
Collapse
Affiliation(s)
- Lun Lou
- Institute of Textile & Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kaikai Chen
- Institute of Textile & Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jintu Fan
- Institute of Textile & Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
The hot-wire concept: Towards a one-element thermal biosensor platform. Biosens Bioelectron 2021; 179:113043. [PMID: 33609951 DOI: 10.1016/j.bios.2021.113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 11/24/2022]
Abstract
In this work, the 3ω hot-wire concept is explored as a prospective biosensing platform with a single sensing element that can detect analytes based on a change in the thermal interface conductance. A uniform receptor layer such as single-stranded DNA is immobilized on a thin aluminium wire, which serves not only as an immobilization platform but also as a heating element and temperature sensor together. The wire is heated periodically with an alternating current (angular frequency ω) and the third harmonic (frequency 3ω) of the voltage across the wire renders the efficiency of heat transfer from the wire to the surrounding medium. The amplitude of the 3ω voltage depends sensitively on the composition and conformation of the biofunctional interface layer. We illustrate this with a model system that includes blank aluminium wires, wires with silanes bound covalently to the native surface oxide, and with single-, respectively double-stranded DNA tethered to the silanes. The difference in heat-transfer due to these coatings is significant and measurable not only in a liquid but also in air. Based on this proof-of-concept, various applications come in sight such as mutation analysis and analyte detection with aptamers or molecularly-imprinted polymers as receptors. Wire materials other than aluminium are possible as well and the concept is suitable for miniaturization and parallelization.
Collapse
|
9
|
Yamaguchi S, Shiga T, Ishioka S, Saito T, Kodama T, Shiomi J. Anisotropic thermal conductivity measurement of organic thin film with bidirectional 3ω method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:034902. [PMID: 33820006 DOI: 10.1063/5.0030982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Organic thin film materials with molecular ordering are gaining attention as they exhibit semiconductor characteristics. When using them for electronics, the thermal management becomes important, where heat dissipation is directional owing to the anisotropic thermal conductivity arising from the molecular ordering. However, it is difficult to evaluate the anisotropy by simultaneously measuring in-plane and cross-plane thermal conductivities of the film on a substrate because the film is typically as thin as tens to hundreds of nanometers and its in-plane thermal conductivity is low. Here, we develop a novel bidirectional 3ω system that measures the anisotropic thermal conductivity of thin films by patterning two metal wires with different widths and preparing the films on top and extracting the in-plane and cross-plane thermal conductivities using the difference in their sensitivities to the metal-wire width. Using the developed system, the thermal conductivity of spin-coated poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with thickness of 70 nm was successfully measured. The measured in-plane thermal conductivity of PEDOT:PSS film was as high as 2.9 W m-1 K-1 presumably due to the high structural ordering, giving an anisotropy of 10. The calculations of measurement sensitivity to the film thickness and thermal conductivities suggest that the device can be applied to much thinner films by utilizing metal wires with a smaller width.
Collapse
Affiliation(s)
- Shingi Yamaguchi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuma Shiga
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shun Ishioka
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kodama
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Vu MC, Kim IH, Choi WK, Lim CS, Islam MA, Kim SR. Highly Flexible Graphene Derivative Hybrid Film: An Outstanding Nonflammable Thermally Conductive yet Electrically Insulating Material for Efficient Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26413-26423. [PMID: 32469197 DOI: 10.1021/acsami.0c02427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In modern society, advanced technology has facilitated the emergence of multifunctional appliances, particularly, portable electronic devices, which have been growing rapidly. Therefore, flexible thermally conductive materials with the combination of properties like outstanding thermal conductivity, excellent electrical insulation, mechanical flexibility, and strong flame retardancy, which could be used to efficiently dissipate heat generated from electronic components, are the demand of the day. In this study, graphite fluoride, a derivative of graphene, was exfoliated into graphene fluoride sheets (GFS) via the ball-milling process. Then, a suspension of graphene oxide (GO) and GFSs was vacuum-filtrated to obtain a mixed mass, and subsequently, the mixed mass was subjected to reduction under the action hydrogen iodide at low temperature to transform the GO to reduced graphene oxide (rGO). Finally, a highly flexible and thermally conductive 30-μm thick GFS@rGO hybrid film was prepared, which showed an exceptional in-plane thermal conductivity (212 W·m-1·K-1) and an excellent electrical insulating property (a volume resistivity of 1.1 × 1011 Ω·cm). The extraordinary in-plane thermal conductivity of the GFS@rGO hybrid films was attributed to the high intrinsic thermal conductivity of the filler components and the highly ordered filler alignment. Additionally, the GFS@rGO films showed a tolerance to bending cycles and high-temperature flame. The tensile strength and Young's modulus of the GFS@rGO films increased with increasing the rGO content and reached a tensile strength of 69.3 MPa and a Young's modulus of 10.2 GPa at 20 wt % rGO. An experiment of exposing the films to high-temperature flame demonstrated that the GFS@rGO films could efficiently prevent fire spreading. The microcombustion calorimetry results indicated that the GFS@rGO had significantly lower heat release rate (HRR) compared to the GO film. The peak HRR of GFS@rGO10 was only 21 W·g-1 at 323 °C, while that of GO was 198 W·g-1 at 159 °C.
Collapse
Affiliation(s)
- Minh Canh Vu
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Il-Ho Kim
- Department of Materials Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Won Kook Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Choong-Sun Lim
- Business Development Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Md Akhtarul Islam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sung-Ryong Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
11
|
Cao L, Zhu W, Luo B, Miao M, Wang L, Zhang H, Deng Y. Construction of Core-Shell Nanowire Arrays in a Cu-Cu 2O Film Electrode for High Efficiency in Heat Dissipation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3836-3846. [PMID: 31870148 DOI: 10.1021/acsami.9b17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermal engineering dramatically impacts the efficiency of microelectronics, but the corresponding technology lags far behind the need. For energy-efficient thermal management, a Cu-Cu2O film with highly ordered core-shell nanowire arrays and a good self-protection property was successfully fabricated using the magnetron sputtering method. The dense arrangement of nanowires in the films enhances the electronic transport property (220 mΩ sq-1), while the modified stable Cu2O layer maintained its perfect heat dissipation property, along with long-term thermal stability. The core-shell and nanogaps structure imparted an anisotropic thermal conductivity, where the out-plane electronic thermal conductivity (321 ± 16 W m-1 K-1) was 33.6 times higher than the in-plane value. To study the role of anisotropic properties in heat dissipation, a boiling experiment and thermal simulation were undertaken. The Cu-Cu2O core-shell electrode was beneficial to elevate the heat transfer coefficient, which would cause a fast directional transport and reduction of interfacial superheating. We demonstrated that an advancement of microelectronics could be achieved by integrating Cu electrodes with an ordered architecture.
Collapse
Affiliation(s)
- Lili Cao
- School of Materials Science and Engineering , Beihang University , Beijing 100083 , China
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument , Beijing Information Science and Technology University , Beijing 100101 , China
| | - Wei Zhu
- School of Materials Science and Engineering , Beihang University , Beijing 100083 , China
| | - Bingwei Luo
- Beijing Institute of Aeronautical Materials , Aero Engine Corporation of China , Beijing 100095 , China
| | - Min Miao
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument , Beijing Information Science and Technology University , Beijing 100101 , China
| | - Liyuan Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument , Beijing Information Science and Technology University , Beijing 100101 , China
| | - Hao Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument , Beijing Information Science and Technology University , Beijing 100101 , China
| | - Yuan Deng
- School of Materials Science and Engineering , Beihang University , Beijing 100083 , China
| |
Collapse
|
12
|
Chen J, Wu Y, Zhu K, Sun F, Guo C, Wu X, Cheng G, Zheng R. Core-shell copper nanowire-TiO2 nanotube arrays with excellent bipolar resistive switching properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Thermal conductivity in highly loaded metallic nanowire-dielectric composite: Effect of percolation network. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Yuan H, Wang Y, Li T, Wang Y, Ma P, Zhang H, Yang W, Chen M, Dong W. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network. NANOSCALE 2019; 11:11360-11368. [PMID: 31166353 DOI: 10.1039/c9nr02491c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, the conventional polymer-based thermally conductive composites with randomly distributed filler particles usually yield an undesired value because of the lack of efficient heat transfer pathways. Therefore, constructing a three-dimensional interconnected filler structure is greatly desirable for realizing high thermal conductivity enhancement in composites. Herein, graphene oxide (GO) was used as a thermally conductive filler due to its excellent thermal conductivity and coated with polydopamine (PDA) to enhance its electric insulation performance. A unique "particle-constructing" method was adopted for fabricating highly ordered three-dimensional GO-based polymer composites, throughout which the GO-PDA formed an intact, uniform and well-defined network structure. The composite, even with a very low GO-PDA loading of 0.96 vol%, exhibited both high in-plane (4.13 W m-1 K-1) and through-plane (4.56 W m-1 K-1) thermal conductivities and also presented excellent electrically insulating properties (>1014Ω cm). These composites have promising applications in heat dissipation of next-generation portable and collapsible electronic devices.
Collapse
Affiliation(s)
- Hao Yuan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yijie Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Weijun Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
15
|
Darmakkolla SR, Ghobadi M, Lampert L, Pareira AF, Jenike A, Tahir M, Rananavare SB. Morphology-controlled copper nanowire synthesis and magnetic field assisted self-assembly. NANOSCALE 2019; 11:2679-2686. [PMID: 30534758 DOI: 10.1039/c8nr06876c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Morphology, dimensions, crystalline structure and compositions of nanomaterials are very critical in determining their unique characteristics. Here we report how the reducing agent concentration affects the surface morphology of copper nanowires and establish the optimized reaction conditions to synthesize high aspect ratio nanowires with a smooth surface. Also, reported is the magnetic field assisted technique to control the orientational and positional ordering of cupronickel nanowires (Cu/Ni NWs) on a large-scale area. A combination of magnetic field, surface derivatization and photolithographic techniques allowed self-assembly of Cu/Ni NWs into channels. The channel resistance as a function of the applied magnetic field during fabrication shows an anomalous decrease owing to the positional end-to-end alignment of NWs. Magnetic field and areal NW density dependence of NW sheet resistance in channels is presented and analyzed using scaling theoretical models.
Collapse
|
16
|
Lee J, Suh Y, Dubey PP, Barako MT, Won Y. Capillary Wicking in Hierarchically Textured Copper Nanowire Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1546-1554. [PMID: 30557501 DOI: 10.1021/acsami.8b14955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capillary wicking through homogeneous porous media remains challenging to simultaneously optimize due to the unique transport phenomena that occur at different length scales. This challenge may be overcome by introducing hierarchical porous media, which combine tailored morphologies across multiple length scales to design for the individual transport mechanisms. Here, we fabricate hierarchical nanowire arrays consisting of vertically aligned copper nanowires (∼100 to 1000 nm length scale) decorated with dense copper oxide nanostructures (∼10 to 100 nm length scale) to create unique property sets that include a large specific surface area, high rates of fluid delivery, and the structural flexibility of vertical arrays. These hierarchical nanowire arrays possess enhanced capillary wicking ( K/ Reff = 0.004-0.023 μm) by utilizing hemispreading and are advantageous as evaporation surfaces. With the advent and acceleration of flexible electronics technologies, we measure the capillary properties of our freestanding hierarchical nanowire arrays installed on curved surfaces and observe comparable fluid delivery to flat arrays, showing the difference of 10-20%. The degree of effective inter-nanowire pore and porosity is shown to govern the capillary performance parameters, thereby this study provides the design strategy for capillary wicking materials with unique and tailored combinations of thermofluidic properties.
Collapse
Affiliation(s)
- Jonggyu Lee
- Department of Mechanical and Aerospace Engineering , University of California, Irvine , Irvine , California 92697 , United States
| | - Youngjoon Suh
- Department of Mechanical and Aerospace Engineering , University of California, Irvine , Irvine , California 92697 , United States
| | - Pranav P Dubey
- Department of Mechanical and Aerospace Engineering , University of California, Irvine , Irvine , California 92697 , United States
| | - Michael T Barako
- Department of Mechanical and Aerospace Engineering , University of California, Irvine , Irvine , California 92697 , United States
- NG Next, Northrop Grumman Corporation , Redondo Beach , California 90278 , United States
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering , University of California, Irvine , Irvine , California 92697 , United States
| |
Collapse
|
17
|
Singh G, Kumar K, Moudgil RK. Alloying-induced spin Seebeck effect and spin figure of merit in Pt-based bimetallic atomic wires of noble metals. Phys Chem Chem Phys 2019; 21:20965-20980. [DOI: 10.1039/c9cp01671f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chemical potential of electrodes can be tuned to generate pure thermal spin voltages in certain bimetallic wires of noble metals.
Collapse
Affiliation(s)
- Gurvinder Singh
- Department of Physics
- S. D. College
- Ambala Cantt-133 001
- India
- Department of Physics
| | - Krishan Kumar
- Department of Physics
- S. D. College
- Ambala Cantt-133 001
- India
| | - R. K. Moudgil
- Department of Physics
- Kurukshetra University
- Kurukshetra – 136 119
- India
| |
Collapse
|
18
|
Abstract
Combining 1D metal nanotubes and nanowires into cross-linked 2D and 3D architectures represents an attractive design strategy for creating tailored unsupported catalysts. Such materials complement the functionality and high surface area of the nanoscale building blocks with the stability, continuous conduction pathways, efficient mass transfer, and convenient handling of a free-standing, interconnected, open-porous superstructure. This review summarizes synthetic approaches toward metal nano-networks of varying dimensionality, including the assembly of colloidal 1D nanostructures, the buildup of nanofibrous networks by electrospinning, and direct, template-assisted deposition methods. It is outlined how the nanostructure, porosity, network architecture, and composition of such materials can be tuned by the fabrication conditions and additional processing steps. Finally, it is shown how these synthetic tools can be employed for designing and optimizing self-supported metal nano-networks for application in electrocatalysis and related fields.
Collapse
|
19
|
Yan C, Yu T, Ji C, Zeng X, Lu J, Sun R, Wong CP. 3D interconnected high aspect ratio tellurium nanowires in epoxy nanocomposites: serving as thermal conductive expressway. J Appl Polym Sci 2018. [DOI: 10.1002/app.47054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Changzeng Yan
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Tianhang Yu
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Department of Nano Science and Technology Institute University of Science and Technology of China; Suzhou 215123 China
| | - Chao Ji
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Xiaoliang Zeng
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Jibao Lu
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Rong Sun
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Ching-Ping Wong
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Department of Electronics Engineering; The Chinese University of Hong Kong; Shatin Hong Kong 999077 China
- School of Mechanical Engineering; Georgia Institute of Technology; 771 Ferst Drive, Atlanta Georgia 30332
| |
Collapse
|
20
|
Dou NG, Jagt RA, Portela CM, Greer JR, Minnich AJ. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices. NANO LETTERS 2018; 18:4755-4761. [PMID: 30022671 DOI: 10.1021/acs.nanolett.8b01191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Creating materials that simultaneously possess ultralow thermal conductivity, high stiffness, and damage tolerance is challenging because thermal and mechanical properties are coupled in most fully dense and porous solids. Nanolattices can fill this void in the property space because of their hierarchical design and nanoscale features. We report that nanolattices composed of 24- to 182-nm-thick hollow alumina beams in the octet-truss architecture achieved thermal conductivities as low as 2 mW m-1 K-1 at room temperature while maintaining specific stiffnesses of 0.3 to 3 MPa kg-1 m3 and the ability to recover from large deformations. These nanoarchitected materials possess the same ultralow thermal conductivities as aerogels while attaining specific elastic moduli that are nearly 2 orders of magnitude higher. Our work demonstrates a general route to realizing multifunctional materials that occupy previously unreachable regions within the material property space.
Collapse
Affiliation(s)
- Nicholas G Dou
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
| | - Robert A Jagt
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
- Faculty of Science and Engineering , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Carlos M Portela
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
| | - Julia R Greer
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
| | - Austin J Minnich
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
21
|
Gong W, Li P, Zhang Y, Feng X, Major J, DeVoto D, Paret P, King C, Narumanchi S, Shen S. Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder. NANO LETTERS 2018; 18:3586-3592. [PMID: 29767979 DOI: 10.1021/acs.nanolett.8b00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term "supersolder" to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional solders and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.
Collapse
Affiliation(s)
- Wei Gong
- Department of Mechanical Engineering , Carnegie Mellon University (CMU) , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Pengfei Li
- Department of Mechanical Engineering , Carnegie Mellon University (CMU) , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Yunheng Zhang
- Department of Mechanical Engineering , Carnegie Mellon University (CMU) , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Xuhui Feng
- National Renewable Energy Laboratory (NREL) , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Joshua Major
- National Renewable Energy Laboratory (NREL) , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Douglas DeVoto
- National Renewable Energy Laboratory (NREL) , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Paul Paret
- National Renewable Energy Laboratory (NREL) , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Charles King
- National Renewable Energy Laboratory (NREL) , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Sreekant Narumanchi
- National Renewable Energy Laboratory (NREL) , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Sheng Shen
- Department of Mechanical Engineering , Carnegie Mellon University (CMU) , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
22
|
Zhao S, Han F, Li J, Meng X, Huang W, Cao D, Zhang G, Sun R, Wong CP. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800047. [PMID: 29707894 DOI: 10.1002/smll.201800047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Copper nanowires (CuNWs) are attracting a myriad of attention due to their preponderant electric conductivity, optoelectronic and mechanical properties, high electrocatalytic efficiency, and large abundance. Recently, great endeavors are undertaken to develop controllable and facile approaches to synthesize CuNWs with high dispersibility, oxidation resistance, and zero defects for future large-scale nano-enabled materials. Herein, this work provides a comprehensive review of current remarkable advancements in CuNWs. The Review starts with a thorough overview of recently developed synthetic strategies and growth mechanisms to achieve single-crystalline CuNWs and fivefold twinned CuNWs by the reduction of Cu(I) and Cu(II) ions, respectively. Following is a discussion of CuNW purification and multidimensional assemblies comprising films, aerogels, and arrays. Next, several effective approaches to protect CuNWs from oxidation are highlighted. The emerging applications of CuNWs in diverse fields are then focused on, with particular emphasis on optoelectronics, energy storage/conversion, catalysis, wearable electronics, and thermal management, followed by a brief comment on the current challenges and future research directions. The central theme of the Review is to provide an intimate correlation among the synthesis, structure, properties, and applications of CuNWs.
Collapse
Affiliation(s)
- Songfang Zhao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Fei Han
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jinhui Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiangying Meng
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Wangping Huang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Duxia Cao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Guoping Zhang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Barako MT, Gambin V, Tice J. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications. NANOTECHNOLOGY 2018; 29:154003. [PMID: 29384132 DOI: 10.1088/1361-6528/aaabe1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.
Collapse
Affiliation(s)
- Michael T Barako
- NG Next, Northrop Grumman Corporation, Redondo Beach, CA 90278, United States of America
| | | | | |
Collapse
|
24
|
Katsikis G, Breant A, Rinberg A, Prakash M. Synchronous magnetic control of water droplets in bulk ferrofluid. SOFT MATTER 2018; 14:681-692. [PMID: 29205244 DOI: 10.1039/c7sm01973d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a microfluidic platform for magnetic manipulation of water droplets immersed in bulk oil-based ferrofluid. Although non-magnetic, the droplets are exclusively controlled by magnetic fields without any pressure-driven flow. The fluids are dispensed in a sub-millimeter Hele-Shaw chamber that includes permalloy tracks on its substrate. An in-plane rotating magnetic field magnetizes the permalloy tracks, producing local magnetic gradients, while an orthogonal magnetic field magnetizes the bulk ferrofluid. To minimize the magnetostatic energy of the system, the water droplets are attracted towards the locations on the tracks where the bulk ferrofluid is repelled. Using this technique, we demonstrate synchronous generation and propagation of water droplets, study the kinematics of propagation, and analyze the flow of the bulk ferrofluid. In addition, we show controlled break-up of droplets and droplet-to-droplet interactions. Finally, we discuss future applications owing to the potential biocompatibility of the droplets.
Collapse
Affiliation(s)
- Georgios Katsikis
- Department of Mechanical Engineering, Stanford University, 450 Serra Mall, California 94305, USA
| | | | | | | |
Collapse
|
25
|
Barako MT, Isaacson SG, Lian F, Pop E, Dauskardt RH, Goodson KE, Tice J. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42067-42074. [PMID: 29119783 DOI: 10.1021/acsami.7b12313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm2 K W-1, over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.
Collapse
Affiliation(s)
- Michael T Barako
- NG Next, Northrop Grumman Corporation , One Space Park, Redondo Beach, California 90278, United States
- Stanford University , Stanford, California 94305, United States
| | | | - Feifei Lian
- NG Next, Northrop Grumman Corporation , One Space Park, Redondo Beach, California 90278, United States
- Stanford University , Stanford, California 94305, United States
| | - Eric Pop
- Stanford University , Stanford, California 94305, United States
| | | | | | - Jesse Tice
- NG Next, Northrop Grumman Corporation , One Space Park, Redondo Beach, California 90278, United States
| |
Collapse
|
26
|
Fang H, Zhao Y, Zhang Y, Ren Y, Bai SL. Three-Dimensional Graphene Foam-Filled Elastomer Composites with High Thermal and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26447-26459. [PMID: 28730803 DOI: 10.1021/acsami.7b07650] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To meet the increasing demands for effective heat management of electronic devices, a graphene-based polymeric composite is considered to be one of the candidate materials owing to the ultrahigh thermal conductivity (TC) of graphene. However, poor graphene dispersion, low quality of exfoliated graphene, and strong phonon scattering at the graphene/matrix interface restrict the heat dissipation ability of graphene-filled composites. Here, a facile and versatile approach to bond graphene foam (GF) with polydimethylsiloxane (PDMS) is proposed, and the corresponding composite with considerable improvement in TC and insulativity is fabricated. First, three-dimensional GF was coated with polydopamine (PDA) via π-π stack and functional groups from PDA reacted with 3-aminopropyltriethoxysilane (APTS). Then, the modified GF was compressed (c-GF) to enhance density and infiltrated with PDMS to get the c-GF/PDA/APTS/PDMS composite. As a result, these processes endow the composite with high TC of in-plane 28.77 W m-1 K-1 and out-of-plane 1.62 W m-1 K-1 at 11.62 wt % GF loading. Besides, the composite manifests obvious improvement in mechanical properties, thermal stability, and insulativity compared to neat PDMS and GF/PDMS composite. An attempt to use the composite for cooling a ceramic heater is found to be successful. Above results open a way for such composites to be applied for the heat management of electronic devices.
Collapse
Affiliation(s)
- Haoming Fang
- Department of Materials Science and Engineering, HEDPS/CAPT, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Engineering, Peking University , Beijing 100871, China
| | - Yunhong Zhao
- Department of Materials Science and Engineering, HEDPS/CAPT, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Engineering, Peking University , Beijing 100871, China
| | - Yafei Zhang
- Department of Materials Science and Engineering, HEDPS/CAPT, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Engineering, Peking University , Beijing 100871, China
| | - Yanjuan Ren
- Department of Materials Science and Engineering, HEDPS/CAPT, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Engineering, Peking University , Beijing 100871, China
| | - Shu-Lin Bai
- Department of Materials Science and Engineering, HEDPS/CAPT, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
27
|
Zeng X, Sun J, Yao Y, Sun R, Xu JB, Wong CP. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity. ACS NANO 2017; 11:5167-5178. [PMID: 28402626 DOI: 10.1021/acsnano.7b02359] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m-1 K-1) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m-1 K-1) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.
Collapse
Affiliation(s)
- Xiaoliang Zeng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences , Shenzhen 518055, China
| | - Jiajia Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China , Suzhou 215123, China
| | - Yimin Yao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences , Shenzhen 518055, China
| | - Rong Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China
| | - Jian-Bin Xu
- Department of Electronics Engineering, The Chinese University of Hong Kong , Hong Kong 999077, China
| | - Ching-Ping Wong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China
- Department of Electronics Engineering, The Chinese University of Hong Kong , Hong Kong 999077, China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Yegin C, Nagabandi N, Feng X, King C, Catalano M, Oh JK, Talib AJ, Scholar EA, Verkhoturov SV, Cagin T, Sokolov AV, Kim MJ, Matin K, Narumanchi S, Akbulut M. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10120-10127. [PMID: 28240857 DOI: 10.1021/acsami.7b00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm2 K/W for a typical bond-line thickness of 30-50 μm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.
Collapse
Affiliation(s)
- Cengiz Yegin
- Department of Materials Science and Engineering, Texas A&M University , 3003 TAMU, College Station, Texas 77843-3003, United States
| | - Nirup Nagabandi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University , 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Xuhui Feng
- National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Charles King
- National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Massimo Catalano
- CNR-IMM, Institute Microelectronics and Microsystems, National Council for Research , Via Monteroni, 73100 Lecce, Italy
- Materials Science and Engineering Department, University of Texas at Dallas , 800 W. Campbell Rd., Richardson, Texas 75080, United States
| | - Jun Kyun Oh
- Department of Materials Science and Engineering, Texas A&M University , 3003 TAMU, College Station, Texas 77843-3003, United States
| | - Ansam J Talib
- Department of Physics and Astronomy and Institute for Quantum Science and Engineering, Texas A&M University , 4242 TAMU, College Station, Texas 77843-4242, United States
| | - Ethan A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University , 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Stanislav V Verkhoturov
- Department of Chemistry, Texas A&M University , 3012 TAMU, College Station, Texas 77843-3012, United States
| | - Tahir Cagin
- Department of Materials Science and Engineering, Texas A&M University , 3003 TAMU, College Station, Texas 77843-3003, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University , 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Alexei V Sokolov
- Department of Physics and Astronomy and Institute for Quantum Science and Engineering, Texas A&M University , 4242 TAMU, College Station, Texas 77843-4242, United States
| | - Moon J Kim
- Materials Science and Engineering Department, University of Texas at Dallas , 800 W. Campbell Rd., Richardson, Texas 75080, United States
| | - Kaiser Matin
- Microsystems Technology Office, Defense Advanced Research Project Agency , 675 N Randolph St., Arlington, Virginia 22203, United States
| | - Sreekant Narumanchi
- National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mustafa Akbulut
- Department of Materials Science and Engineering, Texas A&M University , 3003 TAMU, College Station, Texas 77843-3003, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University , 3122 TAMU, College Station, Texas 77843-3122, United States
| |
Collapse
|
29
|
Suh D, Moon CM, Kim D, Baik S. Ultrahigh Thermal Conductivity of Interface Materials by Silver-Functionalized Carbon Nanotube Phonon Conduits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7220-7227. [PMID: 27273764 DOI: 10.1002/adma.201600642] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/08/2016] [Indexed: 06/06/2023]
Abstract
An ultrahigh thermal conductivity (κ = 160 W m(-1) K(-1) ) of thermal interface materials is achieved with a high enhancement factor (96). A small amount (2.3 vol%) of 1D multiwalled carbon nanotubes (MWNTs) with high κ constructs effective phonon transport pathways between microscale silver-flake islands, and a solid phonon transport junction is realized by the coalescence of silver nanoparticles pre-functionalized on the MWNTs.
Collapse
Affiliation(s)
- Daewoo Suh
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
| | | | - Duckjong Kim
- Department of Nano-Mechanics, Korea Institute of Machinery and Materials, Daejeon, 305-343, Korea
| | - Seunghyun Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 440-746, Korea
| |
Collapse
|
30
|
Barako MT, Sood A, Zhang C, Wang J, Kodama T, Asheghi M, Zheng X, Braun PV, Goodson KE. Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals. NANO LETTERS 2016; 16:2754-2761. [PMID: 26986050 DOI: 10.1021/acs.nanolett.6b00468] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.
Collapse
Affiliation(s)
| | | | | | - Junjie Wang
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | - Paul V Braun
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
31
|
Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem Rev 2016; 116:3722-811. [DOI: 10.1021/acs.chemrev.5b00482] [Citation(s) in RCA: 1589] [Impact Index Per Article: 176.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Manoj B. Gawande
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| | - Anandarup Goswami
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - François-Xavier Felpin
- UFR
Sciences et Techniques, UMR CNRS 6230, Chimie et Interdisciplinarité:
Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes, 2 Rue de la Houssinière, BP 92208, Nantes 44322 Cedex 3, France
| | - Tewodros Asefa
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Xiaoxi Huang
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Rafael Silva
- Department
of Chemistry, Maringá State University, Avenida Colombo 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Xiaoxin Zou
- State
Key
Laboratory of Inorganic Synthesis and Preparative Chemistry, International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| |
Collapse
|